
Overview of Douglas C. Schmidt

1

Template Implementation in C++
• A parameterized type Stack class interface using C++

See CPlusPlus/tree/master/overview/capabilities/4-C++-templates

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/4-C%2B%2B-templates

Overview of Douglas C. Schmidt

2

Pros of Template Implementation in C++

• All the benefits of C++ data abstraction, plus
it is simple to generalize by the type

• We also showcased core patterns/idioms for
writing exception-safe C++ code

Overview of Douglas C. Schmidt

3

Cons of Template Implementation in C++

• Requires programmers to call full() & empty()
explicitly, which means errors can silently
creep in..

• We’ll fix this with C++ exceptions
features

• Can’t customize the implementation
at runtime

• We’ll fix this with C++ object-oriented
programming features

Overview of Douglas C. Schmidt

4

End of C++ Generic
Programming Stack

Implementation

Evolution of Programming Abstraction

Mechanisms: C++ Exception Handling

Douglas C. Schmidt

d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Douglas C. Schmidt

6

C++ Exception Handling
Stack Implementation

Overview of Douglas C. Schmidt

7

Exception Handling Implementation in C++
• C++ exceptions separate error handling from normal processing

See CPlusPlus/tree/master/overview/capabilities/5-C++-exceptions

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/5-C%2B%2B-exceptions

Overview of Douglas C. Schmidt

8

Exception Handling Implementation in C++
• There are several types of exception

handling “guarantees”

See www.boost.org/community/exception_safety.html for more info

http://www.boost.org/community/exception_safety.html

Overview of Douglas C. Schmidt

9

Exception Handling Implementation in C++
• There are several types of exception

handling “guarantees”

• No guarantee – memory can be
leaked, invariants of a component
are not preserved, etc.

template<typename T>

stack<T> &

stack<T>::operator=(const

stack<T> &s) {

if (this != &s) {

T *t = new T[s.size_];

for (size_t i = 0; i <

s.size_; ++i)

t[i] = s.stack_[i];

delete [] stack_;

stack_ = t;

top_ = s.top_;

size_ = s.size_;

}

return *this;

}

See CPlusPlus/tree/master/overview/capabilities/3-C++-data-abstraction

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/3-C%2B%2B-data-abstraction/

Overview of Douglas C. Schmidt

10

Exception Handling Implementation in C++
• There are several types of exception

handling “guarantees”

• No guarantee – memory can be
leaked, invariants of a component
are not preserved, etc.

• The basic guarantee – the invariants
of a component are preserved & no
resources are leaked

template<typename T>

stack<T> &

stack<T>::operator=(const

stack<T> &s) {

if (this != &s) {

try {

T *t = new T[s.size_];

for (size_t i = 0; i <

s.size_; ++i)

t[i] = s.stack_[i];

delete [] stack_;

stack_ = t;

top_ = s.top_;

size_ = s.size_;

} catch (exception &ex) {

delete [] t;

} ...

See CPlusPlus/tree/master/overview/capabilities/4-C++-templates

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/4-C%2B%2B-templates

Overview of Douglas C. Schmidt

11

Exception Handling Implementation in C++
• There are several types of exception

handling “guarantees”

• No guarantee – memory can be
leaked, invariants of a component
are not preserved, etc.

• The basic guarantee – the invariants
of a component are preserved & no
resources are leaked

• The strong guarantee – the operation
either completes successfully or throws
an exception, leaving the program state
exactly as it was before the operation
started

template<typename T>

stack<T> &

stack<T>::operator=(const

stack<T> &rhs) {

if (this != &rhs)

stack<T>(rhs).swap(*this);

return *this;

}

See CPlusPlus/tree/master/overview/capabilities/4-C++-templates

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/4-C%2B%2B-templates

Overview of Douglas C. Schmidt

12

Exception Handling Implementation in C++
• There are several types of exception

handling “guarantees”

• No guarantee – memory can be
leaked, invariants of a component
are not preserved, etc.

• The basic guarantee – the invariants
of a component are preserved & no
resources are leaked

• The strong guarantee – the operation
either completes successfully or throws
an exception, leaving the program state
exactly as it was before the operation
started

• The no-throw guarantee – that the
operation will not throw an exception

template<typename T>

class stack {

public:

class overflow {};

class underflow {}

...

stack(stack &&rhs)

noexcept;

stack &operator=(stack &&rhs)

noexcept;

void swap(stack &rhs)

noexcept;

} ...

See CPlusPlus/tree/master/overview/capabilities/4-C++-templates

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/overview/capabilities/4-C%2B%2B-templates

Overview of Douglas C. Schmidt

13

Pros of Exception Handling Implementation

• Pros

• Exception handling provides a
disciplined way of dealing with
erroneous run-time problems by
separating error handling from
normal code

• Exception handling makes it
possible to deal with constructor
failures in C++

Overview of Douglas C. Schmidt

14

Cons of Exception Handling Implementation

• Cons

• Exceptions are hard to program
correctly if you don’t apply the
patterns/idioms we’ve discussed

• e.g., due to the chances for
resource leaks and/or corruption

• Exceptions can yield increased
time/space overhead in programs

Overview of Douglas C. Schmidt

15

End of C++ Exception
Handling Stack Implementation

