
Overview of the Expression

Tree Processing App Case

Study (Part 1)

Douglas C. Schmidt

Learning Objectives in This Lesson
• Understand the goals of the object-oriented (OO) expression tree case study.

−35
−5*(3+4)

Learning Objectives in This Lesson
• Understand the goals of the object-oriented (OO) expression tree case study.

• Recognize the key behavioral & structural
properties in the expression tree domain.

Lesson Introduction
Douglas C. Schmidt

Lesson Introduction
• While patterns can be discussed abstractly,

effective design & programming practices
are not learned best by generalities.

“Sitting & thinking” is not sufficient…

Lesson Introduction
• While patterns can be discussed abstractly,

effective design & programming practices
are not learned best by generalities.

• Instead, it’s usually better to see how
patterns can help improve nontrivial
programs

Lesson Introduction
• While patterns can be discussed abstractly,

effective design & programming practices
are not learned best by generalities.

• Instead, it’s usually better to see how
patterns can help improve nontrivial
programs, e.g.,

• Easier to write & read;

• Easier to maintain & modify;

• More efficient & robust.

Lesson Introduction
• While patterns can be discussed abstractly,

effective design & programming practices
are not learned best by generalities.

• Instead, it’s usually better to see how
patterns can help improve nontrivial
programs.

• This lesson describes a realistic—yet tractable
—expression tree processing app we’ll use as
a case study throughout the course.

−35
−5*(3+4)

Lesson Introduction
• While patterns can be discussed abstractly,

effective design & programming practices
are not learned best by generalities.

• Instead, it’s usually better to see how
patterns can help improve nontrivial
programs.

• This lesson describes a realistic—yet tractable
—expression tree processing app we’ll use as
a case study throughout the course.

• This case study applies many “Gang of
Four” (GoF) patterns using C++ & STL.

See en.wikipedia.org/wiki/Design_Patterns

https://en.wikipedia.org/wiki/Design_Patterns

Expression Tree Processing App
Case Study Goals

Douglas C. Schmidt

Expression Tree Processing App Case Study Goals
• Develop an OO expression

tree processing app using
patterns & frameworks.

Naturally, these patterns apply to more than expression tree processing apps!

Design Problem Pattern

Non-extensible & error-prone designs Composite

Minimizing impact of variability Bridge

Inflexible expression input processing Interpreter

Inflexible interpreter output Builder

Scattered request implementations Command

Inflexible creation of variabilities Factory
Method

Inflexible expression tree traversal Iterator

Obtrusive behavior changes Strategy

Non-extensible tree operations Visitor

Incorrect user request ordering State

Non-extensible operating modes Template
Method

Minimizing global variable liabilities Singleton

−35

−5*(3+4)

• This app uses expression trees to remove
ambiguity in algebraic expressions.

×

+−

5 3 4

Expression Tree Processing App Case Study Goals

See en.wikipedia.org/wiki/Binary_expression_tree

Each node of a binary expression
tree has zero, one, or two children.

Binary
Nodes

Unary
Node

Leaf
Nodes

−35

−5*(3+4)

https://en.wikipedia.org/wiki/Binary_expression_tree

• Compare/contrast algorithmic decomposition
& object-oriented (OO) approaches.

Tree

Node

1

0|1|2

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

Expression_Tree

Composite_Binary
Node

Composite_Negate
Node

Composite

Add_Node

Composite

Multiply_Node

Composite

Divide_Node

Composite

Subtract_Node

Leaf_Node
Composite

Unary_Node

Component_Node

Expression Tree Processing App Case Study Goals

Despite decades of
OO focus, algorithmic
decomposition is still
surprisingly common.

Algorithmic Decomposition
Pattern- & Object-Oriented

Decomposition

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

Product

Variant 1

Product

Variant 4

Product

Variant 2

Product

Variant 3

Application Frameworks

Operating System Kernel

Bundled & Third-Party Apps

System Libraries
Virtual Machine

Runtime

Expression Tree Processing App Case Study Goals

• Identify common elements of a
domain & define stable interfaces.

• Identify variable elements of a
domain & define stable interfaces.

• Demonstrate scope, commonality, &
variability (SCV) analysis as a means
to achieve systematic software
reuse.

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

• Demonstrate scope, commonality, &
variability (SCV) analysis as a means
to achieve systematic software
reuse.

• Apply SCV in the context of the
expression tree processing app.

Expression Tree Processing App Case Study Goals

−35

−5*(3+4)

• Show how to implement pattern-
oriented OO frameworks &
generic programs in C++.

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin

(order);

iter != tree.end

(order);

++iter)

(*iter).accept

(print_visitor);

for_each(tree.begin(order),

tree.end(order),

[&print_visitor](auto

tree) {

tree.accept

(print_visitor);

});

Expression Tree Processing App Case Study Goals

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin

(order);

iter != tree.end

(order);

++iter)

(*iter).accept

(print_visitor);

for_each(tree.begin(order),

tree.end(order),

[&print_visitor](auto

tree) {

tree.accept

(print_visitor);

});

• Show how to implement pattern-
oriented OO frameworks &
generic programs in C++.

