The lterator Pattern

Other Considerations

Douglas C. Schmidt

Learning Objectives in This Lesson

* Be aware of other considerations when applying the Ilterator pattern.

[terator GoF Object Behavioral

Consequences
+ Flexibility

« Aggregate & traversal objects are
decoupled & can (co)evolve
sepa rate|y Expression_Tree

Component_Node

A

Composite Leaf_Node
Unary_Node

A

Composite
Binary_Node

\ 4

C++ STL lterator

A

| |
Pre_Order
Iterator

[terator GoF Object Behavioral

Consequences
+ Flexibility

« Aggregate & traversal objects are
decoupled & can (co)evolve

sepa rate|y Expression_Tree » Component_Node
1 A |
Composite Leaf Node
- Unary_Node
Adding new traversal A
algorithms shouldnt affect . .
7 C it
the expression tree elements. L

C++ STL lterator

A

|]
Pre_Order
Iterator

[terator GoF Object Behavioral

Consequences
+ Flexibility

« Aggregate & traversal objects are
decoupled & can (co)evolve
sepa rate|y Expression_Tree

Component_Node

A

Composite Leaf Node
Unary_Node

A

|]
Composite
Binary_Node

\

\ 4

C++ STL lterator

Adding new subclasses of

A Composite Binary Node
[| > -

Pre_Order shouldn 't affect the iterators.

Iterator

[terator GoF Object Behavioral

Consequences
+ Multiplicity

« Supports multiple iterators &
multiple traversal algorithms

These traversals can all occur * “In-order” traversal = -5x (3+4)

simultaneously on the same —____+ “Pre-order” traversal = x-5+34
expression tree instance. e “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534

Later we'll apply the Strategy pattern to support multiple traversal algorithms.

Iterator

GoF Object Behavioral

Consequences
— Overhead

« Additional communication between
iterator & aggregate

Aggregate

Createlterator()

ConcreteAggregate

Significant overhead can occur
If there is a distribution or
user/kernel boundary crossing.

/

/
Iterator

First()

Next()
IsDone()
Currentitem()

g

Concretelterator

Createlterator() @
1
1

)K

return new Concretelterator(this

This overhead is quite problematic for iterators in concurrent or distributed systems.

[terator GoF Object Behavioral

Consequences
— Dependencies

« The iterator implementation may
depend on the aggregate’s
implementation Expression_Tree

Component_Node

A

Composite Leaf_Node
Unary_Node

A

Composite
Binary_Node

\ 4

C++ lterator

A

Pre_Order
Iterator

[terator GoF Object Behavioral

Consequences
— Dependencies

« The iterator implementation may
depend on the aggregate’s
implementation Expression_Tree

Component_Node

A

Composite Leaf Node
Unary_Node

A

| |
Composite
Binary_Node "

C++ lterator /

\ 4

Pre_Order Adding a new subclass for
Iterator .- -
Composite Ternary

Node may affect the iterators.

[terator GoF Object Behavioral

Implementation considerations
o Iterator style
 Java iterators vs. GoF iterators
« Java iterators are similar—but not identical to—GoF iterators, e.q.,

for (Iterator<ExpressionTree> it = exprTree.iterator();
it.hasNext () ;)
doSomethingWithIterator (it.next()) ;

See docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

[terator GoF Object Behavioral

Implementation considerations
o Iterator style
 Java iterators vs. GoF iterators

« Here's the equivalent Java code for GoF-style iterators

for (GoFIterator it = tree.createlterator();
'it.done() ;
it.advance())
doSomethingWithIterator (it.currentElement()) ;

[terator GoF Object Behavioral

Implementation considerations
o Iterator style
 Java iterators vs. C++ STL iterators

« C++ Standard Template Library (STL) iterators mimic native C/C++
pointer arithmetic syntax/semantics

for (auto it = expr tree.begin ();
it != expr tree.end ()’
++it)

do something with iterator (*it);

See www.geeksforgeeks.org/iterators-c-stl

http://www.geeksforgeeks.org/iterators-c-stl

[terator GoF Object Behavioral

Implementation considerations
o Iterator style
 Java iterators vs. C++ STL iterators

 Java iterators are closer to the GoF Iterator pattern

for (Iterator<ExpressionTree> it = exprTree.iterator();
it.hasNext () ;)
doSomethingWithIterator (it.next()) ;

[terator GoF Object Behavioral

Implementation considerations
o Iterator style

 Java also supports a “Spliterator” (splitable iterator)

