
Key Methods in the Java

ExecutorCompletionService

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how the Java CompletionService interface defines a framework

for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the
Java CompletionService interface

3

Learning Objectives in this Part of the Lesson
• Understand how the Java CompletionService interface defines a framework

for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the
Java CompletionService interface

• These methods are
implemented by the
ExecutorCompletion
Service class

4

• Understand how the Java CompletionService interface defines a framework
for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the
Java CompletionService interface

• Visualize the ExecutorCompletion
Service in action

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

1.submit(task)

7.take()

Queueing

Future

Future

Future

Future

Future

Completion

Queue

Learning Objectives in this Part of the Lesson

5

Key Methods in the
CompletionService Interface

6

Key Methods in the CompletionService Interface
• The CompletionService interface

only defines a few methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

7

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

...

}

...

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

Key Methods in the CompletionService Interface

8

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

...

}

...

Key Methods in the CompletionService Interface

9See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

...

}

...

Key Methods in the CompletionService Interface

public interface Callable<V> {

V call() throws Exception;

}

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

10

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

• Provides an “asynchronous
future” processing model

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

...

}

...

Key Methods in the CompletionService Interface

i.e., no need to block on the future

Return values of submit()
are typically ignored

11

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

• Provides an “asynchronous
future” processing model

• The main reason to access
this future is to cancel the
async computation

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

...

}

...

Key Methods in the CompletionService Interface

12

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

• Submit a one-way task
that returns nothing

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

/* ... */

}

...

Not as widely used as the two-way callable task

Key Methods in the CompletionService Interface

13

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning
two-way task

• Submit a one-way task
that returns nothing

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V>

submit(Runnable task,

V result) {

/* ... */

}

...

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Key Methods in the CompletionService Interface

public interface Runnable {

void run();

}

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

14

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long

timeout, TimeUnit unit) ... {

...

} ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Key Methods in the CompletionService Interface

These methods access an internal
blocking queue containing Queueing
Futures whose tasks have completed

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

15

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface

get() never blocks on a future
removed from the internal queue!

16

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next
completed task is available &
then retrieve/remove it

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface

17

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next
completed task is available &
then retrieve/remove it

• Retrieve/remove a future
for the next completed task
or null if none are available

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface

18

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next
completed task is available &
then retrieve/remove it

• Retrieve/remove a future
for the next completed task
or null if none are available

• Block up to the specified wait
time if future isn’t available

class ExecutorCompletionService<V>

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface

19

Visualizing the Java
ExecutorCompletionService

20

• ExecutorCompletionService uses an Executor to run tasks, which are then
added to its internal blocking queue
when they complete

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

7.take()

Queueing

Future

Visualizing the Java ExecutorCompletionService

1.submit(task)

1+ threads submit two-
way tasks to a thread pool,

while 1+ threads handle
results of these tasks

21

Visualizing the Java ExecutorCompletionService
• ExecutorCompletionService uses an Executor to run tasks, which are then

added to its internal blocking queue
when they complete

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

Queueing

Future

1.submit(task)

7.take()

A client submits
a two-way task

22

Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

7.take()

Queueing

Future

1.submit(task)

• ExecutorCompletionService uses an Executor to run tasks, which are then
added to its internal blocking queue
when they complete

The task is encapsulated
in a QueueingFuture &

enqueued for subsequent
worker thread processing

23

Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

7.take()

Queueing

Future

1.submit(task)

A worker thread in the
thread pool dequeues a

queueing future & runs it

• ExecutorCompletionService uses an Executor to run tasks, which are then
added to its internal blocking queue
when they complete

24

Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

7.take()

Queueing

Future

1.submit(task)

When queueing future is
finished running its result is

added to the completion
queue for later processing

• ExecutorCompletionService uses an Executor to run tasks, which are then
added to its internal blocking queue
when they complete

25

Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

7.take()

Queueing

Future

1.submit(task)

A client thread gets completed
tasks from completion queue

& then processes them

• ExecutorCompletionService uses an Executor to run tasks, which are then
added to its internal blocking queue
when they complete

26

End of Key Methods in the
Java ExecutorCompletionService

