
Overview of C++: Design Goals

Douglas C. Schmidt

d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


Overview of Douglas C. Schmidt

2

Learning Objectives in this Part of the Lesson
• Recognize the key components of C++ 

• Know strategies for learning C++

• Understand C++ design goals



Overview of Douglas C. Schmidt

3

C++ Design Goals



Overview of Douglas C. Schmidt

4

C++ Design Goals

• As with C, run-time efficiency is important



Overview of Douglas C. Schmidt

5See www.youtube.com/watch?v=G5zCGY0tkq8

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• e.g., classes with constructors & destructors, 
inheritance, generic programming, functional 
programming techniques, etc. 

C++ Design Goals

http://www.youtube.com/watch?v=G5zCGY0tkq8


Overview of Douglas C. Schmidt

6

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• Direct mapping to hardware 

• e.g., no virtual machine overhead 
for instructions & native data types 

C++ Design Goals



Overview of Douglas C. Schmidt

7

C++ Design Goals

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• Direct mapping to hardware 

• No complicated run-time libraries,
managed environments, or virtual 
machines

• Unlike other languages, e.g., Ada, 
Java, C#, etc.

See en.wikipedia.org/wiki/Gordian_Knot

https://en.wikipedia.org/wiki/Gordian_Knot


Overview of Douglas C. Schmidt

8

C++ Design Goals

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• Direct mapping to hardware 

• No complicated run-time libraries,
managed environments, or virtual 
machines

• No language-specific support for 
persistence, garbage collection, or 
networking in C++



Overview of Douglas C. Schmidt

9

C++ Design Goals

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• Direct mapping to hardware 

• No complicated run-time libraries,
managed environments, or virtual 
machines

• No language-specific support for 
persistence, garbage collection, or 
networking in C++

• Additional support for threading,
synchronization, & parallelism
was added beginning w/C++11 

See www.modernescpp.com/index.php/c-core-guidelines-rules-for-concurrency-and-parallelism

http://www.modernescpp.com/index.php/c-core-guidelines-rules-for-concurrency-and-parallelism


Overview of Douglas C. Schmidt

10

C++ Design Goals

• As with C, run-time efficiency is important

• Zero-overhead abstraction 

• Direct mapping to hardware 

• No complicated run-time libraries,
managed environments, or virtual 
machines

• No language-specific support for 
persistence, garbage collection, or 
networking in C++

• Many libraries exist that provide 
these capabilities

See www.dre.vanderbilt.edu/ACE & www.boost.org

http://www.dre.vanderbilt.edu/ACE
http://www.boost.org/


Overview of Douglas C. Schmidt

11

C++ Design Goals

• Compatibility w/C libraries & traditional 
development tools is emphasized



Overview of Douglas C. Schmidt

12

C++ Design Goals

• Compatibility w/C libraries & traditional 
development tools is emphasized, e.g.,

• Object code reuse

• e.g., the storage layout of structs 
is compatible with C



Overview of Douglas C. Schmidt

13

C++ Design Goals

• Compatibility w/C libraries & traditional 
development tools is emphasized, e.g.,

• Object code reuse

• e.g., the storage layout of structs 
is compatible with C

• Supports the standard ANSI C 
library, UNIX & Windows system 
calls via extern blocks, etc.

See www.dre.vanderbilt.edu/~schmidt/ACE/book1

http://www.dre.vanderbilt.edu/~schmidt/ACE/book1/


Overview of Douglas C. Schmidt

14

C++ Design Goals

• Compatibility w/C libraries & traditional 
development tools is emphasized, e.g.,

• Object code reuse

• C++ works with the “make” family
of (re)compilation build tools

See www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html

https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html


Overview of Douglas C. Schmidt

15

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”



Overview of Douglas C. Schmidt

16

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”

• i.e., C++ is not a proper superset of C

• Backwards compatibility with C is 
not entirely maintained

See www.stroustrup.com/hopl2.pdf

http://www.stroustrup.com/hopl2.pdf


Overview of Douglas C. Schmidt

17

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”

• i.e., C++ is not a proper superset of C

• Backwards compatibility with C is 
not entirely maintained

See en.wikipedia.org/wiki/Compatibility_of_C_and_C++

void *ptr;

