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Learning Objectives in this Part of the Lesson
• Understand how the Java CompletionService interface defines a framework 

for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the 
Java CompletionService interface
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Learning Objectives in this Part of the Lesson
• Understand how the Java CompletionService interface defines a framework 

for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the 
Java CompletionService interface

• These methods are 
implemented by the 
ExecutorCompletion
Service class
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• Understand how the Java CompletionService interface defines a framework 
for handling the completion of asynchronous tasks

• Know how to instantiate the Java
ExecutorCompletionService

• Recognize the key methods in the 
Java CompletionService interface

• Visualize the ExecutorCompletion
Service in action
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Learning Objectives in this Part of the Lesson
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Key Methods in the 
CompletionService Interface
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Key Methods in the CompletionService Interface
• The CompletionService interface

only defines a few methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html
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class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>   

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

...

}

...

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>   

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

...

}

...

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>   

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

...

}

...

Key Methods in the CompletionService Interface

public interface Callable<V> {

V call() throws Exception;

}

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html


10

• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

• Provides an “asynchronous 
future” processing model

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

...

}

...

Key Methods in the CompletionService Interface

i.e., no need to block on the future

Return values of submit() 
are typically ignored
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

• Provides an “asynchronous 
future” processing model

• The main reason to access
this future is to cancel the 
async computation

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

...

}

...

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

• Submit a one-way task
that returns nothing

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>   

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

/* ... */ 

}

...

Not as widely used as the two-way callable task

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Submit a value-returning 
two-way task

• Submit a one-way task
that returns nothing

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V>   

submit(Callable<V> task) {

...

}

public Future<V> 

submit(Runnable task, 

V result) { 

/* ... */ 

}

...

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Key Methods in the CompletionService Interface

public interface Runnable {

void run();

}

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long 

timeout, TimeUnit unit) ... {

...

} ...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Key Methods in the CompletionService Interface

These methods access an internal 
blocking queue containing Queueing 
Futures whose tasks have completed

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long 

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface

get() never blocks on a future 
removed from the internal queue!
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next 
completed task is available & 
then retrieve/remove it

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long 

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next 
completed task is available & 
then retrieve/remove it

• Retrieve/remove a future
for the next completed task
or null if none are available

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long 

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface
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• The CompletionService interface
only defines a few methods, e.g.

• Submit a task for execution

• Retrieve results

• Block until a future for next 
completed task is available & 
then retrieve/remove it

• Retrieve/remove a future
for the next completed task
or null if none are available

• Block up to the specified wait 
time if future isn’t available

class ExecutorCompletionService<V> 

implements CompletionService<V> {

...

public Future<V> take() ... {

...

}

public Future<V> poll() {

...

}

public Future<V> poll(long 

timeout, TimeUnit unit) ... {

...

} ...

Key Methods in the CompletionService Interface
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Visualizing the Java
ExecutorCompletionService
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• ExecutorCompletionService uses an Executor to run tasks, which are then 
added to its internal blocking queue 
when they complete
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Visualizing the Java ExecutorCompletionService

1.submit(task)

1+ threads submit two-
way tasks to a thread pool, 

while 1+ threads handle 
results of these tasks
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Visualizing the Java ExecutorCompletionService
• ExecutorCompletionService uses an Executor to run tasks, which are then 

added to its internal blocking queue 
when they complete
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A client submits 
a two-way task
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Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor
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• ExecutorCompletionService uses an Executor to run tasks, which are then 
added to its internal blocking queue 
when they complete

The task is encapsulated 
in a QueueingFuture & 

enqueued for subsequent 
worker thread processing
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Visualizing the Java ExecutorCompletionService
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A worker thread in the 
thread pool dequeues a 

queueing future & runs it

• ExecutorCompletionService uses an Executor to run tasks, which are then 
added to its internal blocking queue 
when they complete
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Visualizing the Java ExecutorCompletionService
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When queueing future is 
finished running its result is 

added to the completion 
queue for later processing

• ExecutorCompletionService uses an Executor to run tasks, which are then 
added to its internal blocking queue 
when they complete
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Visualizing the Java ExecutorCompletionService

ThreadPoolExecutor
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A client thread gets completed 
tasks from completion queue 

& then processes them

• ExecutorCompletionService uses an Executor to run tasks, which are then 
added to its internal blocking queue 
when they complete
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End of Key Methods in the 
Java ExecutorCompletionService


