Key Methods in the Java

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhiit.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize the key methods in the
Java CompletionService interface

<<Java Interface>>
& CompletionService<V>

@ submit(Callable<V=>)
@ submit(Runnable,V)
@ take()

@ poll()

@ poll(long, TimeUnit)

Learning Objectives in this Part of the Lesson

<<Java Interface>>
& CompletionService<V>

 Recognize the key methods in the @ submit(Callable<V>)
Java CompletionService interface & submit(Runnable, V)

@ take()
« These methods are o P— @ poll()
implemented by the (® ExecutorCompletionService<V>

@ poll(long, TimeUnit)
EXGCUtOrCom pletlon = executor: Executor

= completionQueue: BlockingQueue<Future<V>>

SEI’VICG CIaSS @ ExecutorCompletionService(Executor)
m newTaskFor(Callable<V>)

@ submit(Callable<V>)

@ take()

@ poll()

@ poli(long, TimeUnit)

Learning Objectives in this Part of the Lesson

ExecutorCompletionService

~__—>| execute() run ()

— | Queueing N 2. offer () m
submit() Future : _
| N s
. . . take() Queueing
« Visualize the ExecutorCompletion Completion Rl N\ LworkerTvears
. . . Queueing
Service in action Queue Future || 3. take ()
4.run() |oyeueing
1.submit (task) Future WorkQueue 5.done ()| Fyture
/ Future
y/ 7.take() Future ||le—— 6.add ()
9% 9% éé 9% Future
ThreadPoolExecutor

Key Methods in the
CompletionService Interface

Key Methods in the CompletionService Interface

« The CompletionService interface
only defines a few methods

Interface CompletionService<V>

All Known Implementing Classes:
ExecutorCompletionService

public interface CompletionService<V>

A service that decouples the production of new asynchronous
tasks from the consumption of the results of completed tasks.
Producers submit tasks for execution. Consumers take
completed tasks and process their results in the order they
complete. A CompletionService can for example be used to
manage asynchronous I/O, in which tasks that perform reads
are submitted in one part of a program or system, and then
acted upon in a different part of the program when the reads
complete, possibly in a different order than they were
requested.

Typically, a CompletionService relies on a separate Executor
to actually execute the tasks, in which case the
CompletionService only manages an internal completion
queue. The ExecutorCompletionService class provides an
implementation of this approach.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

Key Methods in the CompletionService Interface

e The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g implements CompletionService<V> {
, €.9.

 Submit a task for execution public Future<V>
submit (Callable<V> task) {

public Future<Vv>
submit (Runnable task,
V result) {

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<Vv>

only defines a few methods, e.g implements CompletionService<V> {
, €.q.
« Submit a task for execution public Future<V>
« Submit a value-returning submit (Callable<V> task) {

two-way task

T

public Future<Vv>
submit (Runnable task,
V result) {

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<Vv>

only defines a few methods, e.g implements CompletionService<V> {
, €.q.
« Submit a task for execution public Future<V>
« Submit a value-returning submit (Callable<V> task) {

two-way task

public interface Callable<V> ({

V call() throws Exception; .
} public Future<Vv>

submit (Runnable task,
V result) {

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<Vv>

only defines a few methods, e.g implements CompletionService<V> {
, €.q.
- Submit a task for execution public Future<v>
« Submit a value-returning submitXCallable<V> task) {

two-way task

* Provides an “asynchronous
future” processing model 7
public Future<V>

submit (Runnable task,
V result) {

Return values of submit()
are typically ignored

i.e., no need to block on the future

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<Vv>

only defines a few methods, e.g implements CompletionService<V> {
, €.q.
- Submit a task for execution public Future<v>
« Submit a value-returning submit (Callable<V> task) {

two-way task

* The main reason to access public Future<v>
this future is to cancel the submit (Runnable task,
async computation = __= V result) {

Key Methods in the CompletionService Interface

e The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g implements CompletionService<V> {
, €.9.

« Submit a task for execution public Future<V>
submit (Callable<V> task) {

« Submit a one-way task
that returns nothing

public Future<Vv>
submit (Runnable task,
V result) {
/* ... */
}

Not as widely used as the two-way callable task

Key Methods in the CompletionService Interface

e The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g implements CompletionService<V> {
, €.9.

