
The Iterator Pattern

Motivating Example

Douglas C. Schmidt

• Recognize how the Iterator pattern can
be applied to access all nodes in an
expression tree flexibly & extensibly.

Learning Objectives in This Lesson

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin(order);

iter != tree.end(order);

++iter)

(*iter).accept(print_visitor);

Motivating the Need for
the Iterator Pattern in
the Expression Tree App

Douglas C. Schmidt

A Pattern for Transparently Traversing Aggregates
Purpose: Create objects that traverse the Composite-based
expression tree & access each of its elements one at a time.

Iterator decouples expression tree traversal from its internal structure.

B
ri
d
g
e Expression_Tree

<< create >>

C++ Iterator

Iterator

Component_Node

Composite
Unary_Node

Leaf_Node

Composite
Binary_Node …

Composite

Context: OO Expression Tree Processing App
• Several user command requests require

accessing all nodes in an expression tree.

Operation Behavior

format Allows the user to select the format of the input expression

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Print the current input expression using the designated
traversal order

eval Evaluate the value of the current input expression

quit Exit the program

Problem: Inflexible Expression Tree Traversal
• Hard-coding the traversal logic into the expression tree itself is inflexible

class Expression_Tree {

Expression_Tree

(Component_Node *root)

: root_(root) {

}

…

void traverse

(Node_Visitor &nv);

…

}

class Expression_Tree {

Expression_Tree

(Component_Node *root)

: root_(root) {

}

…

void traverse

(Node_Visitor &nv);

…

}

Problem: Inflexible Expression Tree Traversal
• Hard-coding the traversal logic into the expression tree itself is inflexible, e.g.

• Only one traversal is allowed
at a time

class Expression_Tree {

Expression_Tree

(Component_Node *root)

: root_(root) {

}

…

void traverse

(Node_Visitor &nv);

…

}

Problem: Inflexible Expression Tree Traversal
• Hard-coding the traversal logic into the expression tree itself is inflexible, e.g.

• Only one traversal is allowed
at a time

• Hard to control where/when
to stop the traversal

• Having a client explicitly traverse an expression tree via its internal links
impedes extensibility.

void pre_order_traversal

(Expression_Tree root) {

if (!root.is_null()) {

// Do something with root node

...

// traverse left branch

pre_order_traversal(root.left ());

// traverse right branch

pre_order_traversal(root.right ())

}

Problem: Inflexible Expression Tree Traversal

This code breaks if we enhance
Expression_Tree

to support ternary nodes.

Solution: Encapsulate Traversal as an Object
• Create an iterator object that encapsulates

the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

“Post-order” traversal =

5-5+34

Solution: Encapsulate Traversal as an Object

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

“Post-order” traversal =

5 ~ 5+34

Solution: Encapsulate Traversal as an Object

The ‘~’ is used for post-order negate since ‘–’ is ambiguous!

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

“Post-order” traversal =

5 ~ 3

Solution: Encapsulate Traversal as an Object

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

“Post-order” traversal =

5 ~ 3 4

Solution: Encapsulate Traversal as an Object

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

“Post-order” traversal =

5 ~ 3 4 +

Solution: Encapsulate Traversal as an Object

• Create an iterator object that encapsulates
the traversal of an expression tree without
requiring clients to know how the tree is
structured internally.

Solution: Encapsulate Traversal as an Object

“Post-order” traversal =

5 ~ 3 4 + ×

• Define methods to:

1. Create an iterator (via factory method)

Solution: Encapsulate Traversal as an Object

See en.wikipedia.org/wiki/Factory_method_pattern

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin(order);

iter != tree.end(order);

++iter)

(*iter).accept(print_visitor);

https://en.wikipedia.org/wiki/Factory_method_pattern

• Define methods to:

1. Create an iterator (via factory method)

2. Check to see if it’s finished

Solution: Encapsulate Traversal as an Object

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin(order);

iter != tree.end(order);

++iter)

(*iter).accept(print_visitor);

• Define methods to:

1. Create an iterator (via factory method)

2. Check to see if it’s finished

3. Access & process each element
if it’s not finished

Solution: Encapsulate Traversal as an Object

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin(order);

iter != tree.end(order);

++iter)

(*iter).accept(print_visitor);

• Define methods to:

1. Create an iterator (via factory method)

2. Check to see if it’s finished

3. Access & process each element
if it’s not finished

4. Advanced the iterator by one

Solution: Encapsulate Traversal as an Object

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin(order);

iter != tree.end(order);

++iter)

(*iter).accept(print_visitor);

C++ Iterator Interface Overview
• C++ STL defines a generic “interface” for traversing aggregate data

See www.geeksforgeeks.org/introduction-iterators-c

Iterator operations

http://www.geeksforgeeks.org/introduction-iterators-c

• Commonality: provides a common interface for expression tree
iterators that conform to the C++ STL iterator interface

• Variability: can be configured with specific expression tree iterator
implementation strategies via a Creational pattern

C++ Iterator Interface Overview
• C++ STL defines a generic “interface” for traversing aggregate data

Iterator operations

