
11Communication
Middleware

???

This chapter illustrates how we applied a key pattern sequence from
the pattern language for distributed computing in part II of this book
to develop communication middleware that can be used for—among
other things—our warehouse management process control system.
This middleware allows clients to invoke operations on distributed
objects without concern for object location, programming language,
operating system platform, communication protocols and
interconnects, and hardware. A novel aspect of our communication
middleware is its highly configurable, scalable, and reusable design
and implementation, which can be tailored to meet specific
application quality of service (QoS) requirements and network/
endsystem characteristics more easily than writing the code
manually or using conventional middleware implementations that are
hard-coded to a single set of strategies.

506 Communication Middleware
11.1 A Middleware Architecture for Distributed Systems

Concrete deployments of our warehouse management process control
system typically involve different hardware and software platforms.
For instance, client applications and user interfaces are often
deployed on Windows PCs, sensor and actuators are usually deployed
on embedded devices running VxWorks, and DOMAIN OBJECTS (XYZ)
representing business logic and infrastructure functionality are
commonly deployed on servers running Solaris or Linux. All devices
are connected via different types of network, such as, wireless and
wireline LANs and WANs, using a variety of communication protocols,
such as TCP/IP, PROFIbus, or VME. Each system installation must
also integrate with existing legacy and third-party software,
particularly software that resides at the operational and entity level of
the automation pyramid, which is often written in a variety of
different programming languages, such as C, C++, Java, and C#. The
resulting heterogeneity yields development and integration
challenges over the system’s lifetime, particularly as various software
components are removed and/or replaced by components from other
vendors.

Communication middleware, such as the Common Object Request
Broker Architecture (CORBA) [OMG04a] and Enterprise Java Beans
(EJB) [Sun03] [Sun04], resides between clients and servers in a
distributed system. The goal of communication middleware is to
simplify application development and integration by providing a
uniform view of lower-level—often heterogeneous—network and
operating system services. Moreover, this middleware helps off-load
complex distributed system infrastructure tasks from application
developers to middleware developers [ScSc02], who implement
common network programming mechanisms, such as connection
management, data transfer, event and request demultiplexing,
(de)marshaling, and concurrency control.

To simplify inter-process communication between distributed DOMAIN
OBJECTS of the warehouse management process control system, and
to shield their implementations from the heterogeneity of its
computational environment, the system’s base-line architecture uses
BROKER-based (238) communication middleware. A BROKER allows
distributed DOMAIN OBJECTS to find, access, and communicate with

A Middleware Architecture for Distributed Systems 507
each other as if they were collocated, and decouples them within a
distributed system so that they can be developed and integrated
using diverse technologies in a heterogeneous environment.

The following diagram illustrates the use of the BROKER-based
communication middleware for the presentation layer and the
business process layer of the warehouse management process control
system. This diagram assumes that DOMAIN OBJECTS within a LAYER
are collocated. The remote interaction between other LAYERS of the
system or between DOMAIN OBJECTS of the same LAYER is organized
correspondingly.

We implement the BROKER communication middleware for our
warehouse management process control system using the CORBA
Component Model (CCM) [OMG02]. The CCM is communication
middleware that allows applications to invoke operations on
components without concern for their location(s), programming
language, operating system platforms, network protocols and
interconnects, and hardware. CCM is essentially a language- and
platform-independent variant of EJB. At the heart of the CCM

Presentation
Layer

Business
Process Layer

Warehouse
Management
Implementation

Material
Flow Control
Implementation

Network

M
FC

In
te

rfa
ce

Server-Side
Broker

Client-Side
Broker

Warehouse Management
Client Proxy

Application ApplicationNorthbound
Gateway

Northbound
Gateway

Material Flow Control
Client Proxy

Application

508 Communication Middleware
reference model is the BROKER whose elements are shown in the
following figure.

The CCM reference model defines the following key entities:

• Clients and Components implement the applications running atop
the communication middleware.

• An Object Request Broker (ORB) Core1 is responsible for delivering
a operation request from a client to a component and returning a
response, if any.

• The ORB Interface decouples applications from implementation
details of the ORB Core.

• IDL Stubs and Skeletons serve as a ‘glue’ between the client and
components, respectively, and the ORB.

• A Container and Object Adapter associate a component with an
ORB by providing a run-time environment for managing
component lifecycle properties, demultiplexing incoming requests
to the component, and dispatching the appropriate upcall method
on that component.

ORB CoreGIOP/IIOP

IDL
Stubs

ORB
Interface Container & Adapter

IDL
Skeleton

Client
operation()

in args

out args + return value

Application

CCM
middleware

ORB-specific interface

Standard protocol

Standard interface

Standard Language Mapping

Component

Object

1. The OMG CCM specification uses the term Object Request Broker for backwards
compatibility with earlier versions of the CORBA specification, even though application
developers who use CCM typically program and interact with Components.

A Middleware Architecture for Distributed Systems 509
The CCM reference model, however, intentionally just specifies the
fundamental roles that must be present in an ORB, but does not
define a concrete software architecture to use as the basis for a
specific CCM implementation. We therefore used the BROKER pattern
to define the actual components, their relationships, and their
collaborations needed to implement CCM-compliant communication
middleware, as shown in the following figure.

The client and server roles in the BROKER pattern represent the
application-level clients and components in the OMG CCM reference
model. The CLIENT PROXY (281) role is implemented by the ORB’s
Stubs, which provide access to the services offered by remote
components. Stubs also shield clients and servers from the location
and the implementation details of their remote communication
partners, as well as from the specifics of the ORB implementation.

The Client-side ORB Core maps to the REQUESTOR (XYZ) and CLIENT
REQUEST HANDLER (XYZ) roles in the BROKER pattern, and the Server-
side ORB Core to the SERVER REQUEST HANDLER (XYZ) role and the
Container and Object Adapter map to the INVOKER (XYZ) role [VKZ04].
All these roles are responsible for the location-transparent
transmission of requests from clients to servers, as well as the
transmission of responses and exceptions from servers back to
clients. The Server- and Client-side ORB Core offer APIs to servers
and clients for registering components and invoking methods on
components, respectively. These APIs represent the ORB Interface of
the CCM reference model.

