Worker Threads

Douglas G. Schmidt
d.schmidt@vanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

V

Nashuville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand how the Java fork-join framework

implements worker threads

Deque

Sub-Task,

Sub-Task, 3

Sub-Task, 4

Fork-Join Pool

Deque

Sub-Task, 4

Deque

Sub-Task; 4

Sub-Task; 4

Worker Threads in
a Java Fork-Join Pool

Worker Threads in a Java Fork-Join Pool

* Non-ForkJoinTask clients insert WorkQueue WorkQueue WorkQueue

new tasks onto a fork-join pool’s Sub-Task, ;

shared queued
Sub-Task, ,
Sub-Task, 5 Sub-Task; 5
Sub-Task, , | Sub-Task;,

Shared Queue

Clients

v

submit ()

Worker Threads in a Java Fork-Join Pool

* Non-ForkJoinTask clients insert WorkQueue WorkQueue WorkQueue
new tasks onto a fork-join pool’s
shared queued

 This shared queue feeds “work-
stealing” (de)queues managed | Sub-Taskis SIS
by worker threads Sub-Tasky, | Sub-Task; ,

Shared Queue

Clients

v

submit ()

See upcoming lessons on * 7The Java Fork-Join Pool: Work Stealing”

Worker Threads in a Java Fork-Join Pool

« Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute

Worker Threads in a Java Fork-Join Pool

« Each worker thread in a fork-join
pool runs a loop that scans for
(sub-)tasks to execute

« The goal is to keep the worker
threads as busy as possible!

Worker Threads in a Java Fork-Join Pool

« A worker thread has a “double- WorkQueue WorkQueue WorkQueue

ended queue (qka deque”) that Sub-Task, ;

serves as its main source of tasks
Sub-Task, ,
Sub-Task; 5 Sub-Task; 5
Sub-Task, , | Sub-Task;, ,

%l of worM. |

See en.wikipedia.org/wiki/Double-ended queue

https://en.wikipedia.org/wiki/Double-ended_queue

Worker Threads in a Java Fork-Join Pool

« A worker thread has a “double-
ended queue” (aka “deque”) that
serves as its main source of tasks

« Implemented by WorkQueue

<<Java Class>>
(®WorkQueue

& WorkQueue(ForkJoinPool,ForkJoinWorkerThread, int,int)
AFqueueSize():int
4 isEmpty():boolean

push(ForkJ0|nTask<’7>) void

A canceIAII() void

4 polIAndExecAll():void

& runTask(ForkJoinTask<?>):void

4 tryRemoveAndExec(ForkJoinTask<?>):boolean
4 isApparentlyUnblocked():boolean

WorkQueue

WorkQueue

WorkQueue

Sub-Task; 5

See java8/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java

Worker Threads in a Java Fork-Join Pool

 If a task run by a worker thread workQueue

calls fork() the new task is pushed Sub-Task, ;

on the head of the worker’s deque
Sub-Task, ,

Sub-Task; 5

WorkQueue WorkQueue
Sub-Tasks 4
Sub-Task, , Sub-Task;, ,

\ 4po 6‘5
- ol of worker thre2> "

See gee.cs.oswego.edu/dl/

Dd

hers/fj.

df

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Worker Threads in a Java Fork-Join Pool

If a task run by a worker thread workQueue WorkQueue

calls fork() the new task is pushed
on the head of the worker’s deque

« A worker thread processes its

deque in LIFO order

Sub-Task; 5

Sub-Task, ,

WorkQueue

See en.wiki

pedia.org/wiki/Stack (abstract data ty

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Worker Threads in a Java Fork-Join Pool

 If a task run by a worker thread workQueue
calls fork() the new task is pushed
on the head of the worker’s deque

« A worker thread processes its
deque in LIFO order, i.e. SR

Sub-Task, ,

A task pop’d from the head of
a deqgue is run to completion

WorkQueue WorkQueue

Sub-Task;, ,

See en.wikipedia.org/wiki/Run_to com

letion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

Worker Threads in a Java Fork-Join Pool

« If a task run by a worker thread WorkQueue WorkQueue WorkQueue
calls fork() the new task is pushed

, Sub-Task, ,
on the head of the worker’s deque
. Sub-Task, ,
« A worker thread processes its
deque in LIFO order, i.e. SIS G0 Sub-Tasks 3
Sub-Task, , - Sub-Task;, ,

* join() “pitches in” to pop
& execute (sub-)tasks

_, S
\j Pool of worker th\’e?c}

13

Worker Threads in a Java Fork-Join Pool

« If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task |s’ pushed Sub-Task, ;
on the head of the worker’s deque
i Sub-Task, ,
« A worker thread processes its
deque in LIFO order, i.e. oL o SIS
Sub-Task, , Sub-Task;, ,

* join() “pitches in” to pop
& execute (sub-)tasks

“Collaborative Jiffy Lube” model of processing!

Worker Threads in a Java Fork-Join Pool

« If a task run by a worker thread WorkQueue WorkQueue WorkQueue

calls fork() the new task |s’ pushed Sub-Task, ;
on the head of the worker’s deque

Sub-Task, ,

Sub-Task; 5 Sub-Task; 5
 LIFO order improves locality of | Sub-Task,, | ___ o | SUb-Tasks,

reference & cache performance

See en.wikipedia.org/wiki/Locality of reference

https://en.wikipedia.org/wiki/Locality_of_reference

End of Java Fork-Join
Framework Internals:
Worker Threads

16

