The Strategy Pattern

Motivating Example

Douglas C. Schmidt

Learning Objectives in This Lesson

» Recognize how the Strategy pattern can be S
applied in the expression tree processing operator++()
app to encapsulate variability of algorithm operator’()

& platform behaviors via common APIs. eperalon

Level Order
Iterator

In_Order
Iterator

Post_Order
Iterator

Pre_Order
Iterator

Douglas C. Schmidt

Motivating the Need for
the Strategy Pattern in
the Expression Tree App

A Pattern for Changing Behaviors Transparently

Purpose: Encapsulate variability of behaviors via a common API whose
Implementations can be changed transparently with respect to clients.

% Expression_Tree » Component_Node
= u A
5 << create >>: | |
I Composite Leaf Node
WV Unary_Node
C++ Iterator I /\ I
(_Somposite
Iterator Binary_Node
|
Level Order
Iterator
In_Order
Iterator

C++
Queue

C++

\ 4

Iterator

Post_Order I

Strategy

Pre_Order
Iterator

Stack

{_

Strategy decouples the interface of a behavior from its implementations.

Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms

Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms, e.g.,

« Different algorithms are needed to traverse °
the expression tree in different orders. |
. e.g., to print & evaluate the tree ‘ \®

4 N

e “In-order” traversal = -5x (3+4)

e “"Pre-order” traversal = x-5+34

* “"Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534

Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms, e.g.,

« Different input & output mechanisms
are needed in different runtime platforms.

 e.g., Android GUI & command-line
platforms

Run: expression_tree a —
"D:\Douglas Schmid-
>-5 % (3 + 4)

£ -35

Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives

lass Expression Tree ({

iterator begin()
return

Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives, e.g.,

» Adding new traversal algorithms °

oo

e “In-order” traversal = -5x (3+4)
 “Pre-order” traversal = x-5+34
e “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534

Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives, e.g.,

 Supporting different runtime platforms

* 2: Favorites

%

Run:

P 4Run = 0:Messages M 9:Git E Termina
WTF-8 4 spaces

expression_tree o —
"D:\Douglas Schmid-
>-5 % (3 + 4)

-9n

I« dl

P master a &

i®' ExpressionF

6+5+(8+9)

Solution: Create an Abstraction to Select Behaviors

 Define a family of behaviors.
* e.g., algorithms for traversing an

expression tree in various orders \

N
4 N

e “In-order” traversal = -5x (3+4)

e “"Pre-order” traversal = x-5+34

» “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534

Solution: Create an Abstraction to Select Behaviors

» Encapsulate all behaviors to have
a common APIL. C++ STL lterator

* e.g., the C++ STL iterator
interface

Solution: Create an Abstraction to Select Behaviors

« Make implementations of the behavior

interchangeable. G Sl IEEel
 Different traversal orders all A
implement the same C++ STL [
iterator interface LevelOrder
In_Order
Iterator
Post_Order
Iterator

Pre_Order
Iterator

Strategy encapsulates multiple traversal algorithms via a common API.

Solution: Create an Abstraction to Select Behaviors

« Apply a Creational pattern to select the
desired behavior in a particular context. .7 C+* STL lterator

« e.g., the Factory Method pattern ,,/’/ A

- I

. P
<<iterator>> _ - Level_Order

Iterator

.~

Expression_Tree

In_Order
Iterator
_) - Post_Order
Define an interface for creating Iterator
an object, but let implementation
. . . : Pre_Order
decide which class to instantiate. lterator

See en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

Strategy Hierarchy Overview

* The root of the hierarchy is based on the ErTE——
Iterator pattern & C++ STI iterator interface. [operator++0
operator*()
operator!=()

Strategy Hierarchy Overview

* Implementations of the C++ Iterator

interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators

C++ STL Iterator

operator++()

operator*()
operator!=()

A

Level Order
Iterator

In_Order
Iterator

Post_Order
Iterator

Pre_Order
[terator

Strategy Hierarchy Overview

* Implementations of the C++ Iterator

interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators

C++ STL Iterator

operator++()

operator*()
operator!=()

A

[
Level Order
Iterator
In_Order
Iterator
C++
Queue Post_Order
/ Iterator
++ i y
C++ stack & queue objects e Pro_Order
track the state needed to perform ——— | stack [* lterator
non-recursive tree traversals.

Strategy Hierarchy Overview

* Implementations of the C++ Iterator
interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators

C++ STL Iterator

operator++()

operator*()
operator!=()

A

Level Order
Iterator
In_Order
Iterator
C++
Queue Post_Order
Iterator
A 4
o] C++ Pre_Order
Stack [* Iterator

« Commonality: the C++ Iterator interface defines a common strategy API
 Variability: implementations of this interface define concrete strategies

