Overview of C++: Design Goals

Douglas C. Schmidt
d.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

r=——
-

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of O+ Douglas C. Schmidt

Learning Objectives in this Part of the Lesson

« Recognize the key components of C++
« Know strategies for learning C++
« Understand C++ design goals

Zero
Overhead
Principle

C++ Design Goals

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

« As with C, run-time efficiency is important

Overview of O+ Douglas C. Schmidt

C++ Design Goals

» As with C, run-time efficiency is important
« Zero-overhead abstraction

* e.g., classes with constructors & destructors,
inheritance, generic programming, functional
programming techniques, etc.

Zero
Overhead
Principle

See www.youtube.com/watch?v=G5zCGY0tkg8 |

http://www.youtube.com/watch?v=G5zCGY0tkq8

Overview of @+ Douglas C. Schmidt

C++ Design Goals

« As with C, run-time efficiency is important

;

* Direct mapping to hardware JAVAC

* e.g., no virtual machine overhead compiler
for instructions & native data types

Overview of ©+

Douglas C. Schmidt

» As with C, run-time efficiency is important

» No complicated run-time libraries,
managed environments, or virtual

machines

 Unlike other languages, e.qg., Ada,

Java, C#, etc.

C++ Design Goals

See en.wikipedia.org/wiki/Gordian Knot

https://en.wikipedia.org/wiki/Gordian_Knot

Overview of @+ Douglas C. Schmidt

C++ Design Goals

« As with C, run-time efficiency is important

* No language-specific support for
persistence, garbage collection, or
networking in C++

Overview of ©+ Douglas C. Schmidt
C++ Design Goals

« As with C, run-time efficiency is important

C++17

2017 >

* No language-specific support for) 3 N
. . . emory mode . eader-writer locks Parallel STL
persistence, garbage collection, or |
networking in C++ | Thread local data
. Condition variables
 Additional support for threading, J = ™«
synchronization, & parallelism

was added beginning w/C++11

See www.modernescpp.com/index.php/c-core-guidelines-rules-for-concurrency-and-parallelism

http://www.modernescpp.com/index.php/c-core-guidelines-rules-for-concurrency-and-parallelism

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

« As with C, run-time efficiency is important

* No language-specific support for
persistence, garbage collection, or
networking in C++

» Many libraries exist that provide

these capabilities b 0 os t

LI RARIES

See www.dre.vanderbilt.edu/ACE & www.boost.org

http://www.dre.vanderbilt.edu/ACE
http://www.boost.org/

Overview of ©+ Douglas C. Schmidt
C++ Design Goals

« Compatibility w/C libraries & traditional
development tools is emphasized

11

Overview of @+ Douglas C. Schmidt

C++ Design Goals

« Compatibility w/C libraries & traditional
development tools is emphasized, e.g.,

 Object code reuse

* e.g., the storage layout of structs
is compatible with C

12

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

« Compatibility w/C libraries & traditional
development tools is emphasized, e.g.,

C++ Network

- Object code reuse Programming
Volume 1
¢ e'g'l the StOrage IayOUt Of StrUCtS Mastering Complexity with ACE and Patterns
is compatible with C Douglas C. Schmidt
Stephen D. Hust
. Supports the standard ANSI C S e

library, UNIX & Windows system
calls via extern blocks, etc.

G+ In-Depth Series ¢+ Bjarne Stroustrup

See www.dre.vanderbilt.edu/~schmidt/ACE/book1

http://www.dre.vanderbilt.edu/~schmidt/ACE/book1/

Overview of @+

Douglas C. Schmidt

C++ Design Goals

« Compatibility w/C libraries & traditional
development tools is emphasized, e.g.,

» C++ works with the “make” family
of (re)compilation build tools

TABLE OF CONTENTS (HIDE)
1. GCC (GNU Compiler Collection)

G C C d M |< 1.1 A Brief History and Introductic
O n O e 1.2 Installing GCC on Unixes

1.3 Installing GCC on Mac OS X

C s | s 1.4 Installing GCC on Windows
O m p l l n g ’ 1.5 Post Installation
L- k- d 1.6 Getting Started
| n I n g O n 1.7 GCC Compilation Process
- . 1.8 Headers (.h), Static Libraries (
B U I I d | n g 1.9 GCC Environment Variables
1.10 Utilities for Examining the Cc
C/C++ 2. GNU Make
. . 2.1 First Makefile By Example
AppllCOTlonS 2.2 More on Makefile

2.3 A Sample Makefile
2.4 Brief Summary

1. GCC (GNU Compiler
Collection)

1.1 A Brief History and Introduction to GCC

The original GNU C Compiler (GCC) is developed by Richard Stallman, the founder of the GNU
Project. Richard Stallman founded the GNU project in 1984 to create a complete Unix-like
operating system as free software, to promote freedom and cooperation among computer
users and programmers.