C++-style GoF Iterator pattern
with for loop

Expression Tree Processing App Case Study Goals

See en.wikipedia.org/wiki/Iterator_pattern

https://en.wikipedia.org/wiki/Iterator_pattern

• Show how to implement pattern-
oriented OO frameworks &
generic programs in C++.

Expression Tree Processing App Case Study Goals

STL for_each() algorithm
with C++ lambda function

Expression_Tree tree = ...;

Visitor print_visitor = ...;

for (auto iter = tree.begin

(order);

iter != tree.end

(order);

++iter)

(*iter).accept

(print_visitor);

for_each(tree.begin(order),

tree.end(order),

[&print_visitor](auto

tree) {

tree.accept

(print_visitor);

});

Overview of the Expression Tree
Processing Domain

Douglas C. Schmidt

• Expression trees consist of nodes containing
operators & operands.

Overview of Expression Tree Processing Domain

See en.wikipedia.org/wiki/Binary_expression_tree for expression tree information.

×

+−

5 3 4

http://en.wikipedia.org/wiki/Binary_expression_tree

• Expression trees consist of nodes containing
operators & operands.

• Operators are interior nodes
in the tree, i.e.,

• Binary & unary nodes

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

• Expression trees consist of nodes containing
operators & operands.

• Operators are interior nodes
in the tree

• Operands are exterior nodes
in the tree, i.e.,

• Leaf nodes

×

+−

5 3 4

Leaf
Nodes

Overview of Expression Tree Processing Domain

• Operators have different precedence levels,
different associativities, & different arities

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

See en.wikipedia.org/wiki/Operator_associativity & en.wikipedia.org/wiki/Arity

https://en.wikipedia.org/wiki/Operator_associativity
https://en.wikipedia.org/wiki/Arity

• Operators have different precedence levels,
different associativities, & different arities, e.g.,

• Precedence defines which operator
to perform first to evaluate a
mathematical expression.

• Multiplication takes
precedence over addition

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

See en.wikipedia.org/wiki/Order_of_operations

https://en.wikipedia.org/wiki/Order_of_operations

Overview of Expression Tree Processing Domain
• Operators have different precedence levels,

different associativities, & different arities, e.g.,

• Precedence defines which operator
to perform first to evaluate a
mathematical expression.

• Multiplication takes
precedence over addition

• Operator locations in a
tree unambiguously
designate precedence

×

+−

5 3 4

Binary
Nodes

Unary
Node

e.g., 3 + 4 is performed before –5 * 7.

• Operators have different precedence levels,
different associativities, & different arities, e.g.,

• Precedence defines which operator
to perform first to evaluate a
mathematical expression.

• Associativity determines how
operators of the same level of
precedence are grouped in
the absence of parentheses.

• 5 + 3 – 4 == (5 + 3) – 4

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

See en.wikipedia.org/wiki/Operator_associativity

https://en.wikipedia.org/wiki/Operator_associativity

• Operators have different precedence levels,
different associativities, & different arities, e.g.,

• Precedence defines which operator
to perform first to evaluate a
mathematical expression.

• Associativity determines how
operators of the same level of
precedence are grouped in
the absence of parentheses.

• Arity defines the number of
operands an operator takes.

• Multiplication & addition operators
have two arguments (arity == 2)

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

See en.wikipedia.org/wiki/Arity

https://en.wikipedia.org/wiki/Arity

• Operators have different precedence levels,
different associativities, & different arities, e.g.,

• Precedence defines which operator
to perform first to evaluate a
mathematical expression.

• Associativity determines how
operators of the same level of
precedence are grouped in
the absence of parentheses.

• Arity defines the number of
operands an operator takes.

• Multiplication & addition operators
have two arguments (arity == 2)

• The unary minus operator has one
argument (arity == 1)

×

+−

5 3 4

Binary
Nodes

Unary
Node

Overview of Expression Tree Processing Domain

• Operands can be integers, doubles, variables, etc.

• We'll just handle integers in this case study. ×

+−

5 3 4

Binary
Nodes

Unary
Node

Leaf
Nodes

(Integers)

Overview of Expression Tree Processing Domain

• Operands can be integers, doubles, variables, etc.

• We'll just handle integers in this case study.

• It’s easy to extend the app
to handle other types.

×

+−

5.2 3.4 4.1

Binary
Nodes

Unary
Node

Leaf
Nodes

(Doubles)

Overview of Expression Tree Processing Domain

• Trees may be “evaluated” via different traversal
orders, e.g.,

• “In-order traversal” = -5×(3+4)

• “Pre-order traversal” = ×-5+34

• “Post-order traversal” = 5-34+×

• “Level-order traversal” = ×-+534

See en.wikipedia.org/wiki/Binary_expression_tree#Traversal for more information.

×

+−

5 3 4

Overview of Expression Tree Processing Domain

http://en.wikipedia.org/wiki/Binary_expression_tree

