Douglas C. Schmidt
i.schmidt@uanderhilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashuville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize the powerful features defined
in the Java ExecutorService interface

« & provided by its associated
implementations to manage
the lifecycle of concurrent tasks

Interface ExecutorService

All Superinterfaces:
Executor

All Known Subinterfaces:
ScheduledExecutorService

All Known Implementing Classes:
AbstractExecutorService, ForkJoinPool,
ScheduledThreadPoolExecutor, ThreadPoolExecutor

public interface ExecutorService
extends Executor

An Executor that provides methods to manage termination and methods that
can produce a Future for tracking progress of one or more asynchronous
tasks.

An ExecutorService can be shut down, which will cause it to reject new
tasks. Two different methods are provided for shutting down an
ExecutorService. The shutdown () method will allow previously submitted
tasks to execute before terminating, while the shutdownNow () method
prevents waiting tasks from starting and attempts to stop currently
executing tasks. Upon termination, an executor has no tasks actively
executing, no tasks awaiting execution, and no new tasks can be submitted.
An unused ExecutorService should be shut down to allow reclamation of its
resources.

Method submit extends base method Executor.execute(Runnable) by
creating and returning a Future that can be used to cancel execution and/or
wait for completion. Methods invokeAny and invokeAll perform the most
commonly useful forms of bulk execution, executing a collection of tasks and
then waiting for at least one, or all, to complete. (Class
ExecutorCompletionService can be used to write customized variants of
these methods.)




Overview of the
ExecutorService Interface




Overview of the ExecutorService Interface

« Extends Executor

<<Java Interface==
&% ExecutorService

<<Java Interface>>
&% Executor

@ execute(Runnable):void

@ shutdown():void

@ shutdownNow():List<Runnable>

@ isShutdown():boolean

@ isTerminated():boolean

@ awaitTermination(long, TimeUnit):boolean

@ submit(Callable<T=):Future<T>

@ submit(Runnable, T):Future<T>

@ submit(Runnable):Future<?>

@ invokeAll(Collection<? extends Callable<T>>):List<Future<T>>
@ invokeAny(Collection<? extends Callable<T=>>)

@ invokeAny(Collection<? extends Callable<T==>,long, TimeUnit)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

« Extends Executor

e Submit 1+ tasks & return
futures for these tasks

<<Java Interface==
&% ExecutorService

@ shutdown():void

@ shutdownNow():List<Runnable>

@ isShutdown():boolean

@ isTerminated():boolean

@ awaltTermlnatlon{long TimeUnit):boolean

@ submit(Runnable,T): Future-::T:r-
@ submit(Runnable):Future<?>

@ invokeAll(Collection<? extends Callable<T>>):List<Future<T>>
@ invokeAny(Collection<? extends Callable<T=>>)
@ invokeAny(Collection<? extends Callable<T== long,Ti

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

« Extends Executor <<Java Interface>>
&3 ExecutorService

@ shutdown():void

i @ shutdownNow():List<Runnable>
- Manage lifecycle of tasks @ isShutdown():boolean

& executor service itself | o isTerminated():boolean
* e.g., interrupts worker @ awaltTermlnatlnn{long TimeUnit):boolean

threads in a p00| @ submit(Runnable,T): FuturEﬂ:T}

-mm @ submit(Runnable):Future<?>
H_H @ invokeAll(Collection<? extends Callable<T>>):List<Future<T>>

@ invokeAny(Collection<? extends Callable<T=>>)
@ invokeAny(Collection<? extends Callable<T==>,long, TimeUnit)

s
< Pool of worker thl'ead

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

See www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html



http://www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html

Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

A task lifecycle has four phases 1. Created

2. Submitted

4. Completed 3. Started

See en.wikipedia.org/wiki/Samsara



https://en.wikipedia.org/wiki/Sa%E1%B9%83s%C4%81ra

Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

A task lifecycle has four phases 1. Created
1. Created
« A new task is instantiated

2. Submitted

4. Completed 3. Started




Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

A task lifecycle has four phases 1. Created

2. Submitted

2. Submitted

» A task is given to an
executor service to run

* e.g., via execute() or
submit()

4. Completed 3. Started

10



Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

A task lifecycle has four phases 1. Created

2. Submitted

3. Started

« A task is executed by a
worker thread in the
executor service

« e.g., via its call() or

4. Completed ' 3. Started
run() hook method ompiete e

11



Overview of the ExecutorService Interface

A task is a unit of computation that (ideally) does not depend on the state,
result, or side effects of other tasks

A task lifecycle has four phases 1. Created

2. Submitted

4. Completed

* A task finishes (un)successfully
or is cancelled

* e.g., via cancel() 4. Completed 3. Started

12



End of Introduction to the
Java Executor Service

13



	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of the ExecutorService Interface
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	End of Introduction to the Java Executor Service

