
The Pervasiveness & Complexity
of Java Synchronizers

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Be aware of the Java memory 

model
• Understand the purpose of Java 

synchronizers
• Recognize the pervasiveness of

Java synchronizers

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

e.g., volatile variables & 
built-in monitor objects 

e.g., Java atomics, locks, 
& other synchronizers



3

Learning Objectives in this Part of the Lesson
• Be aware of the Java memory 

model
• Understand the purpose of Java 

synchronizers
• Recognize the pervasiveness of

Java synchronizers
• As well as their complexities



4

The Pervasiveness of 
Synchronizers in Java



5

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine 

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform

The Pervasiveness of Java Synchronizer Classes

See en.wikipedia.org/wiki/Java_(software_platform)

https://en.wikipedia.org/wiki/Java_(software_platform)


6

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform, e.g.
• The Java language contains some 

features that synchronize threads

The Pervasiveness of Java Synchronizer Classes

e.g., volatile variables & 
built-in monitor objects 

See en.wikipedia.org/wiki/Java_(programming_language)

https://en.wikipedia.org/wiki/Java_(programming_language)


7

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are 
provided on the Java platform, e.g.
• The Java language contains some 

features that synchronize threads
• Other synchronizers are provided 

by the Java Class Library

The Pervasiveness of Java Synchronizer Classes

e.g., Java atomics, various locks, 
conditions, semaphores, & barriers

See en.wikipedia.org/wiki/Java_Class_Library

https://en.wikipedia.org/wiki/Java_Class_Library


8

The Complexities of 
Synchronizers in Java



9

• Synchronization complexity arises from 
coordinating the interactions of entities 
that run concurrently 

The Complexities of Java Synchronizer Classes



10

• There are two general type of synchronization complexities
The Complexities of Java Synchronizer Classes

See en.wikipedia.org/wiki/No_Silver_Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet


11

• There are two general type of synchronization complexities
• Inherent complexities

The Complexities of Java Synchronizer Classes

These fundamental challenges 
constitute the “rocket science” 
of the synchronization domain

See www.informit.com/articles/article.aspx?p=726130&seqNum=2

http://www.informit.com/articles/article.aspx?p=726130&seqNum=2


12

• There are two general type of synchronization complexities
• Inherent complexities
• Mutual Exclusion
• Ensure concurrent threads

don’t simultaneously run in
a program’s critical sections

The Complexities of Java Synchronizer Classes

See en.wikipedia.org/wiki/Race_condition

Race conditions arise when an application depends on the 
sequence or timing of threads for it to operate properly

http://en.wikipedia.org/wiki/Race_condition


13

• There are two general type of synchronization complexities
• Inherent complexities
• Mutual Exclusion
• Coordination
• Manage the order or time in which operations 

are performed to ensure threads access system 
resources correctly & efficiently

The Complexities of Java Synchronizer Classes



14

• There are two general type of synchronization complexities
• Inherent complexities
• Mutual Exclusion
• Coordination
• Deadlock
• Occurs when 2+ competing 

actions each wait for the other 
to finish, & thus none ever do

The Complexities of Java Synchronizer Classes



15

• There are two general type of synchronization complexities
• Inherent complexities
• Accidental complexities

The Complexities of Java Synchronizer Classes

These complexities arise from common 
limitations with techniques, tools, & 

methods used to synchronize programs

See wiki.c2.com/?AccidentalComplexity

https://wiki.c2.com/?AccidentalComplexity


16

• There are two general type of synchronization complexities
• Inherent complexities
• Accidental complexities
• Tool limitations make it hard to 

debug concurrent programs

The Complexities of Java Synchronizer Classes

See en.wikipedia.org/wiki/Trepanning for 
more on traditional “debugging” techniques!

http://en.wikipedia.org/wiki/Trepanning


17

• There are two general type of synchronization complexities
• Inherent complexities
• Accidental complexities
• Tool limitations make it hard to 

debug concurrent programs
• The behavior in the debugger 

doesn’t reflect actual behavior

The Complexities of Java Synchronizer Classes

See en.wikipedia.org/wiki/Heisenbug

The very act of observing a 
program can alter its state

http://en.wikipedia.org/wiki/Heisenbug


18

• There are two general type of synchronization complexities
• Inherent complexities
• Accidental complexities
• Tool limitations make it hard to 

debug concurrent programs
• The behavior in the debugger 

doesn’t reflect actual behavior
• Lack of tool support to identify 

& rectify race conditions

The Complexities of Java Synchronizer Classes

See en.wikipedia.org/wiki/Race_condition

Occur when multiple threads “crash” into 
unprotected data structures & corrupt them

http://en.wikipedia.org/wiki/Race_condition


19

• There are two general type of synchronization complexities
• Inherent complexities
• Accidental complexities
• Tool limitations make it hard to 

debug concurrent programs
• The behavior in the debugger 

doesn’t reflect actual behavior
• Lack of tool support to identify 

& rectify race conditions
• Conventional Java debuggers 

don’t detect race conditions

The Complexities of Java Synchronizer Classes

Problems often don’t 
surface until runtime



20

The Complexities of Java Synchronizer Classes

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join()
join()

join() join() join() join()

• Java’s parallelism frameworks help 
reduce synchronization complexities 
via “divide & conquer”

See en.wikipedia.org/wiki/Divide-and-conquer_algorithm

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm


21

The Complexities of Java Synchronizer Classes

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join()
join()

join() join() join() join()

• Java’s parallelism frameworks help 
reduce synchronization complexities 
via “divide & conquer”
• These frameworks largely 

eliminate the need for 
synchronization when
writing concurrent apps



22

End of the Pervasiveness
& Complexity of 

Java Synchronizers