Stubs Skeletons

Clients

Container &
Request Demuxer

ORB
API

Client-side

Operating System and

Clients
Components

Client

Network Protocols

Invoker

Broker

Components

ORB Core
Server-side
ORB Core

Requestor

Client

Server
Object Adapter

Request
Handler

run in server
processes

Proxy

Request
Handler

510 Communication Middleware
Applying the BROKER pattern to implement a CCM-based ORB
required the resolution of a number of design challenges. Chief
among these challenges included structuring the ORB’s internal
design to enable reuse and effective separation of concerns,
encapsulating low-level system calls to enhance portability,
demultiplexing ORB Core events and managing ORB connections
efficiently and flexibly, enhancing ORB scalability by processing
requests concurrently and using an efficient synchronized request
queue, enabling interchangeable internal ORB mechanisms and
consolidating these mechanisms into groups of semantically
compatible strategies, and configuring these consolidated ORB
strategies dynamically. The remainder of this chapter describes the
pattern sequence we applied to resolve these challenges. The
resulting communication middleware provides the BROKER platform
for our warehouse management process control system, as well as
many other distributed systems in other domains.

11.2 Structuring the Internal Design of the Middleware

CCM-based communication middleware has multiple
responsibilities, such as providing APIs to clients and components,
routing requests from clients to local or remote components, and their
responses back to the clients, and initiating the transmission of such
requests and responses over the network. The architecture defined by
the BROKER (238) pattern separates application logic from
communication middleware functionality. A CCM-based ORB itself,
however, is far too complex and fungible to be implemented as a
single monolithic component. Moreover, its responsibilities cover
different levels of abstraction. For example, APIs are at the
Application level, component policy management is at the Container
level, request routing and concurrency control at the Object Adapter
and ORB Core levels, and request (re)transmission at Operating
System and Network Protocol levels.

Structuring the Internal Design of the Middleware 511
We therefore need to further decompose our CCM-based ORB
communication middleware architecture so that it meets the
following requirements:

• Changeability. Enhancements and changes to one part of the ORB
should be confined to a small number of components and not
ripple through to affect others.

• Stability. External interfaces should be stable, and may even be
prescribed by standard OMG specifications, such as the ORB
Interface and the various mapping rules for the Interface Definition
Language (IDL).

• Portability. Porting the ORB to new operating sytem and compiler
platforms should affect as little of the ORB as possible. For
example, we would like the ORB’s transport mechanisms to run on
conventional platforms, such as Windows and Linux, as well as
small embedded devices, such as sensors and actuators running
VxWorks or LynxOS.

How can we decompose the ORB to satisfy the changeability, stability,
and portability requirements above and partition its functionality into
coherent groups with related responsibilities?

Use LAYERS (229) to separate different responsibilities in the ORB by
decomposing it into groups of subtasks that each handle a particular
level of abstraction.

We divided our CCM-based ORB into four layers. The top layer
provides the standard CCM ORB Interface defined by the OMG and
represents the ‘application view’ to the entire ORB. The second layer
provides the Container and Object Adapter, which are responsible for
managing component policies, as well as demultiplexing and
dispatching client requests to component implementations. The third
layer includes the ORB Core, which implements the middleware’s
connection management, data transfer, event demultiplexing, and
concurrency control logic. The bottom layer shields the rest of the
ORB from the implementation details of the underlying operating
system and network protocols.

512 Communication Middleware
The diagram below illustrates the layered design for our CCM-based
ORB:

Using LAYERS to implement a BROKER enhances its stability because
multiple higher-layer client and server applications can reuse the
lower-layer services provided by the ORB. Moreover, this design
enables transparent changes to implementations at one layer without
affecting other layers. For example, the search structures in Object
Adapters can be changed from dynamic hashing to active
demultiplexing [PRS+00] without affecting any other layers. LAYERS
also make it easier to port the ORB to new operating systems
requested by customers of our warehouse management process
control system without affecting the rest of the ORB or application
code.

ORB Interface

ORB Core

OS Adaptation

Client and Component Server Applications

Container &

Layer

Layer

Object Adapter Layer

Layer

ORB
Interface

Client-side
ORB Core

Server-side
ORB Core

Container &

OS
Access

Operating System and Network Protocols

Portable
Object Adapter

Encapsulating Low-level System Mechanisms 513
11.3 Encapsulating Low-level System Mechanisms

One role of communication middleware is to shield client and server
applications from operating system and networking details. CCM-
based ORB middleware developers—rather than application
developers—are therefore responsible for handing these lower-level
programming details, such as demultiplexing events, sending and
receiving requests across one or more network interfaces, and
spawning threads to execute requests concurrently. Developing this
layer of middleware can be tricky, however, especially when using
low-level system APIs written in languages like C, which yield the
following problems:

• ORB developers must have intimate knowledge of many operating
system platforms. Implementing an ORB using system-level C APIs
forces middleware developers to deal with the non-portable,
tedious, and error-prone operating system idiosyncrasies, such as
using weakly-typed socket handles to identify communication
endpoints. In addition, these APIs are not portable across operating
system platforms. For example, Windows, Linux, and VxWorks
have different threading APIs, as well as subtly different semantics
for sockets and event demultiplexing.

• Increased maintenance effort. One way to build an ORB is to handle
portability variations via explicit conditional compilation directives
in the ORB source code. Using conditional compilation to address
platform-specific variations at all points of use increases the
complexity of the source code. In particular, it is hard to maintain
and extend conditionally compiled code since platform-specific
details are scattered throughout the ORB implementation files.

• Inconsistent programming paradigms. System mechanisms are
accessed through C-style function calls, which cause an
‘impedance mismatch’ with the object-oriented programming style
supported by languages, such as Java, C++, and C#.

How can we avoid accessing low-level system mechanisms directly
when implementing ORB middleware?

