Key Methods in Java Semaphore

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class>>
(& Semaphore

@ Semaphore(int)

@ Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

» Know the key methods defined by the s

@ tryAcquire(long, TimeUnit):boolean
Java Semaphore class grelEas i

@ acquire(int):void

@ acquireUninterruptibly(int):void
@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean
& getQueuelLength():int

@ toString()

Overview of Key Java
Semaphore Methods

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {
public void acquire() { ... }

public void
acquireUninterruptibly ()

{ ...}

public boolean tryAcquire
(long timeout,
TimeUnit unit)

{ ... 1}

public void release() { ... }

See docs.oracle.com/javase/8/docs/api/
java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {
public void acquire() { ... }

public void
acquireUninterruptibly ()

{ ...}

public boolean tryAcquire
(long timeout,
TimeUnit unit)

{ ...}

public void release() { ... }

These methods forward to their implementor methods, which are
largely inherited from the AbstractQueuedSynchronizer framework

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

« acquire() atomically obtains

a permit from the semaphore ~ PuPlic void acquire() {

sync.
acquireSharedInterruptibly (1) ;
}

“LET’S GO GET YOU A LANYARD.”

AGENT KOENIG

#ITSALLCONNECTED ' H.LE.L.D. TUESDAYS 87c §bc

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

« acquire() atomically obtains

a permit from the semaphore ~ PuPlic void acquire() {

_ sync.
« Can be interrupted acquireSharedInterruptibly (1) ;
}

Please

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public void
acquireUninterruptibly () ({
« acquireUninterruptibly() also sync.acquireShared (1)
obtains a permit from the }

semaphore
« Cannot be interrupted

Please

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public boolean tryAcquire ()
- A
sync.
nonfairTryAcquireShared (1)
>= 0;

« tryAcquire() obtains a permit if

}
it's available at invocation time)

Overview of Key Java Semaphore Methods

« Its key methods acquire &
release the semaphore

« tryAcquire() obtains a permit if
it's available at invocation time

A

public class Semaphore

implements ... {

public boolean tryAcquire ()

}

- A

sync.

nonfairTryAcquireShared (1)
>= 0;

\/,

..‘z/.‘

Q'f'
: (f-
S)

—_—

0

.\‘

°/

ﬂ

Untimed tryAcquire() methods will “barge”,
honor the fairness setting & take any permits available

. i.e., they don't

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public void release() {
sync.releaseShared (1) ;

}

* release() atomically increments
the permit count by 1

VOLUME

Recall it's valid for the permit count to exceed the initial permit count!!

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore
release the semaphore implements ... {

public void release() {
sync.releaseShared (1) ;

* release() atomically increments
the permit count by 1

o If the permit count is now > 0
a thread waiting to acquire the
semaphore can then proceed

12

Overview of Key Java Semaphore Methods

« Its key methods acquire & public class Semaphore

release the semaphore implements ...

public void release() {

{

sync.releaseShared (1) ;

}

PingPongThread

run()
* release() atomically increments
the permit count by 1 Q

print("ping")

’a‘ !
!

) pong : eg
ping : 95 PingPonlgThread

run()

print("pong")

]

| 1| semaprores | O |

» The thread calling release()
needn’t be the one calling acquired()

13

Overview of Other Java
Semaphore Methods

14

Overview of Other Java Semaphore Methods

* There are many other Semaphore <<Java Class>>
methods (3 Semaphore
@ Semaphore(int)

@ Semaphore(int,boolean)

@ acquire():void

@ acquireUninterruptibly():void

@ tryAcquire():boolean

@ tryAcquire(long, TimeUnit):boolean
@ release():void

@ acquire(int):void

@ acquireUninterruptibly(int):void

@ tryAcquire(int):boolean

@ tryAcquire(int,long, TimeUnit):boolean
@ release(int):void

@ availablePermits():int

@ drainPermits():int

@ isFair():boolean

& hasQueuedThreads():boolean

& getQueueLength():int

@ toString()

15

Overview of Other Java Semaphore Methods

* There are many other Semaphore
methods

« Some methods can acquire
or release multiple permits
at a time

boo

void

void

lean

void

acquire(int permits) — Acquires # of
permits from semaphore, blocking
until all are available, or thread
interrupted

acquireUninterruptibly(int permits)
— Acquires # of permits from
semaphore, blocking until all
available

tryAcquire(int permits) — Acquires
given # of permits from semaphore,
only if all are available at the time
of invocation

release(int permits) — Releases # of
permits, returning them to
semaphore

16

http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquire(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmlacquireUninterruptibly(int)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int)
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmlrelease(int)

Overview of Other Java Semaphore Methods

* There are many other Semaphore hoolean tryAcquire(long timeout, TimeUnit
methods unit) — Acquires a permit from
semaphore, if one is available
within given waiting time & thread
has not been interrupted
_ _ boolean tryAcquire(int permits, long
* Likewise, some of these timeout, TimeUnit unit) — Acquires
methods use timeouts given # of permits from

semaphore, if all available within
given waiting time & current thread
has not been interrupted

Ironically, the timed tryAcquire() methods do
honor the fairness setting, so they don't “barge”

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.htmltryAcquire(long, java.util.concurrent.TimeUnit)
http://developer.android.com/reference/java/util/concurrent/Semaphore.htmltryAcquire(int, long, java.util.concurrent.TimeUnit)

Overview of Other Java Semaphore Methods

« There are many other Semaphore int availablePermits() — Returns the
methods current number of permits available
In this semaphore.
int getQueuelength() — Returns an

estimate of the number of threads
waiting to acquire.
boolean hasQueuedThreads() — Queries
whether any threads are waiting to
« Yet another methods provide acquire.
information about the current
state of the semaphore e e - ﬂ%

Naturally, these values are always an “estimate” in concurrent programs!

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html#availablePermits--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html#getQueueLength--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html#hasQueuedThreads--

End of Key Methods
iIn Java Semaphore

19