See www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

Overview of ©+

Douglas C. Schmidt

C++ Design Goals

* An initial design goal was for C++ to be
“as close to C as possible, but no closer”

Don’'t Stand So Close to Me

Bt @ L yviid by S0P

B EEBEBREE B

Errpnl b
Il.r" Ly | [F) Ao LA L
- ‘f - - - - - a .
5 e e e e e
1% g . - ey [4 it o [-
=k
4
: 3 $
= .
aalle oo 1
' L [F]
r == P 1 1
e S S e = e ST Eee
e bad ' - Bl S L5
- - '—'[-—i—i- i
— #]
i inl A
B e e
B L Loy pri’s L
— — — i
_a 4 t 4 i & :-J : * -—"— + 4+ 1
- 1
dy F
F isF [} i L= e A Ko B,
1 — &5
ﬂ;?i IEE SIS S e S e se s s il
Fed ==k ey o e mew s gul . a .
— I T
_E ——1 I 3 — s :
B L
o - T P, reial | A
el B . P e e ™ st W T

15

Overview of @+ Douglas C. Schmidt

C++ Design Goals

 An initial design goal was for C++ to be -
“as close to C as possible, but no closer” " s e

* i.e., C++ is not a proper superset of C "
¢ BaCkWa rds Com patibility With C is This paper outlines the history of the C++ programming language. The

emphasis is on the ideas, constraints, and people that shaped the language, rather
than the minutiae of language features. Key design decisions relating to language

- - -

n Ot entl rel ma I nta I ned features are discussed, but the focus is on the overall design goals and practical
constraints. The evolution of C++ is traced from C with Classes to the current

ANSI and ISO standards work and the explosion of use, interest, commercial

activity, compilers, tools, environments, and libraries.

1 Introduction

C++ was designed to provide Simula’s facilities for program organization together with C’s effi-
ciency and flexibility for systems progr i It was i ded to deliver that to real projects
within half a year of the idea. It succeeded.

At the time, | realized neither the modesty nor the preposterousness of that goal. The goal was
modest in that it did not involve innovation, and preposterous in both its time scale and its Draco-
nian demands on efficiency and flexibility. While a modest amount of innovation did emerge
over the years, efficiency and flexibility have been maintained without compromise. While the
goals for C++ have been refined, elaborated, and made more explicit over the years, C++ as used
today directly reflects its original aims.

This paper is organized in roughly chronological order:

§2 C with Classes: 1979-1983. This section describes the fundamental design decisions for

Ct++ as they were made for C++'s immediate predecessor.

§3 From C with Classes to C++: 1982—1985. This section describes how C++ evolved from
C with Classes up until the first commercial release and the printing of the book that
defined C++ in October 1985.

§4 Release 2.0: 1985~ 1988. This section describes how C++ evolved during the early years
of commercial availability.

§5 The Explosion in Interest and Use: 1987—. This section deals with non-anguage factors,
such as the growth of a C#+ tools and library industry. It also tries to estimate the impact
of commercial competition on the development of C++,

§6 Standardization: 1988—. This section describes the way C++ continues to evolve under the
pressures of heavy use in diverse application areas, and how the C++ community handles
this challenge through formal ISO and ANSI standardization.

§7 Retrospective. This section considers how Ct++ met its design goals, how it might have
been a better language, and how it might become an even more useful tool.

Most effort have been expended on the early years because the design decisions taken carly deter-
mined the further development of the language. It is also easier to maintain a historical

See www.stroustrup.com/hopl2.pdf

http://www.stroustrup.com/hopl2.pdf

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

An initial design goal was for C++ to be Valid in C, but not in C++
"as close to C as possible, but no closer” ;oiq *ptr;
* i.e., C++ is not a proper superset of C /* Implicit conversion

T . . f s Ik . * %
« Backwards compatibility with C is - f‘_’m V°td to int* */
- = - ln l — r;
not entirely maintained P

/* Implicit conversion
from void* to int* */
int *j =
malloc (5 * sizeof *j);

See en.wikipedia.org/wiki/Compatibility of C and C++

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

* An initial design goal was for C++ to be
“as close to C as possible, but no closer”

* i.e., C++ is not a proper superset of C

» Backwards compatibility with C is
not entirely maintained

Valid in C++ & C

void *ptr;

int *i = (int *)ptr;

int *j = (int ¥*)
malloc (5 * sizeof *j);

See en.wikipedia.org/wiki/Compatibility of C and C++

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

* An initial design goal was for C++ to be
“as close to C as possible, but no closer”

* i.e., C++ is not a proper superset of C

» Backwards compatibility with C is
not entirely maintained

Preferred in C++

void *ptr;

auto 1 =
reinterpret cast<int *>
(ptr) ;
auto j = new int[5];

See en.wikipedia.org/wiki/Compatibility of C and C++

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B

Overview of ©+ Douglas C. Schmidt

C++ Design Goals

* An initial design goal was for C++ to be

“as close to C as possible, but no closer” é"‘ WOQ
3 9 0

.