514 Communication Middleware
Structure the OS Adaptation LAYER (229) of the ORB using WRAPPER
FACADES (363) to encapsulate system programming APIs and
mechanisms within concise and cohesive object-oriented class
interfaces.

A WRAPPER FACADE is a variant of a FACADE (284). FACADE simplifies
the interface to a subsystem or framework, whereas WRAPPER FACADE
provides type-safe, modular, and portable class interfaces that
encapsulate lower-level system and network programming
mechanisms, such as sockets, event demultiplexing,
synchronization, and threading. In general, WRAPPER FACADE should
be applied when existing system-level APIs are non-portable and non-
typesafe.

To improve the robustness and portability of our ORB
implementation, it accesses all system mechanisms via WRAPPER
FACADES provided by the ACE toolkit [SH02], which encapsulate
native OS concurrency, communication, memory management, event
demultiplexing, and dynamic linking mechanisms with typesafe
object-oriented interfaces, as illustrated in the following diagram.

The encapsulation provided by the ACE WRAPPER FACADES provides a
consistent object-oriented programming style and alleviates the need
for the ORB to access the weakly-typed C system programming APIs
directly. Standard compilers and language processing tools can
therefore detect type system violations at compile-time rather than at
run-time. As a result, much less effort is required to maintain the

ORB Core

OS Adaptation

Layer
Client-Side
ORB Core

Server-Side
ORB Core

OS Access

Operating System and Network Protocols

Layer with Threading &
Synchronization

Sockets
SSL & SCTP

select() Dynamic
Linking

spawn() open()
close()
recv()
send()

handle_events() dlopen()
dlsym()

Wrapper Facades

acquire()

/dev/epoll
WaitForMultipleObjects()

Demultiplexing ORB Core Events 515
ORB, as well as port it to new operating system and compiler
platforms requested by customers of our warehouse management
process control system.

11.4 Demultiplexing ORB Core Events

An ORB Core is responsible for demultiplexing I/O events from
multiple clients and dispatching their associated event handlers. For
instance, a server-side ORB Core listens for new client connections
and reads General Inter-ORB Protocol (GIOP) REQUEST messages from
connected clients, and writes GIOP REPLY messages back to them. To
ensure responsiveness to multiple clients, an ORB Core waits for
connection, read, and write events to occur on multiple socket
handles via operating system event demultiplexing mechanisms,
such as select(), /dev/epoll, WaitForMultiple Objects(), and threads.
Developing this layer of middleware can be tricky, however, due to the
following problems:

• Hard-coded event demultiplexers. One way to develop an ORB is to
hard-code it to use a single event demultiplexing mechanism, such
as select(). Relying on one event demultiplexing mechanism is
undesirable, however, because no single mechanism is the most
efficient for all platforms and application requirements. For
instance, WaitForMultipleObjects() is more efficient than select() on
Windows, whereas /dev/epoll is a more efficient demultiplexing
mechanism than select() on Linux.

• Tightly coupled event demultiplexing and event handling code.
Another way to develop an ORB Core is to tightly couple its event
demultiplexing code with the code that handles the events, for
example, the GIOP protocol processing code. In this case, however,
the demultiplexing code cannot be reused as a black box
component by other communication middleware applications,
such as web servers [HPS97] or video-on-demand applications
[MSS00]. In addition, if new ORB strategies for threading or request
scheduling algorithms are introduced, substantial portions of the
ORB Core must be re-written.

516 Communication Middleware
How can an ORB implementation decouple itself from a single event
demultiplexing mechanism and decouple its demultiplexing code from
its event handling code?

Use a REACTOR (335) to reduce coupling and increase the extensibility
of an ORB Core by supporting demultiplexing and dispatching of
multiple event handlers, which are triggered by events that can arrive
concurrently from multiple clients.

A REACTOR simplifies event-driven applications and communication
middleware by integrating the demultiplexing of events and the
dispatching of their corresponding event handlers. In general, a
REACTOR should be introduced when applications or middleware
components must handle events from multiple clients concurrently,
without becoming tightly coupled to a single low-level mechanism,
such as select().

One way to implement an ORB is to use a REACTOR to drive the main
event loop within its ORB Core, which plays the SERVER REQUEST
HANDLER (XYZ) role of the BROKER (238) architecture, as shown in the
following figure of the server-side ORB.

ORB Core

OS Adaptation

Component Server Application

Container &

Layer

Container &Portable
Object Adapter

Operating System and Network Protocols

:Reactor

Server-Side ORB Core (Server Request Handler)

:Connection
Handler

run_event_loop()

handle_event()

dispatch()

upcall()

:Connection
Handler

:Connection
Handler

Object Adapter Layer

Layer

OS Access

Threading &
Synchronization

Sockets
SSL & SCTP

select() Dynamic
Linking/dev/epoll

WaitForMultipleObjects()

Managing ORB Connections 517
In this design, a component server process initiates an event loop in
the ORB Core's Reactor instance, where it remains blocked on
whichever event demultiplexing mechanism is configured until I/O
events occur on one or more of the available endpoints. When a GIOP
REQUEST event occurs, the Reactor demultiplexes the request to the
appropriate event handler, which is an instance of the GIOP
ConnectionHandler class that is associated with each connected socket.
The Reactor then calls the handle_event() method on the
ConnectionHandler, which reads the request and passes it to the ORB’s
Container and Object Adapter layer. This layer then demultiplexes
the request to the appropriate upcall method on the component and
dispatch the upcall method.

Using the REACTOR pattern enhances the extensibility of the ORB by
decoupling the event handling portions of its ORB Core from the
underlying operating system event demultiplexing mechanisms. For
example, the WaitForMultipleObjects() event demultiplexing system call
can be used on Windows, whereas select() or /dev/epoll can be used on
UNIX platforms. REACTOR also simplifies the integration of new event
handlers. For example, adding a new connection handler that uses
the PROFIbus protocol to communicate with non-CCM portions of our
warehouse management system does not affect the implementation of
the Reactor class.

