The Command Pattern

Implementation in C++

Douglas C. Schmidt

Learning Objectives in This Lesson

« Know how to implement the Command pattern in C++.

1 A3b-Ci utures - [C:\Users!

File Edit View Navigate Code Analyze Refactor Build Run Iools VCS Window Help

'OSANCS282\A3-PM-Streams\A3b-CompletableFutures]
—

PalantiriPresenter,java - Android Studi

— o = e "= 5
ODH$ % 0B R|€e > Hi(Wapp~] P &% L Q
A3b-CompletableFutures
% | B Project 0y
5 o
o =
= [gradie =
n
.idea
k3 Zapp
2 .
] build
& gradle
=]
Lo libs
src
2 androidTest ’
2 main public class PalantiriPresenter
] extends GenericPresenter<MVP.ReguiredPresenterOps,
ava .
® J MVP. ProvidedMode10ps,
edu.vandy PalantiriModel>
common implements MVP.ProvidedPresenterOps,
model MVE.RequiredPresenterOps {
presenter o
©) b BeingRunnable “
& PalantiriPresenter i
utils private final static String TaG =
PalantiriPresenter.class.getName ()
view
& MVP W
Fres
£ AndroidManifestxml
tost
Android Monitor - L
No Connected Devices n No Debuggable Applications n
£ . o N "
g i logeat | Monitors = Verbose 8) Regex | Show only selected application
=
= >
5
@
&
3
@ =
2 5 3
£ ? 2
55 z
= =
& g
&
» =
“®ToDo 1 6: Android Monitor [& Terminal ™) 9: version Control Event Log [%] Gradle Console
329:43 CRLF+ UTF-8+ Git: masters K] @

Douglas C. Schmidt

Implementing the Command
Pattern in C++

Command GoF Object Behavioral

Command example in C++ class User Command Impl ({

. P|ay5 role of “Command” in Tree Context &tree context ;

the Command pattern

 Defines an API for “Concrete
Command” implementations User Command Impl (Tree Context &

that perform an operation tree context) ({
on the expression tree when tree context = tree context;
it's executed }

virtual void execute() = 0;

Command GoF Object Behavioral

Command example in C++ class User Command Impl {

. p|ays role of “Command” in Tree Context &tree context ;

the Cormmand pattern Holds the expression tree
« Defines an API for “Concrete that’s the target of commands
Command |mplementa!t|ons User Command Impl (Tree Context &
that perform an operation tree context) ({
on the expression tree when tree context = tree context;
it's executed }
virtual void execute() = 0;

See upcoming lesson on the State pattern

Command

GoF Object Behavioral

Command example in C++

 Plays role of "Command” in
the Command pattern

* Defines an API for “Concrete
Command” implementations
that perform an operation
on the expression tree when
it's executed

class User Command Impl {

Tree Context &tree context ;
Constructor sets the field ‘

User Command Impl (Tree Context &
tree context) ({

tree context = tree context;

}

virtual void execute() = 0;

Command GoF Object Behavioral

Command example in C++ class User Command Impl {

. P|ay5 role of “Command” in Tree Context &tree context ;

the Command pattern

 Defines an API for “Concrete
Command” implementations User Command Impl (Tree Context &

that perform an operation tree context) ({
on the expression tree when tree context = tree context;
it's executed }

virtual void execute() = 0;

Concrete implementations run ’
the command via this method

Command GoF Object Behavioral

Command example in C++ class Expr Command
: public User Command Impl {

* Encapsulate the execution of a
command object that sets
the desired input expression.

* e.g. —5x(3+4)”

string expr ;

Expr Command (Tree Context &context,
string newexpr)

: User Command Impl (context),
expr (std::move (newexpr)) ({

void execute () override {
tree context .expr(expr);

Command GoF Object Behavioral

Command example in C++ class Expr Command

 Encapsulate the execution of a : public User_ Command Impl ({

command object that sets
the desired input expression. L Store the requested
e e.g., “—5x(3+4)" expression

string expr ;

Expr Command (Tree Context &context,
string newexpr)

: User Command Impl (context),
expr (std::move (newexpr)) ({

void execute () override {
tree context .expr(expr);

Command GoF Object Behavioral

Command example in C++ class Expr Command

 Encapsulate the execution of a : public User_ Command Impl ({

command object that sets
the desired input expression.

