

Mo 2

January 21-25, 2008, Munich, Germany
ICM - International Congress Centre Munich

Pattern-Oriented Software Architecture

Frank Buschmann
Kevlin Henney

1

T
H

 E

C
 R

 A
 F

 T

O
 F

S

O
 F

 T
 W

 A
 R

 E

 A
 R

 C
 H

 I
T

E
C

 T
 U

R
 E

Pattern-Oriented
Software Architecture

Curbralan LimitedCurbralan Limited
kevlin@curbralan.comkevlin@curbralan.com

Kevlin HenneyKevlin Henney

Siemens AGSiemens AG
frank.buschmann@siemens.comfrank.buschmann@siemens.com

Frank BuschmannFrank Buschmann

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

2Pattern-Oriented Software Architecture

Agenda

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

2

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

3Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

4Pattern-Oriented Software Architecture

On Designing with Patterns (1)

Patterns have become a popular tool in software design …
• They have changed the way software developers

think about and practice software design

• They provide us with a software design vocabulary

• They help us to resolve recurring problems
constructively and based on proven solutions

• They support us in understanding the architecture
of a given software system

• ...

But: applying patterns in software design is not necessarily
designing with patterns!

3

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

5Pattern-Oriented Software Architecture

On Designing with Patterns (2)

Patterns applied in isolation and as modular building blocks do
not create sustainable designs.

Solutions

• Fail to consider the surrounding
problems and their solutions.

• Have at best only local effects.

• Do not complement one another
or mutually reinforce their
beneficial properties.

• Create complex architectures
that lack useful operational and
developmental qualities.

Logging
Strategy

*

Leaf

Concrete
Logging
Strategy

Component

Composite

Client Command
Processor

Logging
Context

Concrete
Command

Command

Concrete
Command Memento

Caretaker

Application

Poor Design

Memento

Command

Composite Strategy

Command
Processor

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

6Pattern-Oriented Software Architecture

There are two fundamental ways of integrating patterns:
• Refinement: One pattern refines the structure and behavior of another

pattern to address a specific sub-problem or implementation detail.

• Combination: Two or more patterns arranged to form a larger structure
that addresses a more complex problem.

There are also relationships regarding choice:
• Alternatives: Some patterns describe alternatives to one another. They

address the same or a similar problem, but each pattern considers a slightly
different set of forces. Thus, the patterns provide different solutions and have
different consequences.

• Cooperation: Some patterns nicely complement one another, mutually
reinforcing their structural and behavioral properties.

On Designing with Patterns (3)

4

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

7Pattern-Oriented Software Architecture

On Designing with Patterns (4)

Patterns applied by considering their
relationships create balanced designs.

Solutions

• Consider their surrounding
problem and solution space.

• Have systemic effects.

• Complement one another
and mutually reinforce their
beneficial properties.

• Create whole and balanced
designs that expose the
required operational and
developmental qualities.

Logging
Strategy

*

Concrete
Logging
Strategy

Client Command
Processor

Concrete
Command

Command

Composite
Command

Memento

Application

Good Design

Memento

Command &
Composite

Strategy
Command
Processor

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

8Pattern-Oriented Software Architecture

On Designing with Patterns (5)

This tutorial is on designing with
patterns to create,

with economy and elegance,

software designs and
implementations

that work and meet their
expected quality attributes!

Pick
Workpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor Logger

The network

creates

executes

applies

passes
commands to

passes telegrams topasses telegrams to

5

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

9Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

10Pattern-Oriented Software Architecture

A Solution to a Problem (1)

A stand-alone pattern:

• Presents a solution for a recurring problem that arises in a specific
context.

• Documents proven design experience; is an "aggressive disregard of
originality" Brian Foote

• Specifies a spatial configuration of elements and the behavior that
happens in this configuration.

• Provides common vocabulary and conceptual understanding.

6

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

11Pattern-Oriented Software Architecture

Half-Object Plus Protocol at a Glance

Problem
How can we design objects in a

distributed system:

• such that access to them and the
execution of their services incurs
minimal performance penalties?

Solution
• Split an object into multiple halves –

one half per address space from
which the object is accessed.

• Within each half, fully implement all functionality that
can be executed locally without using the network.

• Implement functionality that crosses address spaces partially
in each half and coordinate the halves via a protocol.

local

remote

Half Objects

ProtocolClient

Node 1 Node 2

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

12Pattern-Oriented Software Architecture

A Solution to a Problem (2)

A stand-alone pattern:

• Is both a process and a thing, with the thing being created by the
process.

