
Safe Publication

Techniques in Java

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand what “safe publication” means in the context of Java objects

running in concurrent programs

• Recognize “safe publication” techniques in Java that enable multiple threads
to share an object

3

Safe Publication
Techniques in Java

4

• To publish a properly constructed
Java object safely
• The reference to the object &
• The object's state
must be made visible to other threads
at the same time

See flylib.com/books/en/2.558.1/safe_publication.html

Safe Publication Techniques in Java

https://flylib.com/books/en/2.558.1/safe_publication.html

5

• An object can be published
safely in several ways

Safe Publication Techniques in Java

6

• An object can be published
safely in several ways

Safe Publication Techniques in Java

See en.wikipedia.org/wiki/Singleton_pattern

If (uniqueInstance == null)

uniqueInstance = new Singleton();

return uniqueInstance;

We illustrate safe publication
using the Singleton pattern

https://en.wikipedia.org/wiki/Singleton_pattern

7

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

class Singleton {

private static Singleton sInst;

public static Singleton instance(){

synchronized(Singleton.class) {

if (sInst == null)

sInst = new Singleton();

return sInst;

}

}

...

Safe Publication Techniques in Java

This critical section is
protected by the Singleton

Class instance’s intrinsic lock

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

8

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

class Singleton {

private static Singleton sInst;

public static Singleton instance(){

synchronized(Singleton.class) {

if (sInst == null)

sInst = new Singleton();

return sInst;

}

}

...

Safe Publication Techniques in Java

This lock ensures that both the sInst
reference & the Singleton’s state will

be published to other threads

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

9

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

class Singleton {

private static Singleton sInst;

public static Singleton instance(){

synchronized(Singleton.class) {

if (sInst == null)

sInst = new Singleton();

return sInst;

}

}

...

Safe Publication Techniques in Java

The drawback with this
technique is that every call

to instance() is synchronized

10

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java

See flylib.com/books/en/2.558.1.25/1

class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...

http://flylib.com/books/en/2.558.1.25/1

11

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...

See en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java

volatile ensures that multiple threads
share the singleton instance correctly

https://en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java

12

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...

Only acquire the lock
the “first time in”

13

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...

See en.wikipedia.org/wiki/Lazy_initialization

Perform “lazy
initialization” only
the “first time in”

https://en.wikipedia.org/wiki/Lazy_initialization

14

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

... volatile avoids problems with
partially constructed objects

15

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...
Return the singleton’s value

16

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile

Safe Publication Techniques in Java
class Singleton {

private static volatile

Singleton sInst;

public static Singleton instance(){

Singleton result = sInst;

if (result == null) {

synchronized(Singleton.class) {

result = sInst;

if (result == null)

sInst = result =

new Singleton();

}

}

return result;

}

...

The drawback with this
approach is that it only

works with Java 1.5 or later

See en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java

https://en.wikipedia.org/wiki/Double-checked_locking#Usage_in_Java

17

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

Safe Publication Techniques in Java

See day-to-day-stuff.blogspot.com/2011/06/lock-less-singleton-pattern.html

http://day-to-day-stuff.blogspot.com/2011/06/lock-less-singleton-pattern.html

18

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

Create an AtomicReference

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicReference.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicReference.html

19

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

Get Singleton value & check for null

20

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

Allocate Singleton &
atomically CAS with sInst

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

21

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

Update this local value if
sInst was already set

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

22

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

Return the singleton’s value

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

23

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

Safe Publication Techniques in Java

The drawback is that
singleton’s constructor can
be called multiple times..

class Singleton {

private static AtomicReference sInst

= new AtomicReference(null);

public static Singleton instance(){

Singleton sing = sInst.get();

if (sing == null) {

sing = new Singleton();

if (!sInst.compareAndSet

(null, sing))

sing = sInst.get();

}

return sing;

}

...