11.5 Managing ORB Connections

Connection management is another key responsibility of an ORB
Core. For instance, an ORB Core that implements GIOP must
establish TCP connections and initialize the protocol handlers for
each TCP server endpoint. By localizing connection management logic
in the ORB core, application components can focus solely on
processing application-specific requests and replies, rather than
dealing with low-level operating system and network programming
tasks.

518 Communication Middleware
An ORB Core is not limited to running over GIOP and TCP transports,
however. For instance, while TCP transfers GIOP requests reliably, its
flow control and congestion control algorithms preclude its use for
warehouse management sensors and actuators with strigent
timeliness properties, where the Streaming Control Transmission
Protocol (SCTP) or Real-Time Protocol (RTP) may be more appropriate.
Likewise, it may be more efficient to use a shared memory transport
mechanism when clients and components are co-located on the same
endsystem. Moreover, to protect the integrity and confidentiality of
the data, it may be necessary to exchange requests and responses
over an encrypted Secure Socket Layer (SSL) connection. An ORB
Core should therefore be flexible enough to support multiple
transport mechanisms.

The CCM reference architecture explicitly decouples the connection
management tasks performed by an ORB Core from the request
processing performed by application components. A common way to
implement an ORB’s internal connection management, however, is to
use low-level network APIs, such as sockets. Likewise, the ORB’s
connection establishment protocol is often tightly coupled with it
communication protocol. Unfortunately, this design hard-codes the
ORB’s connection management implementation with the socket
network programming API and the TCP/IP connection establishment
protocol with GIOP, thereby yielding the following two problems:

• Inflexibility. If an ORB’s connection management data structures
and algorithms are too closely intertwined, substantial effort is
required to modify the ORB Core. For instance, tightly coupling the
ORB Core to use the socket API makes it hard to change the
underlying transport mechanism to use shared memory or SSL
rather than sockets. It can therefore be time consuming to port a
tightly coupled ORB Core to new networking protocols and
programming APIs, such as SSL, SCTP, RTP, or Windows Named
Pipes.

• Inefficiency. Many internal ORB strategies can be optimized by
allowing ORB and application developers to choose appropriate
implementations late in the design cycle, such as after conducting
extensive run-time performance profiling. For instance, a multi-
threaded real-time client may need to store transport endpoints
using THREAD-SPECIFIC STORAGE (326). Similarly, the concurrency

Managing ORB Connections 519
strategy for a CCM component server might require that each
connection run in its own thread to eliminate per-request locking
overhead. If the connection management mechanism is hard-coded
and tightly bound with other internal ORB strategies, however, it is
hard to accommodate efficient new mechanisms without
significant effort and rework.

How can an ORB Core's connection management components support
multiple transports and allow connection-related behaviors to be (re-)
configured flexibly at any point in the development cycle?

Use an ACCEPTOR-CONNECTOR (344) configuration to increase the
flexibility of ORB Core connection management and initialization by
decoupling connection establishment and service initialization from the
tasks performed once these activities have completed.

The acceptor component in the ACCEPTOR-CONNECTOR pattern is
responsible for passive connection establishment and service
initialization, which is performed by the server-side of the ORB Core.
Conversely, the connector component in the pattern is responsible for
active connection establishment and service initialization, which is
performed by the client-side of the ORB Core.

Our ORB uses the ACCEPTOR-CONNECTOR pattern in conjunction with
the REACTOR pattern (335) to create a pluggable protocols framework
[OKS+00]. This framework performs connection establishment and
connection handler initialization for the various networking protocols
supported in the ORB, as follows:

• Client-side ORB Core. In response to an operation invocation or an
explicit binding to a remote component, the client-side ORB Core
uses a Connector to initiate a connection for the desired type of
protocol to the designated server ORB and then initialize the
appropriate type of ConnectionHandler to service this connection
when it completes.

• Server-side ORB Core. When a connection arrives from a client, the
server-side ORB Core uses an Acceptor to create the appropriate
type of ConnectionHandler to service each new client connection.

520 Communication Middleware
Acceptors and Connectors are both event handlers that can be
dispatched automatically by the ORB’s REACTOR when events become
ready for processing, as shown by the following figure.

This figure shows that when a client invokes a remote operation(), it
makes a connect() call via its Connector to obtain a connection and
initialize a ConnectionHandler that corresponds to the desired type of
networking protocol. In the server-side ORB Core, the Reactor notifies
an Accceptor via its handle_event() method to accept the newly connected
client and create the corresponding ConnectionHandler. After this
ConnectionHandler is activated within the ORB Core, it performs the
requisite protocol processing on a connection and ultimately
dispatches the request to the appropriate component via the ORB’s
Container and Object Adapter.

The combined use of ACCEPTOR-CONNECTOR and REACTOR in our CCM-
based ORB increased its flexibility by decoupling event
demultiplexing from connection management and protocol
processing. This design also simplified the integration of networking
protocols and network programming APIs that are most suitable for
particular configurations of our warehouse management process
control system.

ORB Core
Layer

<<create &

handle_event()

Server-side
ORB Core

activate>>

:Connector

connect()

Client-side
ORB Core

request &
response

connection
establishment

dispatch()operation()

Handler
:Connection

Handler
:Connection

Handler
:Connection Handler

:Connection

Handler
:Connection

Handler
:Connection

:Acceptor

:Reactor

handle_event()

Enhancing ORB Scalability 521
11.6 Enhancing ORB Scalability

Achieving scalable end-to-end performance is important to handle
heavy traffic loads as the number of clients increases our warehouse
management process control system. By default, GIOP runs over TCP,
which uses flow control to ensure that senders do not produce data
more rapidly than slow receivers or congested networks can buffer
and process [Ste93]. If a CCM sender transmits a large amount of
data over TCP faster than a receiver can process it, therefore, the
connection will flow control and block the sender until the receiver
can catch up.

Our initial REACTOR design outlined in Section 11.4, Demultiplexing
ORB Core Events, processed all requests within a single thread of
control. Although this design is straightforward to implement, it has
the following problems:

• Non-scalable. Processing long-duration client requests reactively
within a single-threaded reactive ORB server process scales poorly
because only one client request can be handled at a time.

