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Learning Objectives in This Lesson

» Recognize how the Strategy pattern can be S
applied in the expression tree processing operator++()
app to encapsulate variability of algorithm operator’()

& platform behaviors via common APIs. eperalon
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Motivating the Need for
the Strategy Pattern in
the Expression Tree App




A Pattern for Changing Behaviors Transparently

Purpose: Encapsulate variability of behaviors via a common API whose
Implementations can be changed transparently with respect to clients.
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Strategy decouples the interface of a behavior from its implementations.




Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms




Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms, e.g.,

« Different algorithms are needed to traverse °
the expression tree in different orders. |
. e.g., to print & evaluate the tree ‘ \®

4 N

e “In-order” traversal = -5x (3+4)

e “"Pre-order” traversal = x-5+34

* “"Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534




Context: OO Expression Tree Processing App

 Certain program behaviors must change in response to different user requests
& runtime platforms, e.g.,

« Different input & output mechanisms
are needed in different runtime platforms.

 e.g., Android GUI & command-line
platforms
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Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives

lass Expression Tree ({

iterator begin()
return




Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives, e.g.,

» Adding new traversal algorithms °

oo

e “In-order” traversal = -5x (3+4)
 “Pre-order” traversal = x-5+34
e “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534




Problem: Obtrusive Behavior Changes

« Hard-coding certain implementations of these behaviors is problematic since
obtrusive changes would be needed to support alternatives, e.g.,

 Supporting different runtime platforms

* 2: Favorites
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Solution: Create an Abstraction to Select Behaviors

 Define a family of behaviors.
* e.g., algorithms for traversing an

expression tree in various orders \

N
4 N

e “In-order” traversal = -5x (3+4)

e “"Pre-order” traversal = x-5+34

» “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534




Solution: Create an Abstraction to Select Behaviors

» Encapsulate all behaviors to have
a common APIL. C++ STL lterator

* e.g., the C++ STL iterator
interface




Solution: Create an Abstraction to Select Behaviors

« Make implementations of the behavior

interchangeable. G Sl IEEel
 Different traversal orders all A
implement the same C++ STL [
iterator interface LevelOrder
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Strategy encapsulates multiple traversal algorithms via a common API.




Solution: Create an Abstraction to Select Behaviors

« Apply a Creational pattern to select the
desired behavior in a particular context. .7 C+* STL lterator

« e.g., the Factory Method pattern ,,/’/ A
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an object, but let implementation
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decide which class to instantiate. lterator

See en.wikipedia.org/wiki/Factory method pattern



https://en.wikipedia.org/wiki/Factory_method_pattern

Strategy Hierarchy Overview

* The root of the hierarchy is based on the ErTE——
Iterator pattern & C++ STI iterator interface. [operator++0
operator*()
operator!=()




Strategy Hierarchy Overview

* Implementations of the C++ Iterator

interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators
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Strategy Hierarchy Overview

* Implementations of the C++ Iterator

interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators
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C++ stack & queue objects e Pro_Order
track the state needed to perform ——— | stack [* lterator
non-recursive tree traversals.




Strategy Hierarchy Overview

* Implementations of the C++ Iterator
interface define various iterator strategies.

* e.g., pre-order, post-order, level-
order, & in-order iterators
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« Commonality: the C++ Iterator interface defines a common strategy API
 Variability: implementations of this interface define concrete strategies







