
Introduction to the Java ExecutorService

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined 

in the Java ExecutorService interface
• & provided by its associated 

implementations to manage
the lifecycle of concurrent tasks



3

Overview of the 
ExecutorService Interface



4

• Extends Executor

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


5

• Extends Executor
• Submit 1+ tasks & return

futures for these tasks

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


6

• Extends Executor
• Submit 1+ tasks & return

futures for these tasks
• Manage lifecycle of tasks 

& executor service itself
• e.g., interrupts worker 

threads in a pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


7

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

Overview of the ExecutorService Interface

See www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html

http://www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html


8

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks
• A task lifecycle has four phases

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started

See en.wikipedia.org/wiki/Samsara

https://en.wikipedia.org/wiki/Sa%E1%B9%83s%C4%81ra


9

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks
• A task lifecycle has four phases

1. Created
• A new task is instantiated

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



10

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks
• A task lifecycle has four phases

1. Created
2. Submitted

• A task is given to an 
executor service to run
• e.g., via execute() or

submit()

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



11

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks
• A task lifecycle has four phases

1. Created
2. Submitted
3. Started

• A task is executed by a 
worker thread in the 
executor service
• e.g., via its call() or

run() hook method

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



12

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks
• A task lifecycle has four phases

1. Created
2. Submitted
3. Started
4. Completed

• A task finishes (un)successfully 
or is cancelled
• e.g., via cancel()

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



13

End of Introduction to the 
Java Executor Service


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of the ExecutorService Interface
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	End of Introduction to the Java Executor Service