• Addresses a set of forces that completes the general problem by
describing requirements, constraints, and desired properties for the
solution.

• Introduces a set of interacting roles that can be arranged in many
different ways, not a fixed configuration of classes or components.

• Specifies a solution that is based on experience, judgment, and
diligence – it cannot necessarily be constructed in a straightforward
manner using a common engineering method.

7

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

13Pattern-Oriented Software Architecture

Half-Object Plus Protocol at a Glance (2)

Problem
How can we design objects in a

distributed system:

• such that access to them and the
execution of their services incurs
minimal performance penalties?

Solution
• Split an object into multiple halves –

one half per address space from
which the object is accessed.

• Within each half, implement all functionality that
can be executed locally without using the network.

• Implement functionality that crosses address spaces partially
in each half and coordinate the halves via a protocol.

local

remote

Role: Half Objects

Role: ProtocolRole: Client

Node 1 Node 2Force

Process-
oriented
solution

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

14Pattern-Oriented Software Architecture

Designing with Stand-Alone Patterns

Stand-alone patterns can help you to resolve specific, restricted
problems well, but

• They discuss the solution they introduce in isolation from other problems and
their solutions, and also the dependencies between the problems and
solutions.

• They do not consider alternative solutions to similar problems but with different
sets of forces.

• They do not inform you when to address the problem in the context of
designing a concrete system that must resolve many different problems.

Patterns are like colorful words, bits and pieces of an expressive
language whose grammar is forgotten and whose exciting
stories and cultural tales are lost!

8

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

15Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

16Pattern-Oriented Software Architecture

Pattern Complements

Pattern complements are sets of patterns that are
• Complementary with respect to competition. One pattern may complement

another because it provides an alternative solution to the same or a similar
problem, and thus is complementary in terms of the design decisions that can
be taken.

• Complementary with respect to completeness. One pattern may
complement another because it completes a design, acting as a natural pairing
to the other.

Although the two ideas seem distinct at first glance, competition and
cooperation are often very closely related.

9

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

17Pattern-Oriented Software Architecture

Pattern in Competition

Patterns in Competition
• Resolve the same core problem, but present

alternative solutions to it. Each solution
addresses different forces in context.

• Provide an overview of the problem's entire
solution space and allow developers to

decide, when to use what
pattern in the set.

Examples:

• Objects for States, Methods
for States, Collection for
States

• Abstract Factory, Builder

• Iterator, Batch Method,
Enumeration Method

AbstractFactory
create_productA
dispose_productA

ConcreteFactory
create_productA
dispose_productA

AbstractProductA
ProductA

ConcreteProductA
ProductA

Builder
create_partA
dispose_partA
create_partB
dispose_partB

ConcreteBuilder
create_partA
dispose_partA
create_partB
dispose_partB

AbstractPartA
PartA

ConcreteParttA
ParttA

AbstractPartB
PartB

ConcretePartB
PartB

Director
create
dispose

Abstract Factory

Builder

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

18Pattern-Oriented Software Architecture

The Iterator Pattern

Classically defined in terms of separating the responsibility for
iteration from its target

• The knowledge for iteration is encapsulated in a separate object from the
target, typically but not necessarily a collection.

• Iteration is managed externally from the collection.

• Rendered idiomatically in different languages, e.g. STL in C++ and (more than
once) in Java's standard library

Iterator
Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

10

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

19Pattern-Oriented Software Architecture

Iterator Configuration Sketch

There are four essential, elementary operations associated with an
Iterator's behavior

• Initializing an iteration, i.e. the initializer of a for loop

• Checking a completion condition, i.e. the continuation condition of a for loop

• Accessing a current target value, e.g. in the body of a for loop

• Moving to the next target value, i.e. the progression of a for loop

Iterator

finished() : Boolean {query}
value() : Type {query}
next()

«create»

*1
Collection

createIterator() : Iterator

TypeType

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

20Pattern-Oriented Software Architecture

Distribution Issues

• In a distributed environment concurrency is implicit
• But this is not the only force at work

• Operation invocations are no longer trivial
• Communication can dominate computation

• Partial failure is almost inevitable

servantclient

Cost of communication

11

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

21Pattern-Oriented Software Architecture

The Batch Method Pattern

• Iterated simple methods use up bandwidth
• The client and server parts spend far more time waiting on communication

than performing useful computation

• Therefore, provide the repetition in a data structure
• This is a coarser and more appropriate granularity that reduces

communication and synchronisation costs

• Batching can refer to passed sequences of values, result sequences of
values, or both passed and result sequences

