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Learning Objectives in This Lesson

« Recognize how the Factory Method pattern can

be applied to extensibly create variabilities in User_Command_Factory
the expression tree processing app. make_command() QO
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Motivating the Need for
the Factory Method Pattern in the
Expression Tree App




A Pattern for Abstracting Object Creation

Purpose: Enable the extensible creation of variabilities,
such as commands, iterators, & visitors.
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Factory Method decouples the creation of objects from their subsequent use.




Context: OO Expression Tree Processing App

« There are many points of variability in

the expression tree processing app.

« e.g., user commands, traversal
strategies, & visitor operations
applied on an expression tree
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Context: OO Expression Tree Processing App

 There are many points of variability in Visitor
the expression tree processing app. A

* e.g., user commands, traversal [ | |
strategies, & visitor operations  |Evaluation_visitory Piifisfios
applied on an expression tree /
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Adding new variants should
not affect existing client code.
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Problem: Inflexible Creation of Variabilities

 Tightly coupling the creation of variabilities with client code is problematic.

 e.g., hard-coding lexical dependencies on specific
derived classes can complicate maintenance
& impede extensibility

User Command *command =
new Print Command() ;

new EvaluaW

on Visitor() ;

ET Iter Impl *it = new
Pre Order ET Iter Imp




Solution: Abstract Creation of Objects

* Define a User Command Factory class whose make command ()
factory method creates a User Command object.
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Solution: Abstract Creation of Objects

+ Have the make command () factory method implement the appropriate
derived class of User Command

User_Command_Factory

<<creates>>
make_command() ot------->

User
Command




Solution: Abstract Creation of Objects

+ Have the make command () factory method implement the appropriate
derived class of User Command Impl, e.g.,

* Subclass User Command Factory & override the factory method
make command ()
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Solution: Abstract Creation of Objec

(S

+ Have the make command () factory method implement the appropriate
derived class of User Command Impl, e.g.,
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* Or pass a parameter to the make command () factory method & use it to
create the appropriate User Command Impl derived class objects




User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)



http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
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User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)

L This is a factory method
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User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)

« Commonality: provides a common API to create commands

 Variability: implementations of expression tree command factory
methods can vary depending on the requested commands
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User_Command_Factory Class Overview

* Create the command corresponding to the user input.

FACTORY_PTMF

execute()

std::map<string,

Command Factory
Name Command
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"format"
"eval"
"macro”
"quit"
"print"
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Each factory command object conforms
to the FACTORY PTMF typedef & creates
a different type of User Command Impl.
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