• Starvation. The entire ORB server process can block indefinitely
while waiting for flow control on a connection to abate when
sending a reply to a client, which will starve other clients from
having their requests processed.

Conversely, however, multi-threading all ORB processing is also
problematic for short-duration processing because threads may incur
unnecessary concurrency control overhead, in terms of
synchronization, context switching, and data movement [PSC+01].

How can an ORB manage concurrent processing efficiently so that long-
running requests can execute simultaneously on one or more CPUs
without impeding the progress of other requests, while short-duration
processing is handled efficiently without incurring unnecessary
concurrency control overhead?

Apply the HALF-SYNC/HALF-ASYNC pattern (299) to separate the short-
and long-duration processing in the ORB, thereby enhancing scalability
without incurring excessive concurrency control overhead.

522 Communication Middleware
The HALF-SYNC/HALF-ASYNC concurrency model for our CCM-based
ORB uses a pool of RequestHandlers to process long-duration clients
requests and replies concurrently in separate threads of control.
Conversely, short-duration Acceptor connection establishment and
REQUEST event handling is processed reactively in ConnectionHandlers by
borrowing the Reactor's thread of control. The following figure
illustrates the HALF-SYNC/HALF-ASYNC design of our ORB.

This figure shows how Acceptor connection establishment is driven
entirely by the Reactor when it dispatches the Acceptor’s handle_event()
method. REQUEST event handling is driven partially by the Reactor,
which dispatches the ConnectionHandler’s handle_event() method to read
the request message into a buffer. This buffer is then placed on a
synchronized RequestQueue, which is used to pass requests to a pool of
RequestHandlers that process the requests concurrently in separate
threads of control.

:Reactor

:Connection
Handler

handle_event()
:Connection

Handler

:Request
Queue

:Connection
Handler

ORB Core

Component Server Application

Container &

Server-side ORB Core

run_event_loop()

upcall()

Object Adapter
Layer

Layer

Container &

:Request
Handler

:Request
Handler

:Request
Handler

POA

get_request() get_request()get_request()

upcall()upcall()

<<create & activate>>
:Acceptor

handle_event()

put_request()

put_request()

put_request()

Implementing a Synchronized Request Queue 523
The use of HALF-SYNC/HALF-ASYNC in our ORB improves its scalability
compared with using a purely REACTOR-based design by allowing
multiple client requests/replies to run concurrently in separate
threads. Likewise, because each thread can block independently, the
entire server ORB process need not wait for flow control on a
particuarly connection to abate when sending a reply to a client.
Certain subsystems in our warehouse management process control
system are better suited by a REACTOR-based design, however, so our
ORB supports both approaches.

11.7 Implementing a Synchronized Request Queue

At the center of HALF-SYNC/HALF-ASYNC (299) is a queueing layer. In
our CCM-based ORB, the ConnectionHandlers in the asynchronous
(reactive) layer are ‘producers’ that inserts client requests into the
RequestQueue. The pool of RequestHandlers in the synchronous (multi-
threaded) layer are ‘consumers’ that remove and process client
requests from the queue.

A naive implementation of a RequestQueue can incur several problems.
For example, multiple concurrent producer and consumer ORB
threads at the different HALF-SYNC/HALF-ASYNC layers can corrupt the
RequestQueue’s internal state if it is not synchronized properly.
Similarly, these threads will ‘busy wait’ when the queue is empty or
full, which wastes CPU cycles unnecessarily.

How can the RequestQueue avoid race conditions or busy waiting when
threads in different layers put and get client requests simultaneously?

Apply MONITOR OBJECT (309) to implement a synchronized RequestQueue
that ensures only one method runs at a time and allows its put_request()
and get_request() methods to schedule their execution sequences co-
operatively to prevent producer and consumer threads from busy
waiting when the RequestQueue is full or empty, respectively.

The synchronized RequestQueue uses an ACE_Thread_Mutex as the
monitor lock to serialize access to the monitor object and a pair of
ACE_Condition objects to implement the queue’s not-empty and not-
full monitor conditions. ACE_Condition is a WRAPPER FACADE for POSIX

524 Communication Middleware
condition variables [Lew95] that allows threads to coordinate and
schedule their processing efficiently. This synchronized RequestQueue
can be integrated into the HALF-SYNC/HALF-ASYNC implementation in
the ORB as shown in the following figure.

When a consumer thread running in the pool of RequestHandlers
attempts to get a client request from an empty RequestQueue, the
queue’s get_request() method atomically releases the monitor lock and
the thread suspends itself on the not-empty monitor condition. It
remains suspended until the RequestQueue is no longer empty, which
happens when a ConnectionHandler running in the producer thread
puts a client request into the queue.

MONITOR OBJECT simplifies our HALF-SYNC/HALF-ASYNC concurrency
design by providing a concise programming model for sharing the

:Reactor

:Connection
Handler

handle_event()

put_request()

:Connection
Handler

put_request() put_request()

:Connection
Handler

Server-side ORB Core

<<create & activate>>
:Acceptor

handle_event()

ORB Core

Component Server Application

Container &

run_event_loop()

upcall()

Object Adapter
Layer

Layer

Container &

:Request
Handler

:Request
Handler

:Request
Handler

POA

get_request() get_request()get_request()

upcall()upcall()

:ACE
Thread_Mutex

:ACE
Condition

:Request
Queue

2

Interchangeable Internal ORB Mechanisms 525
RequestQueue among cooperating threads where object
synchronization corresponds to method invocation. The synchronized
get_request() and get_request() methods use the RequestQueue’s monitor
conditions to determine the circumstances under which they should
suspend or resume their execution.

11.8 Interchangeable Internal ORB Mechanisms

Communication middleware is often required to support a wide range
of application requirements in a wide range of operational
environments. To satisfy these different requirements and
environments, an ORB may therefore need to support multiple
implementations of its internal mechanisms. Examples of such
mechanisms include alternative concurrency models, event and
request demultiplexers, connection managers and data transports,
and (de)marshaling schemes.