Batch Method
Group multiple collection accesses together to reduce the cost of
multiple individual accesses in a distributed environment.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

22Pattern-Oriented Software Architecture

The Enumeration Method Pattern

• An inversion of the basic Iterator design
• Iteration is encapsulated within the collection

• Collection stateless with respect to iteration

• A method on the collection that receives a Command, which it
then applies to its elements

• Idiomatic iteration in Smalltalk and other languages with support for
treating blocks of code as objects

Enumeration Method
Support encapsulated iteration over a collection by placing
responsibility for iteration in a method on the collection. The
method takes a Command object that is applied to the elements
of the collection.

12

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

23Pattern-Oriented Software Architecture

Enumeration Method Sketch

Has very different trade-offs when compared to the Iterator
approach

• Client is not responsible for loop housekeeping details

• Synchronization can be provided at the level of the whole traversal rather than
for each element access

• Sometimes known as the Internal Iterator pattern, but clearly has nothing in
common with (External) Iterator

Command

executeOn(Type)

Collection

enumerationMethod(Command)

TypeType

Loop body is now provided as
the implementation of the
executeOn method

Loop administration is handled in
the implementation of the
enumerationMethod

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

24Pattern-Oriented Software Architecture

Pattern in Cooperation

Patterns in Cooperation
• Naturally complement one another towards a more complete and balanced

design.

• Mutually reinforce their quality properties.

• Examples:

• Command and
Command Processor

• Abstract Factory,
Factory Method, and
Disposal Method

• Iterator,
Combined Method,
and Batch Method

AbstractFactory
create_productA
dispose_productA

ConcreteFactory
create_productA
dispose_productA

AbstractProductA
ProductA

ConcreteProductA
ProductA

Abstract Factory

Factory Method
Disposal Method

13

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

25Pattern-Oriented Software Architecture

Concurrency Issues for Iterator

• Synchronization is required to ensure consistent and coherent
state change

• This cannot be handled adequately by the Iterator client

• Property-style programming, i.e. using fine-grained getters and
setters, is inappropriate

• There is a mismatch in granularity and coherence

servantclient 1 client 2

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

26Pattern-Oriented Software Architecture

The Combined Method Pattern

Applying it gives slightly coarser granularity than the separated
methods of an ordinary sequential Iterator

• Aligns and groups the unit of failure, synchronization and common use

• Makes method design more transactional in style

• Improves the encapsulation of collection use, isolating the client from
unnecessary details of execution and failure

Combined Method
Combine methods that are commonly used together to guarantee
correctness and improve efficiency in threaded and distributed
environments.

14

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

27Pattern-Oriented Software Architecture

Batched Iterators

A combination of these various patterns recurs in distribution and
component-based design

• A compound design that addresses many requirements

Iterator

Combined
Method

Batch
Method

Disposal
Method

Factory
Method

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

28Pattern-Oriented Software Architecture

The Batch Iterator (or Chunky Iterator) Pattern

A combination of, primarily, both Batch Method and Iterator,
addressing more than either one

• Iterating over individual values in a server wastes both time and bandwidth,
even with a Combined Method

• Batch Method can cause the client to block for too long: the delay for all values
to be gathered and marshaled may be unacceptable, reducing client
responsiveness

• Therefore, combine both patterns so that an Iterator pulls many values at a
time using a Batch Method

Batch Method
Iterator

15

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

29Pattern-Oriented Software Architecture

Pattern Compounds

Pattern Compounds
• Describe recurring

arrangements of several tightly
integrated patterns that together
resolve more complex problems
than each constituent pattern
alone can do.

• List what patterns help resolving
the core problem.

• Specify how all patterns integrate
with one another.

Example:

• Bureaucracy integrates Composite, Chain of Responsibility, Observer, and
Mediator to model complex, collaborative hierarchical structures.

*
Abstract

Node Parent

Atomic
Node

Composite
Node

*

Abstract
Node Parent

Atomic
Node

Composite
Node

*

Abstract
Node Parent

Atomic
Node

Composite
Node

Request
Mediator

Bureaucracy

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

30Pattern-Oriented Software Architecture

Element or Compound?

Is a set of cooperating patterns complementary or compound?