« Submit a task for execution public Future<V>
submit (Callable<V> task) {

« Submit a one-way task
that returns nothing

public Future<Vv>

. submit (Runnable task,
public interface Runnable ({ V result) {
void run() ; /* ... %/

J }

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods. e g implements CompletionService<V> {
, €.0.

public Future<V> take() ... {

» Retrieve results
}

public Future<Vv> poll() ({

}

These methods access an internal public Future<V> poll (long

blocking queue containing Queueing timeout, TimeUnit unit) ... {
Futures whose tasks have completed

}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<Vv>
onIy defines a few methods, e g implements CompletionService<V> ({
1 ©Y-

public Future<V> take() ... {

« Retrieve results
}

get() never blocks on a future

removed from the internal queue! public Future<V> poll() {

}

public Future<V> poll (long
timeout, TimeUnit unit) ... {

15

Key Methods in the CompletionService Interface

« The CompletionService interface class ExecutorCompletionService<V>
only defines a few methods, e.g implements CompletionService<V> {
, €.0.

public Future<V> take() ... {
» Retrieve results

« Block until a future for next
completed task is available &
then retrieve/remove it

}

public Future<V> poll() ({

}

public Future<V> poll (long
timeout, TimeUnit unit) ... {

16

Key Methods in the CompletionService Interface

e The CompletionService interface class ExecutorCompletionService<V>
onIy defines a few methods, e g implements CompletionService<V> ({
r ©Y-

public Future<V> take() ... {

« Retrieve results ..
}

public Future<v> poll() {

* Retrieve/remove a future }
for the next completed task _
or null if none are available public Future<v> poll(long
timeout, TimeUnit unit) ... {

17

Key Methods in the CompletionService Interface

e The CompletionService interface class ExecutorCompletionService<V>
onIy defines a few methods, e g implements CompletionService<V> ({
1 ©Y-

public Future<V> take() ... {

« Retrieve results ...
}

public Future<V> poll() {

}

public Future<V> poll (long

. _ timeout, TimeUnit unit) ... {
 Block up to the specified wait

time if future isn’t available } L

18

Visualizing the Java
ExecutorCompletionService

19

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

ExecutorCompletionService

Queueing d
submit() lgu'tjurle —> | execute() run ()
| m
1l.submit (task) take() ngoffer 0
- Queueing 7~ 9%95
d %é %g - Completion UL :
eg %g 7.take() Queue Oueuei \ WorkerThreads
ueueing
\ Future N\
3.take()
: - —
1+ threads submit two Future _ Workouewe 4-Tun() uedeing
way tasks to a thread pool, el 5.done ()
while 1+ threads handle = Future 6.add ()
results of these tasks fuve_lle—1—"ThreadPoolExecutor

20

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

ExecutorCompletionService

1.submit (task)

egééeéeg 7 7. take ()

A client submits
a two-way task

31

Queueing L
submit() |1 Future [~ | execute() run ()
| N 2.o0ffer() m
take()
Queueing ' 9%95
Completion Future :
Queue Queueing WorkerThreads
Future \
3. take
Future 4 run ()() Queueing
WorkQueue -ra Future
Future 5 . done ()
Future 6.add ()
e _Jle—t— ThreadPoolExecutor

21

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

ExecutorCompletionService

Queueing

submit) [—] Future [=>| execute() run ()
. l r N 2.offer () m
1.submit (task) take() \
- - Queueing ' : 9%95
»g 9% »g »g " 7. take () Completion i \ |
: Queue Queueing WorkerThreads
Future AN
3.take() - _
. Fut ueueing
The task is encapsulated — WorkQueue 4-T9R 0 | “yure
. . Future 5.done()
In a QueueingFuture & =
uture
enqueued for subsequent — —___"'_jdd 0
o uture
worker thread processing <] ThreadPoolExecutor

22

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

1.submit (task)
=

s%5%

~ 7.take ()

ExecutorCompletionService

/

A worker thread in the
thread pool dequeues a
queueing future & runs it

Queueing L
submit() |1 Future [~ | execute() run ()
| N 2.o0ffer() m
take()
N 25 -
Queueing 7~ G 9%95
Completion Future
Queue Queueing WorkerThreads
Future N\
3.take () - _
Future ueueing
WorkQueue 4.run() Future

Future

I Futugé

Future

6.add()

/.done()

— ThreadPoolExecutor

23

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

ExecutorCompletionService

1.submit (task)

/

s%5%

~ 7.take ()

When gueueing future is
finished running its result is
added to the completion
qgueue for later processing

/

Queueing L
submit() |—] Future [—>| execute() run ()
' C D
take() 2.o0ffer()
N 25 P
=5 9%
Queueing éeg
Completion Future :
Queue Queueing WorkerThreads
Future \
3.take() - _
Future ueueing
WorkQueue 4.run() Future
Future 5 . done ()
|_Fuwe M —T"6.add ()
—— [L_fuue _Jle—— ThreadPoolExecutor

24

Visualizing the Java ExecutorCompletionService

 ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue

when they complete

1.submit (task)

y

ExecutorCompletionService

& then processes them

A client thread gets completed
tasks from completion queue

Queueing L
submit() |—] Future [—>| execute() run ()
| N 2.o0ffer() m
take()
Queueing 7~ 9%95
Completion Future :
Queue Queueing WorkerThreads
Future \
3. take
Future 4 run ()() Queueing
WorkQueue -ra Future
Future 5 . done ()
Future 6.add ()
e _Jle—t— ThreadPoolExecutor

25

End of Key Methods in the
Java ExecutorCompletionService

26

