The Factory Method Pattern

Motivating Example

Douglas C. Schmidt

Learning Objectives in This Lesson

« Recognize how the Factory Method pattern can

be applied to extensibly create variabilities in User_Command_Factory
the expression tree processing app. make_command() QO
User_Command_Impl L,/ggcreates»
execute()
I
Expr
Format Command
Command
Eval
Macro Command
Command
Quit
Print Command

Command

Douglas C. Schmidt

Motivating the Need for
the Factory Method Pattern in the
Expression Tree App

A Pattern for Abstracting Object Creation

Purpose: Enable the extensible creation of variabilities,
such as commands, iterators, & visitors.

Factory Method

Input_Handler :User_Command_Factory+—> Tree_Context
1
<<creates>> |
|
1
|
|
\'4
ol » User Command
©
c
®
&
|1
8 Macro_Command Print. Command SetCommand Quit_Command Null_Command
Format_Command Expr_Command Eval_Command

Factory Method decouples the creation of objects from their subsequent use.

Context: OO Expression Tree Processing App

« There are many points of variability in

the expression tree processing app.

« e.g., user commands, traversal
strategies, & visitor operations
applied on an expression tree

\ 4

User_Command_Impl

Visitor

A

Evaluation_Visitory

PrintVisitor

C++ lterator

A

Format Expr
Command Command
Print Eval
Command Command
Macro Quit
Command Command

Level Order
Iterator

In_Order
Iterator

Post_Order
Iterator

Pre_Order
Iterator

Context: OO Expression Tree Processing App

 There are many points of variability in Visitor
the expression tree processing app. A

* e.g., user commands, traversal [| |
strategies, & visitor operations |Evaluation_visitory Piifisfios
applied on an expression tree /

C++ Iterator

/A

User_Command_Impl

|
Level_Order /

Ny

Adding new variants should
not affect existing client code.

Iterator
/
Format Expr Z
Command Command In_Order
Iterator
Print Eval Post_Order
Command Command Iterator
X Pre_Order
Command Command

Problem: Inflexible Creation of Variabilities

 Tightly coupling the creation of variabilities with client code is problematic.

 e.g., hard-coding lexical dependencies on specific
derived classes can complicate maintenance
& impede extensibility

User Command *command =
new Print Command() ;

new EvaluaW

on Visitor() ;

ET Iter Impl *it = new
Pre Order ET Iter Imp

Solution: Abstract Creation of Objects

* Define a User Command Factory class whose make command ()
factory method creates a User Command object.

User_ Command_Factory

<<creates>>
make_command() O-t--——--->

User
Command

Solution: Abstract Creation of Objects

+ Have the make command () factory method implement the appropriate
derived class of User Command

User_Command_Factory

<<creates>>
make_command() ot------->

User
Command

Solution: Abstract Creation of Objects

+ Have the make command () factory method implement the appropriate
derived class of User Command Impl, e.g.,

* Subclass User Command Factory & override the factory method
make command ()

User_Command_Factory
<<creates>>

make_command() ot------->
User
Command
i X
Print._Command_Factory Print
<<creates>> [command
make_command() OF------->

Solution: Abstract Creation of Objec

(S

+ Have the make command () factory method implement the appropriate
derived class of User Command Impl, e.g.,

User_Command_Factory

make_command(Param) ot

<<creates>>

——— >

+ | Command

>

User

A

Macro_Command

Print. Command

SetCommand

Quit_Command

Null_Command

Format_Command

Expr_Command

Eval_Command

* Or pass a parameter to the make command () factory method & use it to
create the appropriate User Command Impl derived class objects

User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)

L This is a factory method

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

User_Command_Factory Class Overview

* Create the command corresponding to the user input.

Class methods

User Command make command(string inputstring)

« Commonality: provides a common API to create commands

 Variability: implementations of expression tree command factory
methods can vary depending on the requested commands

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

User_Command_Factory Class Overview

* Create the command corresponding to the user input.

FACTORY_PTMF

execute()

std::map<string,

Command Factory
Name Command

Ilexprll

"format"
"eval"
"macro”
"quit"
"print"

FACTORY_PTMF>

Each factory command object conforms
to the FACTORY PTMF typedef & creates
a different type of User Command Impl.

User_Command_Impl

execute()

I
;'—— """""""" > Expr
-—————————_—_—_—_—_— ____ LAt Command
o] Command
e _>
________________ f Eval
Macro Command
——————————————————— -=-> Command
_______ == Quit
r : ________ Print Command

Command

