
Managing the Java Thread Lifecycle:

Patterns of Handling Thread Interrupts

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Know various ways to stop Java threads

• Stopping a thread with a volatile flag

• Stopping a thread with an interrupt
request

• Learn the patterns of handing
Java thread interrupts

3

Patterns of Handling Java
Thread Interrupts

4See earlier part of the lesson on “Stopping a Thread via an Interrupt”

Patterns of Handling Java Thread Interrupts
void processBlocking(String args) {

...

while (true) {

try {

Thread.currentThread().

sleep(interval);

synchronized(this) {

while (someConditionFalse)

wait();

}

}

catch (InterruptedException e)

{ ... }

...

}

}

• Recall that blocking operations
in Java can return automatically
& throw InterruptedException
if the thread is interrupted

5

• There are patterns for dealing
w/Java InterruptedException

See www.ibm.com/developerworks/java/library/j-jtp05236/index.html?ca=drs-

Patterns of Handling Java Thread Interrupts

http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html?ca=drs-

6

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

Patterns of Handling Java Thread Interrupts

See docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

public class StringBlockingQueue {

private BlockingQueue<String>

queue = new

LinkedBlockingQueue<String>();

public void put(String s)

throws InterruptedException {

queue.put(s);

}

public String take()

throws InterruptedException {

return queue.take();

}

}

https://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html

7

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

The exception is explicitly listed
in each method’s “throw clause”

Patterns of Handling Java Thread Interrupts

See docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

public class StringBlockingQueue {

private BlockingQueue<String>

queue = new

LinkedBlockingQueue<String>();

public void put(String s)

throws InterruptedException {

queue.put(s);

}

public String take()

throws InterruptedException {

return queue.take();

}

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

8

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

BlockingQueue put() & take()
throw exceptions that are not

caught by StringBlockingQueue

Patterns of Handling Java Thread Interrupts
public class StringBlockingQueue {

private BlockingQueue<String>

queue = new

LinkedBlockingQueue<String>();

public void put(String s)

throws InterruptedException {

queue.put(s);

}

public String take()

throws InterruptedException {

return queue.take();

}

}

9

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

public class StringBlockingQueue {

private BlockingQueue<String>

queue = new

LinkedBlockingQueue<String>();

public void put(String s)

throws InterruptedException {

queue.put(s);

}

public String take()

throws InterruptedException {

return queue.take();

}

}

Patterns of Handling Java Thread Interrupts

StringBlockingQueue s =

new StringBlockingQueue();

...

try {

String str = s.take();

...

} catch (InterruptedException e)

...

}

It’s now the caller’s responsibility
to handle the exception properly

10

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

• Perform task-specific cleanup
before rethrowing

Patterns of Handling Java Thread Interrupts

Avoid leaking resources or leaving
resources in an inconsistent state

try {

while (!waiter.mReleased)

waiter.wait();

}

catch (InterruptedException e){

synchronized (this) {

boolean removed =

mWaitQueue.remove(waiter);

if (!removed)

release();

}

throw e;

}

...

11

try {

while (!waiter.mReleased)

waiter.wait();

}

catch (InterruptedException e){

synchronized (this) {

boolean removed =

mWaitQueue.remove(waiter);

if (!removed)

release();

}

throw e;

}

...

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

• Perform task-specific cleanup
before rethrowing

Patterns of Handling Java Thread Interrupts

Rethrow the InterruptedException

12

public void doWork() {

try {

while (true) {

Runnable r =

queue.take(10, SECONDS);

r.run();

}

}

catch (InterruptedException e){

...

Thread.currentThread()

.interrupt();

}

}

}

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

• Perform task-specific cleanup
before rethrowing

• Restore interrupted status after
catching InterruptedException

See daniel.mitterdorfer.name/articles/2015/handling-interruptedexception

Patterns of Handling Java Thread Interrupts

Preserve evidence the exception occurred
for use by higher levels of the call stack

http://daniel.mitterdorfer.name/articles/2015/handling-interruptedexception

13

public boolean gaze() {

try {

int sleepTime = 1000 +

mRandom.nextInt(4000;

Thread.sleep(sleepTime);

return true;

}

catch (InterruptedException e) {

return false;

}

}

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

• Perform task-specific cleanup
before rethrowing

• Restore interrupted status after
catching InterruptedException

• Handle interrupt & “swallow” it

Patterns of Handling Java Thread Interrupts

14

• There are patterns for dealing
w/Java InterruptedException, e.g.

• Propagate InterruptedException
to callers by not catching it

• Perform task-specific cleanup
before rethrowing

• Restore interrupted status after
catching InterruptedException

• Handle interrupt & “swallow” it

General-purpose reusable library code should never swallow
interrupt requests entirely (i.e., this is an “anti-pattern”)

Patterns of Handling Java Thread Interrupts

e.g., often done when the thread
sleep() or join() methods are called

public boolean gaze() {

try {

int sleepTime = 1000 +

mRandom.nextInt(4000;

Thread.sleep(sleepTime);

return true;

}

catch (InterruptedException e) {

return false;

}

}

15

End of Managing the Java
Thread Lifecycle: Patterns of
Handling Thread Interrupts

