
Java Fork-Join Framework Internals: 

Worker Threads

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how the Java fork-join framework 
implements worker threads

Learning Objectives in this Part of the Lesson

Fork-Join Pool



3

Worker Threads in
a Java Fork-Join Pool



4

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

• Non-ForkJoinTask clients insert 
new tasks onto a fork-join pool’s 
shared queued

Worker Threads in a Java Fork-Join Pool

Shared Queue

Clients

submit()



5

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

• Non-ForkJoinTask clients insert 
new tasks onto a fork-join pool’s 
shared queued

• This shared queue feeds “work-
stealing” (de)queues managed 
by worker threads

Worker Threads in a Java Fork-Join Pool

Shared Queue

Clients

submit()

See upcoming lessons on “The Java Fork-Join Pool: Work Stealing”



6

• Each worker thread in a fork-join 
pool runs a loop that scans for
(sub-)tasks to execute

Worker Threads in a Java Fork-Join Pool



7

• Each worker thread in a fork-join 
pool runs a loop that scans for
(sub-)tasks to execute

• The goal is to keep the worker 
threads as busy as possible!

Worker Threads in a Java Fork-Join Pool



8

Worker Threads in a Java Fork-Join Pool
• A worker thread has a “double-

ended queue” (aka “deque”) that 
serves as its main source of tasks

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

See en.wikipedia.org/wiki/Double-ended_queue

Sub-Task1.4

https://en.wikipedia.org/wiki/Double-ended_queue


9

Worker Threads in a Java Fork-Join Pool
• A worker thread has a “double-

ended queue” (aka “deque”) that 
serves as its main source of tasks

• Implemented by WorkQueue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

See java8/util/concurrent/ForkJoinPool.java

Sub-Task1.4

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java


10

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

See gee.cs.oswego.edu/dl/papers/fj.pdf

Worker Threads in a Java Fork-Join Pool

2.push()

1.fork()

http://gee.cs.oswego.edu/dl/papers/fj.pdf


11

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

• A worker thread processes its 
deque in LIFO order 

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Worker Threads in a Java Fork-Join Pool

2.pop()

1.join()

See en.wikipedia.org/wiki/Stack_(abstract_data_type)

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)


12

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

• A worker thread processes its 
deque in LIFO order, i.e.

• A task pop’d from the head of 
a deque is run to completion

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Worker Threads in a Java Fork-Join Pool

2.pop()

1.join()

See en.wikipedia.org/wiki/Run_to_completion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling


13

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

• A worker thread processes its 
deque in LIFO order, i.e.

• A task pop’d from the head of 
a deque is run to completion

• join() “pitches in” to pop
& execute (sub-)tasks

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Worker Threads in a Java Fork-Join Pool

2.pop()

1.join()



14

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

• A worker thread processes its 
deque in LIFO order, i.e.

• A task pop’d from the head of 
a deque is run to completion

• join() “pitches in” to pop
& execute (sub-)tasks

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Worker Threads in a Java Fork-Join Pool

2.pop()

1.join()

“Collaborative Jiffy Lube” model of processing!



15

• If a task run by a worker thread 
calls fork() the new task is pushed 
on the head of the worker’s deque

• A worker thread processes its 
deque in LIFO order 

• LIFO order improves locality of 
reference & cache performance

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Worker Threads in a Java Fork-Join Pool

See en.wikipedia.org/wiki/Locality_of_reference

2.pop()

1...

https://en.wikipedia.org/wiki/Locality_of_reference


16

End of Java Fork-Join 
Framework Internals: 

Worker Threads