/* Implicit conversion 

from void* to int* */

int *i = ptr;

/* Implicit conversion 

from void* to int* */

int *j = 

malloc(5 * sizeof *j); 

Valid in C, but not in C++

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B


Overview of Douglas C. Schmidt

18

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”

• i.e., C++ is not a proper superset of C

• Backwards compatibility with C is 
not entirely maintained

See en.wikipedia.org/wiki/Compatibility_of_C_and_C++

void *ptr;

/* Implicit conversion 

from void* to int* */

int *i = ptr;

/* Implicit conversion 

from void* to int* */

int *j = 

malloc(5 * sizeof *j); 

Valid in C, but not in C++

void *ptr;

int *i = (int *)ptr;

int *j = (int *) 

malloc(5 * sizeof *j);

Valid in C++ & C

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B


Overview of Douglas C. Schmidt

19

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”

• i.e., C++ is not a proper superset of C

• Backwards compatibility with C is 
not entirely maintained

See en.wikipedia.org/wiki/Compatibility_of_C_and_C++

void *ptr;

/* Implicit conversion 

from void* to int* */

int *i = ptr;

/* Implicit conversion 

from void* to int* */

int *j = 

malloc(5 * sizeof *j); 

Valid in C, but not in C++

void *ptr;

int *i = (int *)ptr;

int *j = (int *) 

malloc(5 * sizeof *j);

void *ptr;

auto i = 

reinterpret_cast<int *>

(ptr);

auto j = new int[5];

Preferred in C++

Valid in C++ & C

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B


Overview of Douglas C. Schmidt

20

C++ Design Goals

• An initial design goal was for C++ to be 
“as close to C as possible, but no closer”

• i.e., C++ is not a proper superset of C

• Backwards compatibility with C is 
not entirely maintained

• Typically not a problem in practice...



Overview of Douglas C. Schmidt

21

C++ Design Goals

• Later C++ design goals focus on generic 
programming & helping developers to 
use modern C++ effectively



Overview of Douglas C. Schmidt

22

C++ Design Goals

• Later C++ design goals focus on generic 
programming & helping developers to 
use modern C++ effectively

• Generic programming generalizes 
software components so that they can 
be easily reused in many situations

See www.boost.org/community/generic_programming.html

http://www.boost.org/community/generic_programming.html


Overview of Douglas C. Schmidt

23

C++ Design Goals

• Later C++ design goals focus on generic 
programming & helping developers to 
use modern C++ effectively

• Generic programming generalizes 
software components so that they can 
be easily reused in many situations

• C++ templates enable generic 
programming since they generalize 
without sacrificing efficiency

See www.boost.org/community/generic_programming.html

template 

<typename InputIterator,

typename OutputIterator>

OutputIterator

copy(InputIterator first,

InputIterator last,

OutputIterator result) {

while (first != last)

*result++ = *first++;

return result;

}

int a[] = {1, 2, 3, ...};

vector<int> v = {1, 2, 3, ...};

copy(a, a + sizeof(a)/sizeof(*a), ostream_iterator<int>(cout));

copy(v.begin(), v.end(), ostream_iterator<int>(cout));

http://www.boost.org/community/generic_programming.html


Overview of Douglas C. Schmidt

24

C++ Design Goals

• Later C++ design goals focus on generic 
programming & helping developers to 
use modern C++ effectively

• Generic programming generalizes 
software components so that they can 
be easily reused in many situations

• The C++ core guidelines are a set of
idioms documented to help developers 
efficiently and consistently write type 
& resource safe C++ programs

See isocpp.github.io/CppCoreGuidelines

https://isocpp.github.io/CppCoreGuidelines/


Overview of Douglas C. Schmidt

25

C++ Design Goals

• Later C++ design goals focus on generic 
programming & helping developers to 
use modern C++ effectively

• Generic programming generalizes 
software components so that they can 
be easily reused in many situations

• The C++ core guidelines are a set of
idioms documented to help developers 
efficiently and consistently write type 
& resource safe C++ programs

See isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#Rr-newdelete

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#Rr-newdelete


Overview of Douglas C. Schmidt

26

End of C++ 
Design Goals