One way to support multiple implementations of an ORB’s internal
mechanisms is to statically configure the ORB at compile-time using
preprocessor macros and conditional compilation. For example, since
/dev/epoll and WaitForMultipleObjects() are only available on certain
operating systems, the ORB source code can be interpersed with #ifdef
... #elif ... #else ... #endif conditional compilation blocks. The value of
macros examined by the preprocessor can then be used to choose the
appropriate event demultiplexer mechanisms during compilation.
Although many ORBs use this approach, it has the following
problems:

• Inflexible. Preprocessor macros can only configure mechanisms
known statically at compile-time, which makes it hard to configure
an ORB to support mechanisms selected based on knowledge
available dynamically during startup or run-time. For example, an
ORB might want to configure itself to use different concurrency
models or transport mechanisms depending on dynamically
discoverable factors, such as the number of CPUs, current
workload, or availability of certain networking protocols.

526 Communication Middleware
• Error-prone. Using preprocessor macros and condition compilation
makes it hard to understand and validate the ORB. In particular,
changes to the behavior and state of the ORB tend to permate
through its source code haphazardly since it is hard to compile and
test all paths through the code [MPY+04].

How can an ORB permit replacement of its internal mechanisms in a
more flexible manner and encapsulate the state and behavior of each
mechanism so that changes to one do not permeate throughout an ORB
haphazardly?

Use STRATEGIES (362) to support multiple transparently ‘pluggable’
ORB mechanisms by factoring out commonality among alternatives
and explicitly associating the name of a strategy with its behavior and
state.

Our CCM-based ORB uses a variety of STRATEGIES to factor out
internal mechanisms that are often hard-coded in conventional
ORBs. The figure below illustrates where our ORB provides STRATEGY
hooks that simplify the configuration of different mechanisms for
(de)marshaling, request and event demuxing, connection
management and client/server data transport, and concurrency.

Using STRATEGY in our CCM-based ORB removes lexical dependencies
on the ORB’s internal mechanism implementations since the
configured mechanisms are only accessed via common base class
interfaces. Moreover, STRATEGY simplifies the customization of ORB

Stubs Skeletons

Clients

Container &
Request Demuxer

ORB
API

Client-side

Operating System and

Hook for the
Hook for the

Network Protocols

Hook for the

Hook for the

Components

ORB Core
Server-side
ORB Core

Hook for the
Hook for theObject Adapter
event demuxing
strategy

demarshaling
strategymarshaling strategy

server transport
strategy

request demuxing
strategy

connection
management
strategy

Hook for the
client transport
strategy

Hook for the
concurency
strategy

Consolidating ORB Strategies 527
behavior using mechanisms that can be configured dynamically,
either during startup time or later during run-time, rather than only
statically at compile-time. Our warehouse management process
control system will leverage this capability in various ways, as
discussed below.

11.9 Consolidating ORB Strategies

Our CCM-based ORB supports a wide range of strategies in its
various layers:

• The Stubs and Skeletons support various (de)marshaling
strategies, such as the Common Data Representation (CDR), the
eXternal Data Representation (XDR), and other proprietary
strategies that are only suited for ORBs that communicate across
homogeneous hardware, OS, and compilers.

• The Container and Object Adapter layer supports multiple request
demultiplexing strategies, such as dynamic hashing, perfect
hashing, or active demultiplexing [GS97a], and lifecycle strategies,
such as session containers or entity containers.

• The ORB Core layer supports a variety of event demultiplexing
strategies, such as REACTORS (335) implemented with select(), /dev/
epoll, WaitForMultipleObjects(), or VME-specific demuxers, connection
management strategies, such as process-wide cached connections
versus thread-specific cached connections, ConnectionHandler
concurrency strategies, such as single-threaded reactive or multi-
threaded HALF-SYNC/HALF-ASYNC (299), and different transport
strategies, such as TCP/IP, SSL, SCTP, VME, and shared memory.

The table below illustrates the strategies used to create two
configurations of our ORB for different subsystems in our warehouse
management process control system: one for sensor and actuators
deployed on embedded devices running VxWorks and the other for

528 Communication Middleware
warehouse business logic and infrastructure functionality deployed
on servers running Solaris or Linux.

Using STRATEGIES so extensively in our ORB, however, can cause it to
become overly complex for the following reasons:

• Complicated maintenance and configuration. ORB source code can
become littered with hard-coded references to STRATEGY classes,
which make it hard to maintain and configure. For example, within
a particular subsystem in our warehouse management process
control system, such as sensors and actuators or business logic,
many independent strategies must act in harmony. Identifying
these strategies individually by name, however, requires tedious
replacement of selected strategies in one domain with a potentially
different set of strategies in another domain.

• Semantic incompatibilities. It is not always possible for certain
strategies to interact in semantically compatible ways. For
instance, the VME-specific event demultiplexing strategy will not
work properly with the TCP/IP protocol. Moreover, some strategies
are only useful when certain preconditions are met. For instance,
the perfect hashing demultiplexing strategy is only applicable to
systems that statically register all their components off-line
[GS97b].

How can a highly-configurable ORB reduce the complexities required to
manage its myriad of strategies, as well as ensure semantic
compatibility when combining groups of strategies?

Introduce ABSTRACT FACTORIES (457) to consolidate multiple ORB
strategies into a manageable number of semantically compatible
configurations.

Application Concurrency
Strategy

Marshaling &
Demarshaling

Strategy

Request
Demuxing
Strategy

Protocol
Event

Demuxing
Strategy

Sensors and
Actuators

Reactive Proprietary Perfect hashing VME backplane VME-specific
demuxer

Warehouse
business logic

HALF-SYNC/
HALF-ASYNC

CDR Active
Demuxing

TCP/IP select()-based
demuxer

Consolidating ORB Strategies 529
All of our ORB strategies are consolidated into ABSTRACT FACTORIES
that encapsulate all the client- and server-specific strategies
described above. By using ABSTRACT FACTORY, application developers
and end-users can configure the internal mechanisms that comprise
different types of ORBs with semantic consistency by providing a
single access point that integrates all strategies used to configure an
ORB. Concrete subclasses then aggregate semantically compatible
application-specific or domain-specific strategies, which can be
replaced en masse in meaningful ways.