24

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

class Singleton {

private Singleton() {}

private static class LazyHolder {

private static final

Singleton sInst =

new Singleton();

}

public static Singleton instance(){

return LazyHolder.sInst;

}

}

See en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom

Safe Publication Techniques in Java

This idiom relies on the initialization
phase of execution within the Java
execution environment (e.g., JVM)

https://en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom

25

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

class Singleton {

private Singleton() {}

private static class LazyHolder {

private static final

Singleton sInst =

new Singleton();

}

public static Singleton instance(){

return LazyHolder.sInst;

}

}

See en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom

Safe Publication Techniques in Java

LazyHolder is only initialized when the static method

instance is invoked on the class Singleton, which

triggers the JVM to load & initialize the LazyHolder class

https://en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom

26

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

class A {

long mNotFinal = 1;

final long mFinal = 2;

...

}

...

Safe Publication Techniques in Java

See www.ibm.com/developerworks/library/j-jtp1029

http://www.ibm.com/developerworks/library/j-jtp1029/index.html#heading6

27

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

Safe Publication Techniques in Java

See www.ibm.com/developerworks/library/j-jtp1029/index.html#heading6

class A {

long mNotFinal = 1;

final long mFinal = 2;

...

}

// Thread T1

A a = new A();

// Thread T2

long l1 = a.mFinal;

long l2 = a.mNotFinal;

mFinal is guaranteed to be initialized by the
time thread T2 gets a reference to object a

http://www.ibm.com/developerworks/library/j-jtp1029/index.html#heading6

28

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization mNotFinal is not guaranteed to be initialized by

the time thread T2 gets a reference to object a

Safe Publication Techniques in Java
class A {

long mNotFinal = 1;

final long mFinal = 2;

...

}

// Thread T1

A a = new A();

// Thread T2

long l1 = a.mFinal;

long l2 = a.mNotFinal;

29

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

• Immutable objects in Java
contain only final fields and/
or only accessor methods

Safe Publication Techniques in Java

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

final class String {

private final char value[];

...

public String(String s) {

value = s;

...

}

public int length() {

return value.length;

}

...

}

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

30

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

• Immutable objects in Java
contain only final fields and/
or only accessor methods

Safe Publication Techniques in Java
final class String {

private final char value[];

...

public String(String s) {

value = s;

...

}

public int length() {

return value.length;

}

...

}

See www.programcreek.com/2013/04/why-string-is-immutable-in-java

http://www.programcreek.com/2013/04/why-string-is-immutable-in-java

31

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

• If a final field refers to a
mutable object, synchronization is needed to access the state of the
referenced object

class A {

final String[] QBs = new String[]{

"Brady", "Favre", "Newton", ...

};

...

};

A a = new A();

// Thread T1

synchronized(m)

{ a.QBs[1] = "Manning"; }

// Thread T2

synchronized(m)

{ a.QBs[1] = "Montana"; }

Safe Publication Techniques in Java

See www.ibm.com/developerworks/library/j-jtp1029/index.html#limitations

http://www.ibm.com/developerworks/library/j-jtp1029/index.html#limitations

32

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

• If a final field refers to a
mutable object, synchronization is needed to access the state of the
referenced object

class A {

final String[] QBs = new String[]{

"Brady", "Favre", "Newton", ...

};

...

};

A a = new A();

// Thread T1

synchronized(m)

{ a.QBs[1] = "Manning"; }

// Thread T2

synchronized(m)

{ a.QBs[1] = "Montana"; }

Safe Publication Techniques in Java

QBs is final, but its
contents are mutable

33

• An object can be published
safely in several ways

• Storing a reference to it into
a field protected by a lock

• Storing a reference to it in a
volatile or AtomicReference

• Initializing an object reference
from a static initializer

• Storing a reference to it into
a final field

• Final fields can be safely
accessed without some
form of synchronization

• If a final field refers to a
mutable object, synchronization is needed to access the state of the
referenced object

class A {

final String[] QBs = new String[]{

"Brady", "Favre", "Newton", ...

};

...

};

A a = new A();

// Thread T1

synchronized(m)

{ a.QBs[1] = "Manning"; }

// Thread T2

synchronized(m)

{ a.QBs[1] = "Montana"; }

Safe Publication Techniques in Java

Access to QBs contents
must be synchronized

34

End of Safe Publication
Techniques in Java

