
The Strategy Pattern

Motivating Example

Douglas C. Schmidt



• Recognize how the Strategy pattern can be 
applied in the expression tree processing 
app to encapsulate variability of algorithm 
& platform behaviors via common APIs.

Learning Objectives in This Lesson

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ Iterator

operator++()

operator*()

operator!=()



Motivating the Need for
the Strategy Pattern in 
the Expression Tree App

Douglas C. Schmidt



A Pattern for Changing Behaviors Transparently
Purpose: Encapsulate variability of behaviors via a common API whose 
implementations can be changed transparently with respect to clients.

Strategy decouples the interface of a behavior from its implementations.

Post_Order
Iterator

B
ri
d
g
e Expression_Tree

C++ 
Stack

In_Order
Iterator

Level_Order
Iterator

C++ 
Queue

<< create >>

C++ Iterator

Strategy

Iterator

Pre_Order
Iterator

Component_Node

Composite
Unary_Node

Leaf_Node

Composite
Binary_Node …

Composite



Context: OO Expression Tree Processing App
• Certain program behaviors must change in response to different user requests 

& runtime platforms



Context: OO Expression Tree Processing App
• Certain program behaviors must change in response to different user requests 

& runtime platforms, e.g.,

• Different algorithms are needed to traverse 
the expression tree in different orders. 

• e.g., to print & evaluate the tree

• “In-order” traversal = -5×(3+4)

• “Pre-order” traversal = ×-5+34

• “Post-order” traversal = 5-34+×

• “Level-order” traversal = ×-+534



Context: OO Expression Tree Processing App
• Certain program behaviors must change in response to different user requests 

& runtime platforms, e.g.,

• Different algorithms are needed to traverse 
the expression tree in different orders. 

• Different input & output mechanisms 
are needed in different runtime platforms.

• e.g., Android GUI & command-line 
platforms



Problem: Obtrusive Behavior Changes
• Hard-coding certain implementations of these behaviors is problematic since 

obtrusive changes would be needed to support alternatives

class Expression_Tree {

...

iterator begin() {

return 

Pre_Order_ET_Iter_Impl

(*this);

}

...



• Hard-coding certain implementations of these behaviors is problematic since 
obtrusive changes would be needed to support alternatives, e.g.,

• Adding new traversal algorithms

• “In-order” traversal = -5×(3+4)

• “Pre-order” traversal = ×-5+34

• “Post-order” traversal = 5-34+×

• “Level-order” traversal = ×-+534

Problem: Obtrusive Behavior Changes



Problem: Obtrusive Behavior Changes
• Hard-coding certain implementations of these behaviors is problematic since 

obtrusive changes would be needed to support alternatives, e.g.,

• Adding new traversal algorithms

• Supporting different runtime platforms



Solution: Create an Abstraction to Select Behaviors
• Define a family of behaviors.

• e.g., algorithms for traversing an 
expression tree in various orders

• “In-order” traversal = -5×(3+4)

• “Pre-order” traversal = ×-5+34

• “Post-order” traversal = 5-34+×

• “Level-order” traversal = ×-+534



• Encapsulate all behaviors to have 
a common API.

• e.g., the C++ STL iterator 
interface

Solution: Create an Abstraction to Select Behaviors

C++ STL Iterator



Strategy encapsulates multiple traversal algorithms via a common API.

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ STL Iterator

Solution: Create an Abstraction to Select Behaviors 
• Make implementations of the behavior 

interchangeable.

• Different traversal orders all 
implement the same C++ STL
iterator interface



• Apply a Creational pattern to select the 
desired behavior in a particular context.

• e.g., the Factory Method pattern

Expression_Tree

<<iterator>>

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ STL Iterator

Solution: Create an Abstraction to Select Behaviors

See en.wikipedia.org/wiki/Factory_method_pattern

Define an interface for creating 
an object, but let implementation 
decide which class to instantiate.

https://en.wikipedia.org/wiki/Factory_method_pattern


Strategy Hierarchy Overview
• The root of the hierarchy is based on the 

Iterator pattern & C++ STI iterator interface.
C++ STL Iterator

operator++()

operator*()
operator!=()



• Implementations of the C++ Iterator 
interface define various iterator strategies.

• e.g., pre-order, post-order, level-
order, & in-order iterators

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

Strategy Hierarchy Overview

C++ STL Iterator

operator++()

operator*()
operator!=()



• Implementations of the C++ Iterator 
interface define various iterator strategies.

• e.g., pre-order, post-order, level-
order, & in-order iterators

C++ 
Stack

C++ 
Queue

Strategy Hierarchy Overview

C++ stack & queue objects 

track the state needed to perform 
non-recursive tree traversals.

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ STL Iterator

operator++()

operator*()
operator!=()



• Implementations of the C++ Iterator 
interface define various iterator strategies.

• e.g., pre-order, post-order, level-
order, & in-order iterators

• Commonality: the C++ Iterator interface defines a common strategy API

• Variability: implementations of this interface define concrete strategies

C++ 
Stack

C++ 
Queue

Strategy Hierarchy Overview

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ STL Iterator

operator++()

operator*()
operator!=()




