Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

1 will adopt Best Bractices
I will adopt Best Practices
] will adogt Best Bractices
1 will adopt Best Frachces
] will adogt Best Bractices
1 will adoplt Best Fractices
] will adopt Best Practices

. Appreciate usage considerations [t

, : I will adopt Best Practices
foFavavolatiie Varabies 1 will adogh Best Prachices

I will adopt Best Prachces

Usage Considerations
for Volatile Variables

Usage Considerations for Volatile Variables

« Concurrent apps should use volatile variables carefully to avoid “busy waiting”

class LoopMayNeverEnd {
volatile boolean mDone = false;

void work () {
// Thread T2 read
while (!mDone) {

// do work\\\\

If "do work” isn’t time consuming
this loop will spin excessively..

}
}

void stopWork () {
// Thread Tl write
mDone = true;

}

See en.wikipedia.org/wiki/Busy waiting

http://en.wikipedia.org/wiki/Busy_waiting

Usage Considerations for Volatile Variables

« Concurrent apps should use volatile variables carefully to avoid “busy waiting”

 Busy waiting is most effective public class AtomicLong

when encapsulated in higher- e |
level concurrency libraries private volatile long value;

private static final Unsafe unsafe

>\(// EMERGING TECHNOLOGIES = Unsafe.getUnsafe() ;
private static final long
"Engineering Concurrent Library Components” valueOffset;
DOUQ Lea static {
Day 2 - April 3, 2013 - 1:30 PM - Salon C \'r;J..ueOffset = unsafe.
phillyemergingtech.com objectFieldOffset
(AtomicLong
.class

.getDeclaredField("value")) ;

See www.youtube.com/watch?v=sq0OMX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself // In Thread tl
counter++;

// load counter into register rl
// increment register rl
// store register rl into counter

// In Thread t2

counter--;

// load counter into register rl
// decrement register rl

// store register rl into counter

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can't use volatile by itself, e.qg. // In Thread tl
counter++;

« Incrementing an integer

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can't use volatile by itself, e.g. // In Thread tl
counter++;

» Incrementing an integer // load counter into register rl

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can't use volatile by itself, e.g. // In Thread tl

i : counter++;
« Incrementing an integer

// increment register rl

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can't use volatile by itself, e.g. // In Thread tl
counter++;

« Incrementing an integer

// store register rl into counter

10

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself, e.g. // In Thread tl

counter++;

// load counter into register rl
// increment register rl

// store register rl into counter

« Incrementing an integer

// In Thread t2

counter--;

// load counter into register rl
// decrement register rl

// store register rl into counter

11

Usage Considerations for Volatile Variables

« Complex operations that
perform multiple instructions
can’t use volatile by itself, e.qg.

« Incrementing an integer

time

Thread, Thread, Long
value
initialized 0
read value readvalue «— 0
increase decrease 0
valueby 1 value by 1
write back / write back — -1, 0,
or1?

If these steps interleave in multiple
threads the results may be inconsistent

See en.wikipedia.org/wiki/Write-write conflict

https://en.wikipedia.org/wiki/Write%E2%80%93write_conflict

Usage Considerations for Volatile Variables

« Complex operations that AtomicLong mCounter =
perform multiple instructions new AtomicLong (0) ;

can’t use volatile by itself, e.qg.
// In Thread tl

mCounter.getAndIncrement () ;
« Use an atomic variable // load counter into register rl
instead of a volatile variable // increment register rl
// store register rl into counter

// In Thread t2
mCounter.getAndDecrement () ;

// load counter into register rl
// decrement register rl

// store register rl into counter

See docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

Usage Considerations for Volatile Variables

« Declaring an array or an object
as volatile only makes the
reference volatile

public class Vector<E> ... {
/**

* The number of elements or
* the size of the wvector.

*/

protected int elementCount;

/**

* The elements of the wvector.
*/
protected Object[] elementData;

}

volatile Vector v = new Vector()

14

Usage Considerations for Volatile Variables

« Declaring an array or an object public class Vector<E> ... {
as volatile only makes the [**
reference volatile * The number of elements or
* the size of the vector.
*/

protected int elementCount;

/**

* The elements of the wvector.
*/
protected Object[] elementData;

}

volatile Vector v = new Vector();

See docs.oracle.com/javase/8/docs/api/java/util/Vector.html

https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Usage Considerations for Volatile Variables

« Declaring an array or an object public class Vector<E> ... {
as volatile only makes the [**
reference volatile * The number of elements or
* the size of the vector.
*/

protected int elementCount;

/**

* The elements of the wvector.
*/
protected Object[] elementData;

}

volatile Vector v = new Vector();

Volatile variable

16

Usage Considerations for Volatile Variables

« Declaring an array or an object
as volatile only makes the
reference volatile

« However, the contents
pointed to by the reference
are not volatile

public class Vector<E> ... {
/**
* The number of elements or
* the size of the wvector.
*/

protected int elementCount;

/**
* The eleménts of the vector.
*/

protected Object[] elementData;

volatile Vect v = new Vector()

Non-volatile fields

17

Usage Considerations for Volatile Variables

Declaring an array or an object public class Vector<E> ... {
as volatile only makes the .
reference volatile public synchronized E set

(int location, E object) ({
if (location < elementCount) {
E result = (E)
elementData[location] ;
« Therefore, more powerful elementData[location] =

types of synchronization are object;
needed return result;

}

volatile Vector v = new Vector()

See upcoming lessons on “Java Monitor Object” & “Java Synchronizers”

Usage Considerations for Volatile Variables

« Java semantics of volatile aren’t
the same as in C or C++

In C and C++ [edi

In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to
poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

(foo = 255)

.
3

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

See www.drdobbs.com/parallel/volatile-vs-volatile/212701484

http://www.drdobbs.com/parallel/volatile-vs-volatile/212701484

Usage Considerations for Volatile Variables

« Java semantics of volatile aren’t
the same as in C or C++

« Volatiles in C/C++ aren't
atomic & don't create a
happens-before relationship

In C and C++ [edi

In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to
poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

(foo 1= 255)

3

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

See en.wikipedia.org/wiki/Volatile variable#In C and C++

http://en.wikipedia.org/wiki/Volatile_variable#In_C_and_C++

Usage Considerations for Volatile Variables

e Java semantics of volatile aren’t
the same as in C or C++

» They largely just disable
compiler optimizations

NATIONAL DAY OF
UNPLUGGING

In C and C++ [edi

In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.[PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to

poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

thile (foo != 255)

.
El

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

21

End of Usage Considerations
of Java Volatile Variables

22

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Usage Considerations �for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	Usage Considerations for Volatile Variables
	End of Usage Considerations of Java Volatile Variables

