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Learning Objectives in this Part of the Module
• Understand the concept of semaphores 
• Be aware of the two types of 

semaphores
• Note a human known use of 

semaphores 
• Recognize the structure & functionality 

of Java Semaphore
• Know the key methods defined by the

Java Semaphore class
• Learn how Java semaphores enable 

multiple threads to 
• Mediate access to a limited # 

of shared resources
• Coordinate the order in which

operations occur 

1 Semaphores 0

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")
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Applying Java Semaphores 
to Coordinate Threads
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• The Android ping-pong app coordinates thread interactions via various Java 
synchronizers, including Java semaphores
• i.e., these two threads alternate printing “ping” 

& “pong” on the display

run()

ping : 
PingPongThread

pong :
PingPongThread

print("ping")

run()

print("pong")

Applying Java Semaphores to Coordinate Threads

1 Semaphores 0

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong
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• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

ping :
PingPongThread

acquire()

release()

join()

println()

println()

Applying Java Semaphores to Coordinate Threads

: Play
PingPongThread

pingSem :
Semaphore

pongSem :
Semaphore

This app can be configured to use a pair of semaphores that coordinate the 
order in which the “ping” & “pong” threads are called to play ping-pong 
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• UML sequence diagram for the ping-pong app
Applying Java Semaphores to Coordinate Threads

The PlayPingPongThread object starts two threads, ping & pong, 
that alternate printing "Ping" & "Pong", respectively, on the display

run()

start()

new()
new()

start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread
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• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

The PingPongThread class implements the core ping-pong algorithm, but 
defers synchronization aspects to subclasses via the Template Method pattern
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• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

pingSem :
Semaphore

ping :
PingPongThread

pongSem :
Semaphore

The pingSem & PongSem semaphores coordinate the order in 
which the “ping” & “pong” threads are called to play ping-pong 

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

Semaphore pingSem =
new Semaphore(1); 

Semaphore pongSem =
new Semaphore(0); 

Permit count 
initialized to 

“not-acquired”

Permit count 
initialized to 
“acquired”
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• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

ping :
PingPongThread

acquire()

release()

println()

println()

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e., 
the thread acquiring a semaphore is different from the thread releasing it!  

pingSem :
Semaphore

pongSem :
Semaphore
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• UML sequence diagram for the ping-pong app

run()

start() run()

new()
new()

run()start()

pong : 
PingPongThread

ping :
PingPongThread

: Play
PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e., 
the thread acquiring a semaphore is different from the thread releasing it!  

pingSem :
Semaphore

pongSem :
Semaphore

private final Semaphore mMine;
private final Semaphore mOther;
...

protected void acquire() { mMine.acquire(); }

protected void release() { mOther.release(); }

Block until 
semaphore 
is acquired

Release the other semaphore
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• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()
new()

acquire()
run()

release()

start()

pong : 
PingPongThread

: Play
PingPongThread

ping :
PingPongThread

acquire()

release()

join()

println()

println()

PlayPingPongThread joins with the ping & pong threads once they finish

Applying Java Semaphores to Coordinate Threads

pingSem :
Semaphore

pongSem :
Semaphore
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End of Coordinating Threads 
via Java Semaphore
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