• The general notion of usage or inclusion of one pattern in another
suggests that we can consider most patterns as compounds, with
each pattern drawing on others to realize its fill expression.

• However, the term compound is normally reserved for a group of
patterns that addresses problem in its own right and is always
resolved with the same arrangement of its constituent patterns.

• Sometimes it is just a matter of perspective.

If we want to focus on iteration only, we can consider Batch Iterator as a pattern
compound. If we want to focus on the supporting nature of patterns we can
consider Iterator and Batch Method as a pair of complementary patterns
cooperating in the same design.

16

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

31Pattern-Oriented Software Architecture

Support for Designing with Patterns

Pattern complements and pattern compounds
support designing with patterns… but:

• Although they consider dependencies between, and the role-
based integration of, patterns, they still fail to support a truly
pattern-based approach to software development!

Pattern Complements:
☺ Consideration of alternatives.
/ Limited to resolving isolated local

problems.

Pattern Compounds:
☺ Present recurring arrangements

of tightly integrated patterns.
/ Limited to resolving isolated problems.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

32Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

17

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

33Pattern-Oriented Software Architecture

Pattern Stories

Pattern Stories
• Are like diaries that tells their readers

how one specific software system,
subsystem, or large component was
developed with the help of patterns.

They discuss:

• What specific problems were to be
resolved in what specific order.

• What patterns were considered
and selected to resolve the problems.

• How the selected patterns were
instantiated within the system’s
specific context and architecture.

Forwarder-
Receiver

Acceptor-
Conector

Strategy

Reactor

Strategy

Proxy
Proxy

Adapter

Broker

Facade

Reflection

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

34Pattern-Oriented Software Architecture

A Short Story: Warehouse Management

Warehouse Management Systems:

• Organize warehouse operation: storing,
fetching, picking, replenishment, etc.

• Control and optimize the material flow
within a warehouse.

• Control base automation.

• Cooperate with other applications, such
as ERP systems and databases.

18

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

35Pattern-Oriented Software Architecture

Key Challenges (1)

Building Warehouse Management
Systems requires:

• defining an appropriate base-line
architecture that specifies the system's
functional and infrastructural subsystems,
their relationships and key interactions.

• developing/selecting suitable
component/communication middleware.

• designing and implementing the
system's functionality with
sufficient quality: performance,
stability, scalability, extensibility, etc.

• providing an efficient connection of
the system with the database.

• designing a user-friendly user interface.

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

36Pattern-Oriented Software Architecture

Key Challenges (2)

Six key requirements affect the
systems base-line architecture:

• Modularity: the system is developed
by a large, globally distributed team

• Distribution: the system is highly
distributed.

• Human-computer interaction: users
interact with the system via different
user interfaces.

• Integration: we want to integrate third-party
products and legacy software.

• Scalability: the system must support small-scale warehouses as well as
large-scale warehouses.

• Performance: the system must support high-performance and throughput.

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access?

19

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

37Pattern-Oriented Software Architecture

Partitioning the Big Ball of Mud (1)

The basis for a sustainable base-line architecture is a clear separation and
encapsulation of different system concerns.

Otherwise, the implementation of these concerns will likely be tangled rather
than loosely coupled, which complicates their independent development,
configuration, and deployment across a computer network.

How can we organize the
system's functionality into
coherent groups such that
each group can be developed
and modified independently?

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

38Pattern-Oriented Software Architecture

Layers at a Glance

Problem
How can we partition the functionality

in a system such that:

• Functionality of different kinds of
abstraction and levels of granularity
is decoupled as much as possible.

• Functionality at a particular level of
abstraction or granularity can evolve
at different times and rates without
incurring rippling effects.

Solution
• Define one or more layers for the software under development with each

layer having a distinct and specific responsibility, for instance, regarding
abstraction, granularity, or rate of change.

User Interface Layer

Business Process Layer

Business Object Layer

Database Access Layer

Infrastructure Layer

20

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

39Pattern-Oriented Software Architecture

Partitioning the Big Ball of Mud (2)

Partition the system into multiple interacting Layers with each layer
representing a specific responsibility or concern of relevance and
comprising all functionality that addresses that concern.

• Presentation: gateways to higher-
level MES or ERP systems / HMI.

• Business Processes: administrative
and operational functionality.

• Business Objects: representations
of domain-specific physical and
logical entities.

• Infrastructure: persistence, logging
failover, etc.

• Access: gateways to lower-level
systems in the field level.