* e.g. —5x(3+4)”

string expr ;

Expr Command(Tree Context &context,
string newexpr)

: User Command Impl (context),
expr (std::move (newexpr)) ({

Provide Tree_Context &
requested expression

void execute () override {
tree context .expr(expr);

Command GoF Object Behavioral

Command example in C++ class Expr Command

 Encapsulate the execution of a : public User_ Command Impl ({

command object that sets
the desired input expression.

* e.g. —5x(3+4)”

string expr ;

Expr Command (Tree Context &context,
string newexpr)

: User Command Impl (context),
expr (std::move (newexpr)) ({

void execute () override {
tree context .expr(expr);

Forward to Tree_Context to
create desired expression tree

See upcoming lesson on the State pattern

Command GoF Object Behavioral

Command example in C++

» Encapsulate the execution of a sequence of commands as an object, which is
used to implement the “succinct mode.”

* e.g. —5%(3+4)"

User_Command_Impl

execute() o=
N /\
1
1
' commands
Macro Command [<>
execute() @
!
formatCommand () .execute () ; for all ¢ in commands ™
exprCommand () .execute () ; c.execute()

evalCommand () .execute () ;

Command GoF Object Behavioral

Command example in C++

» Encapsulate the execution of a sequence of commands as an object, which is
used to implement the “succinct mode.”

class Macro Command : public User Command Impl ({

vector<User_Command> macro_command;;

Macro Command (Tree Context &context,
vector<User Command> macro_command)
User Command Impl (context),
macro command (std::move (macro command) ;

}

void execute() override {
for (auto &command : macro command) command.execute();

}

Command GoF Object Behavioral

Command example in C++

» Encapsulate the execution of a sequence of commands as an object, which is
used to implement the “succinct mode.”

class Macro Command : public User Command Impl ({

vector<User_Command> macro_command_;

L List of commands to execute as a macro

Macro Command (Tree Context &context,
vector<User Command> macro_command)
User Command Impl (context),
macro command (std::move (macro command) ;

}

void execute () {
for (auto &command : macro command) command.execute();

}

Command GoF Object Behavioral

Command example in C++

» Encapsulate the execution of a sequence of commands as an object, which is
used to implement the “succinct mode.”

class Macro Command : public User Command Impl ({

vector<User_Command> macro_command;;

r Constructor initializes the field

Macro Command (Tree Context &context,
vector<User Command> macro_ command)
User Command Impl (context),
macro command (std::move (macro command) ;

}

void execute () {
for (auto &command : macro command) command.execute();

}

Command GoF Object Behavioral

Command example in C++

» Encapsulate the execution of a sequence of commands as an object, which is
used to implement the “succinct mode.”

class Macro Command : public User Command Impl ({

vector<User_Command> macro_command;;

Macro Command (Tree Context &context,
vector<User Command> macro_command)
User Command Impl (context),
macro command (std::move (macro command) ;

}

void execute () {
for (auto &command : macro command) command.execute();

} C++ range-based for loop runs all

commands to implement “succinct mode”

The Command Pattern

Other Considerations

Douglas C. Schmidt

Learning Objectives in This Lesson

« Be aware of other considerations when applying the Command pattern.

Douglas C. Schmidt

Other Considerations of
the Command Pattern

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

« Makes programs more
modular & flexible

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

ConcreteCommand
» Makes programs more

modular & flexible, e.q., execute() o-

« Can bundle state &
behavior into an object

_____________ performAction()

| state

Command GoF Object Behavioral

Consequences
+ Abstracts the executor of a

service
C teC d
. Makes programs more oncretevomman
modular & flexibl .d.
e, e.g., execute() O---cmcmcfooana- performAction()
| state
« Can forward behavior
to other objects ConcreteCommand
™N
execute() o-------foan-- target.performAction()
| state

See upcoming lesson on the State pattern for an example of forwarding.

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a User_Command_Impl
service execute()
» Makes programs more A
modular & flexible, e.q., '
Expr
Format Command
Command
Eval
Macro Command
Command
« Can extend behavior
via derived classing Quit
Print Command

Command

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

» Makes programs more
modular & flexible, e.q.,

« Can pass a command
object as a parameter

void handle input() {

Use:_Command command =
make command (input) ;

execute_command(command);

The handle_input() method in Input_Handler plays the role of “invoker.”