Consumer<Expression Tree> action;
for (Spliterator<Expression Tree> s = exprTree.spliterator();
split. tryAdvance (action) ;)
doSomethingWithSpliterator (s) ;
Create a spliterator
for an expression tree

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator. html

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

[terator GoF Object Behavioral

Implementation considerations
o Iterator style

 Java also supports a “Spliterator” (splitable iterator)

Consumer<Expression Tree> action;
for (Spliterator<Expression Tree> s = exprTree.spliterator();
split. tryAdvance (action) ;)
doSomethingWithSpliterator(s)t\\\\\\\\\
tryAdvance() combines
hasNext() & next()

[terator GoF Object Behavioral

Implementation considerations

e Internal iterators vs.
external iterators

List<URL> newUrls = urllist
.stream()
.filter(s -> s.contains('"cse.wustl"))

.map(s -> s.replace("cse.wustl",
"dre.vanderbilt"))

.map (rethrowFunction (URL: : new))
.collect(toList()) ;

List<URL> newUrls =
new ArrayList<URL>() ;

for (Iterator<List> i = newUrls.iterator(); i.hasNext();) {

String url = i.next();
if ('url.contains("cse.wustl")) continue;
else

newUrls.add (new URL (url.replace('"cse.wustl",
"dre.vanderbilt"))) ;

}
See www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

http://www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

[terator GoF Object Behavioral

Implementation considerations

e Internal iterators vs.
external iterators

List<URL> newUrls = urllist
.stream()
.filter(s -> s.contains('"cse.wustl"))

.map(s -> s.replace("cse.wustl",
"dre.vanderbilt"))

.map (rethrowFunction (URL: : new))
.collect(toList()) ;

Java external iterators are more flexible,
but are more complicated to program.

List<URL> newUrls =
new ArrayList<URL>() ;

for (Iterator<List> i = newUrls.iterator(); i.hasNext();) {
String url = i.next();
if ('url.contains("cse.wustl")) continue;
else

newUrls.add (new URL (url.replace('"cse.wustl",
"dre.vanderbilt"))) ;

[terator GoF Object Behavioral

Implementation considerations

e Internal iterators vs.
external iterators

List<URL> newUrls = urllist

.stream()
.filter(s -> s.contains("cse.wustl"))

.map (s -> s.replace('"cse.wustl",
"dre.vanderbilt"))

.map (rethrowFunction (URL: : new))

.collect(toList()) ; \\\\

Java internal iterators are easier to
program, but are less flexible.

List<URL> newUrls =
new ArrayList<URL>() ;

for (Iterator<List> i = newUrls.iterator(); i.hasNext();) {
String url = i.next();
if ('url.contains("cse.wustl")) continue;
else

newUrls.add (new URL (url.replace('"cse.wustl",
"dre.vanderbilt"))) ;

[terator GoF Object Behavioral

Implementation considerations
¢ RObUSt IteratOrS Robust Iterators in ET++

Thomas Kofler

 Enable insertions & deletions on the
aggregate during the iteration process

CH-8021 Zurich

e-mail: kofler@ZH010.ubs.ubs.arcom.ch
June 1992

Abstract

Container classes and iterators operating on them are a common feature of object-oriented class
libaries. Most often, the question whether modifications of a container during an iteration should
be allowed, is answered with no. This work, in contrast, justifies why it should be allowed and
supported, at least in comprehensive C++ class libraries like ET++. It is further shown how the
concept of a robust iterator can be reasonably defined and implemented for well-kown data
structures. In this course, special attention is paid to hashing algorithms, in particular linear
probing. Feasible and efficient solutions are described and evaluated.

Keywords: object-oriented programming, C++, ET++, class library, framework, container,
collection, iterator, robust iterator, hashing, linear probing

1 Introduction

Many object-oriented class libraries have a container concept, and often also an iterator concept.
ET++, a portable application framework written in C++, is no exception. ET++ provides so-called
robust iterators that allow modification of the underlying container during an iteration in a
consistent and well-defined way. Beside ET++, this outstanding feature is offered by the
commercial C++ libraries MacApp 3.0 [Apple92], which has been recently released, and by
Container 2 [Glocken90].

Up to version 2.2 of ET++, robust iterators have been limited to removals, but the version 3.0 being
currently in preparation to be released support insertions as well. How containers and iterators are
defined and implemented in both version is the main subject of this report. An answer why robust
iterators are considered important is given. Efficiency is also addressed, because "collections are
heavily used system-level classes ..." [Cox87:146].

