
The Strategy Pattern

Other Considerations

Douglas C. Schmidt

• Recognize how the Strategy pattern can be applied in the expression tree
processing app to encapsulate variability of algorithm & platform behaviors
via common APIs.

• Understand the structure & functionality of the Strategy pattern.

• Know how to implement the Strategy pattern in C++.

• Be aware of other considerations when applying the Strategy pattern.

Learning Objectives in This Lesson

Consequences

+ Greater flexibility & reuse

• e.g., by strategizing runtime platform I/O
mechanisms, most code can be reused across
the Android GUI variant & the command-line
variant of the expression tree processing app.

Strategy GoF Object Behavioral

Consequences

+ Behaviors can change dynamically

class Expression_Tree {

...

iterator begin (const std::string &traversal_order) {

return iterator(tree_iterator_factory.make_iterator

(*this, traversal_order, false));

}

...

The tree_iterator_factory.make_iterator()

method enables transparent replacement of different
iterator strategies at runtime w/out breaking client code.

Strategy GoF Object Behavioral

for (auto it = expr_tree.begin("in-order");

it != expr_tree.end("in-order");

++it)

do_something_with_each_node(*it);

Consequences

+ Behaviors can change dynamically

Strategy GoF Object Behavioral

e.g., can change from “in-order” to “post-order”
traversal simply by changing this parameter

class Expression_Tree {

...

iterator begin (const std::string &traversal_order) {

return iterator(tree_iterator_factory.make_iterator

(*this, traversal_order, false));

}

...

The tree_iterator_factory.make_iterator()

method enables transparent replacement of different
iterator strategies at runtime w/out breaking client code.

for (auto it = expr_tree.begin("post-order");

it != expr_tree.end("post-order");

++it)

do_something_with_each_node(*it);

Consequences

– Overhead of strategy creation & communication

• Strategy can increase the number of classes/objects created in a program.

Strategy GoF Object Behavioral

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ Iterator

operator++()

operator*()
operator!=()

Consequences

– Overhead of strategy creation & communication

• Strategy can increase the number of classes/objects created in a program.

Strategy GoF Object Behavioral

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ lambda functions may
help reduce the tedium of

creating many objects.

C++ Iterator

operator++()

operator*()
operator!=()

Executable method code

Executable method code

Executable method code

Consequences

– Overhead of strategy creation & communication

• Strategy can increase the number of classes/objects created in a program.

• Dynamically bound implementations of Strategy may incur additional
virtual method call overhead.

Pointer to method1

Pointer to method2

Pointer to method…

Pointer to vtable0

Member field14

Member field28

Member field312

Member field……

Strategy GoF Object Behavioral

Executable method code

Executable method code

Executable method code

Consequences

– Overhead of strategy creation & communication

• Strategy can increase the number of classes/objects created in a program.

• Dynamically bound implementations of Strategy may incur additional
virtual method call overhead.

• However, modern C++ compilers
optimize virtual function dispatching
so it’s as efficient as large switch
statements or if/else chains.

Pointer to method1

Pointer to method2

Pointer to method…

Pointer to vtable0

Member field14

Member field28

Member field312

Member field……

Strategy GoF Object Behavioral

See lazarenko.me/devirtualization

http://lazarenko.me/devirtualization/

Consequences

– Inflexible strategy interface

Strategy GoF Object Behavioral

See en.wikipedia.org/wiki/Procrustes#Cultural_references

https://en.wikipedia.org/wiki/Procrustes#Cultural_references

Consequences

– Inflexible strategy interface

• Motivates need for Context, which stores values beyond one-size-fits-all
interface

Strategy GoF Object Behavioral

Consequences

– Semantic incompatibility of
multiple strategies used
together inconsistently

Client
OBJ
REF

in args
operation()

out args +
return

IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL

Object (Servant)

Null-lock
synchronization

strategy

Reactive event
demuxing strategy

Thread pool
concurrency

strategy

Strategy GoF Object Behavioral

See www.dre.Vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

Consequences

– Semantic incompatibility of
multiple strategies used
together inconsistently

• May require other patterns,
such as Abstract Factory

Client
OBJ
REF

in args
operation()

out args +
return

IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL

Object (Servant)