Presentation

Business Process

Business Objects

Infrastructure

Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

40Pattern-Oriented Software Architecture

Decomposing the Layers (2)

Layers are an important step toward providing a product-line architecture for
the warehouse management system.

Yet layers alone are still too coarse grained to support sufficiently modular
software development: they only separate concerns between functionality
at different kinds and levels of abstraction, but not between different
functionality at the same level.

How can we refine a layered
architecture into smaller, strictly
separated modular parts with
each part having a clearly
defined and scoped
responsibility?

Presentation

Business Process

Business Objects

Infrastructure

Access

21

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

41Pattern-Oriented Software Architecture

Domain Object at a Glance

Problem
How can we partition the functionality

in a system such that:

• Each self-contained unit of functionality
is decoupled as much as possible from
other self-contained units of functionality.

• Any unit of self-contained functionality
can evolve at different times
without incurring ripple effects.

Solution
Encapsulate each self-contained functionality into a domain object

• An interface provides the accessible methods of the domain object.

• An implementation realizes the offered functionality of the domain object.

Interface
InterfaceMethod1
InterfaceMethod2

Implementation

Manifest

Module 1

Resources

Type 1
IL-Code

Type 2
IL-Code

Type 3
IL-Code

Name

Version

Sharedname

Hash

Files
Referenced
Assemblies

Types

Security
Custom

Attributes
Product

Information

Metadata

Two forms of
domain object

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

42Pattern-Oriented Software Architecture

Decomposing the Layers (2)

Provide a Domain Object for each self-contained, coherent, and
functionally related responsibility within a layered design.

22

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

43Pattern-Oriented Software Architecture

Accessing Domain Object Functionality (1)

The partitioning of the warehouse management process control system into
layers containing domain objects provides a sustainable foundation for
modular software development.

However, in spite of the clear separation of different responsibilities, the
domain objects are still tightly connected: each domain object directly
accesses the concrete implementation type of the domain object it uses.

How can we ensure that
domain objects do not
depend on implementations
of other domain objects?

Warehouse
Management

Implementation

Warehouse
Topology

Implementation

Material Flow
Control

Implementation

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

44Pattern-Oriented Software Architecture

Explicit Interface and
Encapsulated Implementation at a Glance

Problem
How can clients use components such that:

• They are independent of component internals,
such as concrete type, implementation,
interface, and programming model.

• Remote access can be supported transparently.

• Changes to the component's realization do
not ripple through to clients.

Solution
Physically separate the interface of the component from its implementation

and export the interface to the clients of the component:

• An explicit interface realizes the published contract of a component.

• An encapsulated implementation realizes the component's functionality.

Explicit Interface
InterfaceMethod1
InterfaceMethod2

Encapsulated
Implementation

ImplementationMethod1
ImplementationMethod2

23

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

45Pattern-Oriented Software Architecture

Accessing Domain Object Functionality (2)

Split each domain object into an Explicit Interface with a corresponding
Encapsulated Implementation to separate the object's public contract
from its realization.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

46Pattern-Oriented Software Architecture

Bridging the Network (1)

Most installations of the warehouse management systems are deployed
across a computer network in order to meet their operational requirements.

Consequently there could be a process or machine boundary between any
two layers in the system or between any two domain objects of a layer.

How can we shield Domain Objects
of the system from dealing with
networking issues directly while
supporting location-independent
interaction between them?

Warehouse
Management

Warehouse
Topology

Network

24

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

47Pattern-Oriented Software Architecture

Broker at a Glance

Problem
How can we support remoting such that:

• Communication is location independent.

Solution
Separate the communication infrastructure

of a distributed system from its application
functionality via a federation of brokers:

• Clients and servants provide application
functionality on any network node.

• Brokers mediate IPC between clients
and servants.

• Client-side and server-side proxies provide location independence and
shield clients and servants from networking issues.

Broker

Servant 2
Clt-Proxy

Servant 3
Clt-Proxy

Servant 1
Svr-Proxy

Client 2 Servant 1

Broker

Servant 2 Servant 3 Client 3

Servant 2
Svr-Proxy

Servant 3
Svr-Proxy

Servant 1
Clt-Proxy

Client 1

Node 2

Node 1
Connection
Establishment

IPC

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

48Pattern-Oriented Software Architecture

Bridging the Network (2)

Introduce a Broker to allow distributed domain objects of the
warehouse management system to access and communicate with
one another in the same way, as if both parties were collocated.