The following figure illustrates two concrete instances of ABSTRACT
FACTORY used to configure ORBs for applications running in the
business logic or sensor and actuator subsystems of our warehouse
management process control system.

Our use of ABSTRACT FACTORY simplifies ORB maintenance and
configuration by consolidating groups of ORB strategies with multiple
alternative implementations that must vary together to ensure
semantic compatibility for different warehouse management process
control system subsystems.

Concurrency

(De)marshaling

Strategy

Strategy

Request
Demuxing

HALF-SYNC/
HALF-ASYNC

CDR
(de)marshal

Active
Demuxing

instantiates &
configures

Proprietary
(de)marshal

Perfect
Hashing

instantiates &
configures

Sensor &
Actuator

Strategy

... ...Other
Strategies

Reactive

Factory

Warehouse
Management

Factory

530 Communication Middleware
11.10Dynamic Configuration of ORBs

The cost of many computing resources, such as memory and CPUs,
continue to decrease. ORBs must often still avoid excessive
consumption of these finite system resources, however, particularly
for real-time and embedded systems that require small memory
footprints and predictable CPU processing overhead [GS98]. Likewise,
many applications can benefit from an ability to extend ORBs
dynamically by allowing the configuration of their strategies at run-
time.

Although STRATEGY (362) and ABSTRACT FACTORY (457) make it easier
to customize ORBs for specific application requirements and system
characteristics in semantically compatible configurations, these
patterns can still cause the following problems:

• Excessive resource utilization. Widespread use of STRATEGY can
substantially increase the number of internal mechanisms
configured into an ORB, which in turn can increase the system
resources required to run the ORB and its applications.

• Unavoidable system downtime. If strategies are configured
statically at compile-time and/or static link-time using ABSTRACT
FACTORY, it is hard to enhance existing strategies or add new
strategies without changing the existing source code for the
consumer of the strategy or the abstract factory, recompiling and
relinking an ORB, and restarting running ORBs and their
application components to update them with the new capabilities.

In general, static configuration is only feasible for a small, fixed
number of strategies. Using this technique to configure more
sophisticated, extensible ORBs complicates maintenance, increases
system resource utilization, and requires system downtime to add or
change existing components.

How can an ORB implementation reduce the ‘overly-large, overly-static’
side-effect of pervasive usage of STRATEGY and ABSTRACT FACTORY?

Introduce a COMPONENT CONFIGURATOR (418) to dynamically link/
unlink custom STRATEGY and ABSTRACT FACTORY objects into an ORB at
startup- or run-time.

Dynamic Configuration of ORBs 531
We use a COMPONENT CONFIGURATOR in our CCM-based ORB to
configure ABSTRACT FACTORIES at run-time that contain the desired
group of semantically compatible STRATEGIES. The ORB’s initialization
code uses the explicit dynamic linking mechanisms provided by the
operating system and encapsulated by the WRAPPER FACADES (363) in
the ORB’s OS Adaptation Layer to link in the appropriate factory for
a particular use case. Commonly used explicit dynamic linking
mechanisms include the dlopen()/dlsym()/dlclose() system functions in
UNIX and the LoadLibrary()/GetProcAddress() system functions in
Windows. By using a COMPONENT CONFIGURATOR in conjunction with
these system functions, the behavior of the ORB can be decoupled
from when implementations of its internal mechanisms are
configured as semantically compatible STRATEGIES into an ORB.

ORB strategies can be linked into an ORB from dynamic link libraries
(DLLs) at compile-time, startup-time, or even later during run-time.
Moreover, a COMPONENT CONFIGURATOR can reduce the memory
footprint of an ORB by allowing application developers to dynamically
link only those strategies that they need for to configure the ORB for
their particular use cases. The figure below shows two factories tuned
for either the business logic or the sensor and actuator subsystems
of our warehouse management process control system.

In this particular configuration, the Sensors and Actuators Factory is
currently installed into the ORB’s process. Applications using this
ORB configuration will therefore be processed with the designated set
of ORB concurrency, (de)marshaling, and request demultiplexing
strategies, among others. In contrast, the Warehouse Business Logic

HALF-SYNC/
HALF-ASYNC

CDR
(de)marshal

Active
Demuxing

instantiates &
configures

Proprietary
(de)marshal

Perfect
Hashing

instantiates &
configures

Sensor &
ActuatorComponent

Repository
*

Component
Configurator

ORB Process DLL

Factory

... ...

Reactive

Warehouse
Management

Factory

532 Communication Middleware
Factory resides in a DLL outside of the current ORB process. By using
the COMPONENT CONFIGURATOR, this factory could be installed
dynamically when the ORB process starts to run.

Within the ORB process, the Sensors and Actuators Factory is
maintained by a ComponentRepository that manages all currently loaded
configurable components in the ORB. The ComponentConfigurator uses
the ComponentRepository to coordinate the (re)configuration of
components, for instance, by linking an optimized version of the
Sensors and Actuators Factory and unlinking the current version.

COMPONENT CONFIGURATOR allows application developers to configure
the behavior of our ORB dynamically to tailor the ORB to meet their
specific operational environments and application requirements. In
addition to enhancing flexibility, it also ensures that the ORB does
not incur the time and space overhead for strategies it does not use.
Moreover, this pattern allows application developers to configure the
ORB without requiring access to—or modifications of—the ORB
source code, and often without having to shutdown the entire ORB to
upgrade portions of its behaviors.

11.11Communication Middleware Summary

The CCM-based ORB design described in this chapter employs a
pattern sequence to specify fundamental ORB mechanisms, such as
concurrency, transports, request and event demultiplexing, and
(de)marshaling, in a well-defined and time-proven manner. Key
design goals were to keep the ORB configurable, extensible,
adaptable, and portable. The patterns in the sequence used to create
this design were selected, integrated, and implemented to achieve
these goals based on our extensive experience applying these patterns
in other standard middleware, such as web servers [POSA2] [HMS97],
object-oriented network programming frameworks, such as ACE
[SH03], and networked applications, such as application-level
gateways [Sch00b] and electronic medical imaging systems [PHS96].

