
Coordinating Threads 
via Java Semaphore 

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Module
• Understand the concept of semaphores 
• Be aware of the two types of 

semaphores
• Note a human known use of 

semaphores 
• Recognize the structure & functionality 

of Java Semaphore
• Know the key methods defined by the

Java Semaphore class
• Learn how Java semaphores enable 

multiple threads to 
• Mediate access to a limited # 

of shared resources
• Coordinate the order in which

operations occur 

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")



3

Applying Java Semaphores 
to Coordinate Threads



4

• The Android ping-pong app coordinates thread interactions via various Java 
synchronizers, including Java semaphores
• i.e., these two threads alternate printing “ping” 

& “pong” on the display

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")

Applying Java Semaphores to Coordinate Threads

1 Semaphores 0

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong


5

• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

ping :
PingPongThread

acquire()

release()

join()

println()

println()

Applying Java Semaphores to Coordinate Threads

: Play
PingPongThread

pingSem :
Semaphore

pongSem :
Semaphore

This app can be configured to use a pair of semaphores that coordinate the 
order in which the “ping” & “pong” threads are called to play ping-pong 



6

• UML sequence diagram for the ping-pong app
Applying Java Semaphores to Coordinate Threads

The PlayPingPongThread object starts two threads, ping & pong, 
that alternate printing "Ping" & "Pong", respectively, on the display

run()

start()

new()
new()

start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread



7

• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

The PingPongThread class implements the core ping-pong algorithm, but 
defers synchronization aspects to subclasses via the Template Method pattern



8

• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

pingSem :
Semaphore

ping :
PingPongThread

pongSem :
Semaphore

The pingSem & PongSem semaphores coordinate the order in 
which the “ping” & “pong” threads are called to play ping-pong 

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

Semaphore pingSem =
new Semaphore(1); 

Semaphore pongSem =
new Semaphore(0); 

Permit count 
initialized to 

“not-acquired”

Permit count 
initialized to 
“acquired”



9

• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

ping :
PingPongThread

acquire()

release()

println()

println()

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e., 
the thread acquiring a semaphore is different from the thread releasing it!  

pingSem :
Semaphore

pongSem :
Semaphore



10

• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e., 
the thread acquiring a semaphore is different from the thread releasing it!  

pingSem :
Semaphore

pongSem :
Semaphore

private final Semaphore mMine;
private final Semaphore mOther;
...

protected void acquire() { mMine.acquire(); }

protected void release() { mOther.release(); }

Block until 
semaphore 
is acquired

Release the other semaphore



11

• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

: Play
PingPongThread

ping :
PingPongThread

acquire()

release()

join()

println()

println()

PlayPingPongThread joins with the ping & pong threads once they finish

Applying Java Semaphores to Coordinate Threads

pingSem :
Semaphore

pongSem :
Semaphore



12

End of Coordinating Threads 
via Java Semaphore


	Slide Number 1
	Learning Objectives in this Part of the Module
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	Applying Java Semaphores to Coordinate Threads
	End of Coordinating Threads via Java Semaphore