ET++ is a single-rooted class library with the universal class called Object!, and does not use
multiple inheritance. More material on ET++ can be found in publications by its developpers
[Gamma89, Gamma91, Weinand88, Weinand89, Weinand91). Further work is referenced in the
text.
This project started with an attempt to develop graph classes which are suitable to build a graph
editor framework for ET++. Since the ET++ container classes provided robust iterators, the
question arose whether robust iterators are also possible for graphs. In the ET++ container classes,
the problem of simultaneous iteration and insertions was unsolved, however. Since [wanted to use
some of the container classes as building blocks, I evaluated design and implementation of these
classes and came up with an idea that also allows for insertions. So, the following goals were
established:
* Refine the idea and develop an efficient solution for the ET++ container classes. As an
important constraint, the existing client interfaces should not change whenever possible, and
existing code should not be broken.

See www.ubilab.org/publications/print versions/pdf/robustiter-structprog93.pdf

http://www.ubilab.org/publications/print_versions/pdf/robustiter-structprog93.pdf

Iterator

GoF Object Behavioral

Implementation considerations

* Violating the aggregate’s
encapsulation

private class Itr
implements Iterator<E> ({

int cursor
int lastRet = -1;
int expectedModCount = modCount;

public E next() {
checkForComodification() ;
int i = cursor;
if (i >= size)
throw new NoSuchElementException() ;
Object[] elementData =

Itrnext() hard-codes a
dependency on the
ArrayList implementation.

Arraylist.this.elementData;
//////’if (i >= elementData.length)
throw new

ConcurrentModificationException () ;
cursor = 1i + 1;
return (E)elementData[lastRet = i];

}

See share/classes/java/util/ArrayList.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java

[terator GoF Object Behavioral

Implementation considerations Fail Fast Fail Safe Iterator
« Overhead & behavior in Iterator
concurrent programs Throw Yes NoO
Concurrent
Modification
Exception
Clone No Yes
object
Memory No Yes
overhead
Examples | HashMap, | CopyOnWriteArrayList,
Vector, ConcurrentHashMap
ArrayList,
HashSet

See javahungry.blogspot.com/2014/04/fail-fast-iterator-vs-fail-safe-iterator-difference-with-example-in-java.html

http://javahungry.blogspot.com/2014/04/fail-fast-iterator-vs-fail-safe-iterator-difference-with-example-in-java.html

[terator GoF Object Behavioral

Implementation considerations

 Batching in programs that
cross distribution or user/
kernel boundaries

Batch Iterator
Batch Iterator is a pattern compound
that minimizes the impact of latency.
obtain iterator r
@ create_iterator
] request elements | access elements —r
. A 2\ - N ~ — | find
Client l"_@) \Z . —1 get = @/‘J TJ O 1)
return I ¢ ST ‘ insert
elements i state | [I | I
! \ remove
| I I | empty Elements cag sy
Elements Batch Iterator Riseenis Aggregate
interface

See www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf

http://www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf

[terator GoF Object Behavioral

Known uses
« Unidraw Iterator

Interface Iterator<E>

i C++ STL IteratOrS Type Parameters:
E - the type of elements returned by this iterator
« C buffered I/O
All Known Subinterfaces:
° C++11 range—based for ListIterator<E>, PrimitiveIterator<T,T CONS>,
I &J f h PrimitiveIterator.0fDouble, PrimitiveIterator.0fInt,
Oops dva 10r-eac PrimitiveIterator.0fLong, XMLEventReader
Ioops All Known Implementing Classes:
. JDK IteratOI‘, Iterable, BeanContextSupport.BCSIterator, EventReaderDelegate, Scanner

& Spliterator

Interface Spliterator<T>

Type Parameters:

T - the type of elements returned by this Spliterator

All Known Subinterfaces:

Spliterator.0fDouble, Spliterator.0fInt, Spliterator.OflLong,
Spliterator.0fPrimitive<T,T CONS,T SPLITR>

All Known Implementing Classes:

Spliterators.AbstractDoubleSpliterator,
Spliterators.AbstractIntSpliterator,
Spliterators.AbstractLongSpliterator, Spliterators.AbstractSpliterator

Summary of the Iterator Pattern

« [terator creates objects that traverse the Composite-based expression tree &
access each of its elements one at a time.

Expression_Tree » Component_Node

T

<< create >> | [A]
I
I Composite |Leaf_Node
I Unary_Node
I
. JAN
\'2 I |

Composite
Iterator

We'll combine Iterator with other patterns to further improve our app design.