Strategy GoF Object Behavioral

See en.wikipedia.org/wiki/Abstract_factory_pattern

Null-lock
synchronization

strategy

Reactive event
demuxing strategy

Thread pool
concurrency

strategy

https://en.wikipedia.org/wiki/Abstract_factory_pattern

Implementation considerations

• Exchanging information between a strategy & its context

Strategy GoF Object Behavioral

Each concrete strategy could contain a reference to the
context that it could use to obtain strategy-specific data
while still conforming to the uniform strategy interface.

Implementation considerations

• Static binding of strategy selection

• e.g., via Java generics or C++ parameterized types

template <class RandomAccessIterator, class Compare>

void sort (RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

...

std::vector<int> v ({1, 6, 2, 8, 3, 9});

std::sort (v.begin (), v.end (), std::greater<int>());

Comparison
strategy (functor)

See en.wikipedia.org/wiki/Policy-based_design for “compile-time” strategies.

Strategy GoF Object Behavioral

http://en.wikipedia.org/wiki/Policy-based_design

Implementation considerations

• Strategies in Java often implemented
with interfaces & factories

• Rather than using the
Bridge pattern

class ExpressionTree {

...

public Iterator<ExpressionTree>

iterator(String traversalOrder)

{ return mIteratorFactory.iterator

(this, traversalOrder); }

}

<<iterator>>

Expression_Tree

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

Java Iterator

Strategy GoF Object Behavioral

Java’s support for garbage collection often obviates the need for Bridge.

Known uses

• InterViews text formatting

• RTL register allocation & scheduling strategies

• ET++SwapsManager calculation engines

• The ACE ORB (TAO) real-time object request broker middleware

Client
OBJ
REF

in args
operation()

out args +
return

IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL

Object (Servant)

Connection
management strategy

Synchronization strategy

Event demuxing
strategy

Request transport
strategy

Request demuxing
strategy

Concurrency
strategy

(De)marshaling
strategy

www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf has more information.

Strategy GoF Object Behavioral

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

Known uses

• InterViews text formatting

• RTL register allocation & scheduling strategies

• ET++SwapsManager calculation engines

• The ACE ORB (TAO) real-time object request broker middleware

• C++ Standard Template Library (STL)

• Strategy can be applied to more than “algorithms”

Strategy GoF Object Behavioral

template <class RandomAccessIterator, class Compare>

void sort (RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

...

std::vector<int> v ({1, 6, 2, 8, 3, 9});

std::sort (v.begin (), v.end (), std::greater<int>());

Comparison
strategy (functor)

See en.wikipedia.org/wiki/Function_object#In_C_and_C++

https://en.wikipedia.org/wiki/Function_object#In_C_and_C++

Known uses

• InterViews text formatting

• RTL register allocation & scheduling strategies

• ET++SwapsManager calculation engines

• The ACE ORB (TAO) real-time object request broker middleware

• C++ Standard Template Library (STL)

• Java JDK class libraries

Strategy GoF Object Behavioral

String[] nameArray = {"Barbara", "James", "Mary", "John",

"Robert", "Michael", "Linda", "james", "mary"};

Arrays.sort(nameArray, String::compareToIgnoreCase);

Comparison strategy
(method reference)

See en.wikipedia.org/wiki/Function_object#In_Java

https://en.wikipedia.org/wiki/Function_object#In_Java

Summary of the Strategy Pattern
• Strategy encapsulates the variability of behaviors via a common API whose

implementations can be changed transparently with respect to clients.

Strategy decouples the interface of a behavior from its implementations.

Post_Order
Iterator

B
ri
d
g
e Expression_Tree

C++
Stack

In_Order
Iterator

Level_Order
Iterator

C++
Queue

<< create >>

C++ STL iterator

Strategy

Iterator

Pre_Order
Iterator

Component_Node

Composite
Unary_Node

Leaf_Node

Composite
Binary_Node …

Composite