* i.e., C++ is not a proper superset of C

* Typically not a problem in practice...

20

Overview of @+ Douglas C. Schmidt

C++ Design Goals

 Later C++ design goals focus on generic
programming & helping developers to
use modern C++ effectively

21

Overview of ©+ Douglas C. Schmidt

C++ Design Goals
 Later C++.design go_als focus on generic &boost_fmm

programming & helping developers to s LIsRARIES

use modern C++ effectively

 Generic programming generalizes GENERIC PROGRAMMING TECHNIQUES
SOftware Components SO that they can This is an incomplete survey of some of the generic
be eaSily reused in many Situations programming techniques used in the boost libraries.

TABLE OF CONTENTS

o Introduction

o The Anatomy of a Concept
Traits

o Tag Dispatching

o Adaptors

o Type Generators

o Object Generators
Policy Classes

INTRODUCTION

Generic programming is about generalizing software
components so that they can be easily reused in a wide
variety of situations. In C++, class and function templates
are particularly effective mechanisms for generic
programming because they make the generalization
possible without sacrificing efficiency.

See www.boost.org/community/generic_programming.html

http://www.boost.org/community/generic_programming.html

Overview of + Douglas C. Schmidt
C++ Design Goals

- Later C++ design goals focus on generic template

programming & helping developers to <typename Inputlterator,
use modern C++ effectively typename OutputIterator>
Outputlterator

 Generic programming generalizes
software components so that they can
be easily reused in many situations

copy (InputIterator first,
InputIterator last,
OutputIterator result) {

« C++ temp_lates_enable generic while (first !'= last)
programming since they generalize *result++ = *first++:
without sacrificing efficiency return result;

}
int a[] = {1, 2, 3, ...};
vector<int> v = {1, 2, 3, ...};

copy(a, a + sizeof(a)/sizeof(*a), ostream iterator<int>(cout))
copy (v.begin(), v.end(), ostream iterator<int>(cout))

See www.boost.org/community/generic _programming.html

http://www.boost.org/community/generic_programming.html

Overview of @+

Douglas C. Schmidt

C++ Design Goals

 Later C++ design goals focus on generic
programming & helping developers to
use modern C++ effectively

» The C++ core guidelines are a set of
idioms documented to help developers
efficiently and consistently write type
& resource safe C++ programs

C++ Core Guidelines

“Within C++ is a smaller, simpler, safer language
struggling to get out.” - Bjarne Stroustrup

The C++ Core Guidelines are a collaborative effort led by Bjarne
Stroustrup, much like the C++ language itself. They are the result
of many person-years of discussion and design across a number
of organizations. Their design encourages general applicability
and broad adoption but they can be freely copied and modified to
meet your organization’s needs.

The aim of the guidelines is to help people to use modern C++
effectively. By “modern C++”we mean C++11 and C++14 (and soon
C++17). In other words, what would you like your code to look like

in 5 years' time, given that you can start now? In 10 years’ time?

The guidelines are focused on relatively higher-level issues, such
as interfaces, resource management, memory management, and
concurrency. Such rules affect application architecture and library
design. Following the rules will lead to code that is statically type
safe, has no resource leaks, and catches many more programming
logic errors than is common in code today. And it will run fast -
you can afford to do things right.

See isocpp.qgithub.io/CppCoreGuidelines

https://isocpp.github.io/CppCoreGuidelines/

Overview of @+ Douglas C. Schmidt
C++ Design Goals

 Later C++ design goals focus on generic
programming & helping developers to
use mOdern C++ effeCtlvely Reason The pointer returned by new should belong to a resource

handle (that can call delete). If the pointer returned by new is

R.11: Avoid calling new and delete explicitly

assigned to a plain/naked pointer, the object can be leaked.

Note In a large program, a naked delete (thatis a delete in

application code, rather than part of code devoted to resource

° The C++ core gu|del|nes are a set Of management) is a likely bug: if you have N delete s, how can you
|d|0ms documented tO help developers be certain that you don’t need N+1 or N-17 The bug may be latent:
-]] it may emerge only during maintenance. If you have a naked new,
Eff|C|ent|y and COﬂSlStently write type you probably need a naked delete somewhere, so you probably
& resource safe C++ programs have a bug.

Enforcement (Simple) Warn on any explicit use of new and delet
e .Suggest using make_unique instead.

See isocpp.qgithub.io/CppCoreGuidelines/CppCoreGuidelines.html#Rr-newdelete

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#Rr-newdelete

End of C++
Design Goals