The first two patterns in the sequence, BROKER (238) and LAYERS (229)
define the core structure for our CCM-based ORB. BROKER separates

Communication Middleware Summary 533
application functionality from communication middleware
functionality, whereas LAYERS separates different communication
middleware services according to their level of abstraction.

The third pattern in the sequence, WRAPPER FACADE (363) helps to
structure the lowest layer in the ORBs design, the OS Abstraction
Layer, into modular and independently usable building blocks. Each
WRAPPER FACADE provides a meaningful abstraction for a specific
responsibility and/or group of functionality supported by an
operating system, and encapsulates the corresponding API functions
into a type-safe, modular, and portable class. Higher layers of the
ORB can thus be implemented without having explicit dependencies
on a specific operating system.

The next set of patterns in the sequence focus on the Container and
Object Adapter and ORB Core layers in server-side ORB. In terms of
the BROKER architecture, the server-side ORB plays the role of the
SERVER REQUEST HANDLER (XYZ), which is responsible for receiving
messages and requests from the network and dispatching these
messages and requests to their intended component for further
processing. A REACTOR (335) provides a demultiplexing and
dispatching infrastructure for the ORB Core layer that can be
extended to handle different event handling strategies and is
independent from low-level demultiplexing mechanisms, such as
select() and WaitForMultipleObjects(). An ACCEPTOR-CONNECTOR structure
(335) leverages the REACTOR by introducing specialized event handlers
for initiating and accepting network connection events, thus
separating connection establishment from communication in an ORB
Core. HALF-SYNC/HALF-ASYNC (299) and MONITOR OBJECT (309)
augment the REACTOR so that client requests can be processed
concurrently, thereby improving server-side ORB scalability.

The final three patterns in the sequence address configurability.
STRATEGY (457) is used wherever there is variability possible for the
ORB’s mechanisms, such as its connection management,
concurrency, and event/request demultiplexing mechanisms. To
configure the ORB with a specific set of semantically compatible
strategies, the client- and server-side ORB implementations use an
ABSTRACT FACTORY (457). These two patterns work together to make it
easier to create variants of the ORB that are customized to meet the
needs of particular users and application scenarios. A COMPONENT

CONFIGURATOR (418) is used to orchestrate the update the strategies
and abstract factories in the ORB without modifying existing code,
recompiling or statically relinking existing code, or terminating and
restarting an existing ORB and its application components.

The following table summarizes the mapping between specific ORB
design challenges and the pattern sequence we used to resolve these
challenges.

Analyzing this pattern sequence reveals that it helps to design an
ORB that is not only suitable to meet the requirements of our
warehouse management process control system, but that is also
configurable to meet requirements of distributed systems in many
other domains. In particular, we have used our pattern sequence to
create a product-line architecture for a specific set of technological
concerns—namely, communication middleware—within a larger
product-line architecture for an application domain—namely,
warehouse management process control. The architecture and

Pattern Challenges

BROKER Defining the ORB’s base-line architecture

LAYERS Structuring ORB internal design to enable
reuse and clean separation of concerns

WRAPPER FACADE Encapsulating low-level system calls to
enhance portability

REACTOR Demultiplexing ORB Core events effectively

ACCEPTOR-CONNECTOR Managing ORB connections effectively

HALF-SYNC/HALF-ASYNC Enhancing ORB scalability by processing
requests concurrently

MONITOR OBJECT Efficiently synchronize the HALF-SYNC/
HALF-ASYNC request queue

STRATEGY Interchanging internal ORB mechanisms
transparently

ABSTRACT FACTORY Consolidating ORB mechanisms into groups
of semantically compatible strategies

COMPONENT CONFIGURATOR Configuring consolidated ORB strategies
dynamically

Communication Middleware Summary 535
implementation of the ORB is thus an extensible and reusable asset
that not only meets our immediate needs, but can also be applied
productively well beyond the domain of warehouse management.

Consequently, it is no surprise that the pattern sequence described
in this chapter forms the basis of the Component-Integrated ACE ORB
(CIAO) [WSG+03]. CIAO extends The ACE ORB (TAO) [SNG+02] to
create a QoS-enabled CCM middleware platform by combining:

• Lightweight CCM [OMG04b] features, such as standard
mechanisms for specifying, implementing, packaging, assembling,
and deploying components.

• Real-time CORBA [OMG03] [OMG05] features, such as thread
pools, portable priorities, synchronizers, priority preservation
policies, and explicit binding mechanisms.

CIAO and TAO are open-source (www.dre.vanderbilt.edu) and have
been used in many commercial distributed systems, ranging from
avionics and vehtronics; factory automation and process control;
telecommunication call processing, switching, and network
management; and medical engineering and imaging. Many of these
systems need real-time QoS support to meet their stringent
computation time, execution period, and bandwidth/delay
requirements. Due to its flexible, patterns-based design, however,
CIAO and TAO are also well-suited for conventional distributed
systems that just require ‘best-effort’ QoS support. Using patterns
that focus on both QoS and configurability, including the pattern
sequence outlined in this chapter, helped to create a product-line
architecture for CIAO and TAO that meets all these requirements,
while still being compact and comprehensible. Further coverage on
the patterns in TAO appears in [SC99].

536 Communication Middleware

	11 Communication Middleware
	11.1 A Middleware Architecture for Distributed Systems
	11.2 Structuring the Internal Design of the Middleware
	11.3 Encapsulating Low-level System Mechanisms
	11.4 Demultiplexing ORB Core Events
	11.5 Managing ORB Connections
	11.6 Enhancing ORB Scalability
	11.7 Implementing a Synchronized Request Queue
	11.8 Interchangeable Internal ORB Mechanisms
	11.9 Consolidating ORB Strategies
	11.10 Dynamic Configuration of ORBs
	11.11 Communication Middleware Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

