
Evaluating the Pros & Cons of the 

Java ExecutorCompletionService

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how the Java CompletionService interface defines a framework 

for handling the completion of asynchronous tasks

• Know how to instantiate the Java ExecutorCompletionService

• Recognize key methods in the Java CompletionService interface

• Visualize the ExecutorCompletionService in action

• Be aware of how the Java ExecutorCompletionService
implements the CompletionService interface

• Know how to apply the Java ConcurrentHashMap class to 
design a “memoizer”

• Master how to implement the Memoizer class with Java ConcurrentHashMap

• See how Java ExecutorCompletionService & Memoizer are integrated into the 
“PrimeChecker” app

• Evaluate the pros & cons of this PrimeChecker app implementation



3

Evaluating this 
PrimeChecker App



4

Evaluating this PrimeChecker App
• This PrimeChecker implementation fixes 

problems w/the earlier versions



5

• This PrimeChecker implementation fixes 
problems w/the earlier versions, e.g.

• Futures are processed as they complete

This benefit stems from ExecutorCompletionService’s “async future” processing model

...

private class CompletionRunnable

implements Runnable {

int mCount; ...

public void run() {

for (int i = 0; i < mCount; ++i) { 

PrimeResult pr = 

...mExecutorCompletionService.take().get();

if (pr.mSmallestFactor != 0) ...

else ... 

Evaluating this PrimeChecker App



6

• This PrimeChecker implementation fixes 
problems w/the earlier versions, e.g.

• Futures are processed as they complete
...

private class CompletionRunnable

implements Runnable {

int mCount; ...

public void run() {

for (int i = 0; i < mCount; ++i) { 

PrimeResult pr = 

...mExecutorCompletionService.take().get();

if (pr.mSmallestFactor != 0) ...

else ... 

Evaluating this PrimeChecker App

However, you must keep track 
of the # of times to call take()



7

• This PrimeChecker implementation fixes 
problems w/the earlier versions, e.g.

• Futures are processed as they complete

• Memoizer enables transparent optimization 
w/out changing PrimeCallable

Evaluating this PrimeChecker App

mMemoizer = new Memoizer<>

(PrimeCheckers::bruteForceChecker,

new ConcurrentHashMap());

new Random()

.longs(count, sMAX_VALUE - count, 

sMAX_VALUE)

.mapToObj(ranNum -> new PrimeCallable(ranNum, mMemoizer))

.forEach(callable -> 

mRetainedState.mExecutorCompService::submit); ...

Memoizer can be used wherever a Function is expected



8

• This PrimeChecker implementation fixes 
problems w/the earlier versions, e.g.

• Futures are processed as they complete

• Memoizer enables transparent optimization 
w/out changing PrimeCallable

Evaluating this PrimeChecker App

mMemoizer = new Memoizer<>

(PrimeCheckers::bruteForceChecker,

new ConcurrentHashMap());

new Random()

.longs(count, sMAX_VALUE - count, 

sMAX_VALUE)

.mapToObj(ranNum -> new PrimeCallable(ranNum, mMemoizer))

.forEach(callable -> 

mRetainedState.mExecutorCompService::submit); ...

bruteForceChecker() can play the role of the memoizer function



9

• This PrimeChecker implementation fixes 
problems w/the earlier versions, e.g.

• Futures are processed as they complete

• Memoizer enables transparent optimization 
w/out changing PrimeCallable

Evaluating this PrimeChecker App

mMemoizer = new Memoizer<>

(PrimeCheckers::efficientChecker,

new ConcurrentHashMap());

new Random()

.longs(count, sMAX_VALUE - count, 

sMAX_VALUE)

.mapToObj(ranNum -> new PrimeCallable(ranNum, mMemoizer))

.forEach(callable -> 

mRetainedState.mExecutorCompService::submit); ...

bruteForceChecker() can easily be replaced with a different method reference



10

• However, there are still limitations

Evaluating this PrimeChecker App



11

• However, there are still limitations, e.g.

• If the Memoizer is used for a long period
of time for a wide range of inputs it will
continue to grow & never clean itself up!

We fix this limtiation in the upcoming lesson on the “Java ScheduledExecutorService”

Evaluating this PrimeChecker App



12

• However, there are still limitations, e.g.

• If the Memoizer is used for a long period
of time for a wide range of inputs it will
continue to grow & never clean itself up!

• This implementation of Memoizer depends
on ConcurrentHashMap features available
only with Java 8 & beyond

We fix this limitation in the upcoming lesson on the “Java FutureTask”

Evaluating this PrimeChecker App



13

End of Evaluating the Pros 
& Cons of the Java Executor 

CompletionService