Command GoF Object Behavioral

Consequences

+ Abstracts the executor of a void handle input() {

service e
User Command command =

« Makes programs more make command (input) ;

modular & flexible, e.g., Call a hook (factory) method to

make a command based on user
input

execute_command(command);

« Can pass a command
object as a parameter

See the next lesson on * 7he Factory Method Patterr’’ for User Command Factory.

Command

GoF Object Behavioral

Consequences

+ Abstracts the executor of a
service

» Makes programs more
modular & flexible, e.q.,

« Can pass a command
object as a parameter

void handle input() {

Use:_Command command =
make command (input) ;

execute_command(command);

t Call a hook method & pass
a command to execute

See upcoming lesson on * 7he Template Method Pattern”

Command GoF Object Behavioral

Consequences

+ Composition yields
macro commands

User_Command

execute()

A

commands
Macro_Command [<>

execute() @

for all ¢ in commands N
c.execute()

formatCommand () . execute (),
exprCommand () .execute () ;
evalCommand () .execute () ;

Command GoF Object Behavioral

Consequences

+ Supports arbitrary-level
undo-redo Undo: Redo:

unexecute () execute ()

R '

QO O O O

O O O O
O O

past future past future

Case study doesn’t use unexecute (), but it's a common Command feature.

Command GoF Object Behavioral

Consequences

— Might result in lots of trivial User_Command_Impl
command derived classes execute()
I

A
Expr

Format Command
Command

Eval

Macro Command
Command

Quit
Print Command
Command

Command

GoF Object Behavioral

Consequences

— Excessive memory may
be needed to support

Undo:

undo/redo operations unexecute ()

Q
O

past

2

Q
Q
O

future

e

O
O
O

past

Redo:

execute ()

@
O

future

Command GoF Object Behavioral

Implementation considerations

« Copying a command before
putting it on a history list Undo: Redo:

Boo o
O O

— \ past future past future

)

Command GoF Object Behavioral

Implementation considerations

 Avoiding error accumulation
during undo/redo Undo: Redo:

unexecute () execute ()

2.
¢
-

O O O O
O QO O O
- O O

past future past future

Command GoF Object Behavioral

Implementation considerations

« Supporting transactions
Redo:

execute ()

@
O

Command

GoF Object Behavioral

Known uses

InterViews Actions

MacApp, Unidraw
Commands

JDK's UndoableEdit,
AccessibleAction

GNU Emacs
Microsoft Office tools
Java Runnable interface

java.lang

Interface Runnable

All Known Subinterfaces:
RunnableFuture<V=>, RunnableScheduledFuture<V=

All Known Implementing Classes:
AsyncBoxView.ChildState, FutureTask,
RenderablelmageProducer, SwingWorker, Thread, TimerTask

public interface Runnable

The runnable interface should be implemented by any class whose
instances are intended to be executed by a thread. The class must define
a method of no arguments called run.

See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

Command GoF Object Behavioral

KI10WI1 uses java.lang
- InterViews Actions Interface Runnable

« MacApp, Unidraw
Commands I
. JDK’s UndoableEdit, |/§
AccessibleAction

All Known Subinterfaces:
RunnableFuture<V=>, RunnableScheduledFuture<V=

All Known Implementing Classes:
AsyncBoxView.ChildState, FutureTask,
RenderableImageProducer, SwingWorker, Thread, TimerTask

o GNU Emacs public interface Runnable

* Microsoft Office tools .The Runnable interface should be implemented by any class whose
instances are intended to be executed by a thread. The class must define

° Java Runnable interface a method of no arguments called run.

 Runnable can also be used to implement the Command Processor pattern

Service Request Component

Command -
Client =
execute Processor

9% execute function_1
I I
- (1) I_ —=| execute request (2) uI —| function_2

Issue request ' Execute request '

Packages a piece of application functionality—as well as its
parameterization in an object—to make it usable in another context

See www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

http://www.dre.vanderbilt.edu/~schmidt/CommandProcessor.pdf

Summary of the Command Pattern

« Command ensures users interact with the expression tree processing app in a
consistent & extensible manner.

Command

Input_Handler

-
-
-

-
-
-Lf

>

-

<< creates >>

A\ 4

User_Command_Impl

A

Format
Command

Command

Expr

Print
Command

Eval
Command

Macro
Command

Quit

Command

-

%

Command provides a uniform means to process all user-requested operations. |