25

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

49Pattern-Oriented Software Architecture

Separating User Interface (1)

Domain objects of the presentation layer neither implement any business
logic nor maintain any business state—both responsibilities are assigned
to other layers of the system that are accessed by the presentation layer.

Nevertheless, the information that is presented should be up-to-date,
regardless of the number and location of client.

How can we ensure that the
domain objects in the
presentation layer always
provide fresh and timely
state information to
their clients?

Warehouse Management
System?

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

50Pattern-Oriented Software Architecture

Model-View-Controller at a Glance

Problem
How can we develop user interfaces that:

• Support adaptation and change without
affecting the application’s functional core.

• Display the current state of computation
and respond to state changes immediately.

Solution
Divide an interactive application into three

loosely coupled parts:

• A model object encapsulates an entity from
the application's functional core.

• Views present data and information to the user.

• Controllers are associated with views and allow manipulation of the
presented data and information.

Model

attachObs()
detachObs()
notify()
getData()
service()

myObservers
coreData

Controller

init()
handleEvent()
update()

myModel
myView

View

init()
makeCtrls()
activate()
display()
update()

myModel
myControllers

1 1

*

*

26

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

51Pattern-Oriented Software Architecture

Separating User Interface (2)

Use a Model-View-Controller
arrangement to minimize
the coupling between
domain objects in the
presentation layer and
domain objects in the
business layers, and
ensure their efficient
cooperation and
mutual consistency.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

52Pattern-Oriented Software Architecture

Distributing Functionality (1)

While having a single and central implementation of each domain object is
the simplest possible distribution model, it may, however, be insufficient for
domain objects to meet their performance and scalability requirements.

Replication may also not help –
especially in case of stateful
domain objects.

How can we provide efficient
access to a domain object
that maintains global state
and whose clients reside
in multiple address spaces?

Component

27

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

53Pattern-Oriented Software Architecture

Half-Object Plus Protocol at a Glance

Problem
How can we design objects in a

distributed system:

• such that access to them and the
execution of their services incur
minimal performance penalties?

Solution
• Split an object into multiple halves –

one half per address space from
which the object is accessed.

• Within each half, fully implement all functionality that
can be executed locally without using the network.

• Implement functionality that crosses address spaces partially
in each half and coordinate the halves via a protocol.

local

remote

Half Objects

ProtocolClient

Node 1 Node 2

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

54Pattern-Oriented Software Architecture

Distributing Functionality (2)

Realize the domain object as a Half-Object plus Protocol that splits its
functionality into a set of half-objects, with one half-object collocated
in each client address space.

28

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

55Pattern-Oriented Software Architecture

Supporting Concurrent Domain Object Access (1)

Realizing domain objects of the warehouse management process control
system as half-objects plus protocols yields notable performance,
scalability, and throughput gains.

However, if a domain object has many
concurrent local clients, it can still
become a throughput bottleneck
because at any one time it is
accessible by only one client.

How can we provide concurrent
access to a shared domain
object such that clients can
always issue their requests
without blocking?

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

Request Request Request

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

56Pattern-Oriented Software Architecture

Active Object at a Glance

Problem
How can we provide access to large

concurrent components such that:

• Clients are not blocked if their request
cannot be executed immediately.

Solution
Decouple method invocation from method

execution in both space and time:

• A proxy allows clients a thread-local access
to the component, a servant implements
the component in a separate thread.

• Service requests are objectified as method requests, maintained in an
activation list, and invoked on the servant by a scheduler once they
become executable.

Future

Scheduler

insert()
dispatch()

MethodRequest

guard()
call()

*

Concrete
MethodRequest1

Proxy

method_1()
method_N()

Activation
List

insert()
remove()

Servant
method_1()
method_N()

Concrete
MethodRequest2

creates creates maintains

29

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

57Pattern-Oriented Software Architecture

Supporting Concurrent Domain Object Access (2)

Realize the domain object as an Active Object that separates request
invocation from request execution in space and time.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

58Pattern-Oriented Software Architecture

Achieving Scalable Concurrency (1)

Various types of information that the domain objects of the warehouse
management system can generate, for instance, errors and traces, are
logged for later evaluation.

However, using the logging functionality
should only have a minimal impact
on the system’s operational qualities.

How can we avoid having logging
become a performance
bottleneck, especially when
a high number of logging
records must be processed?

Logging Service

event

event

event

event

event

event event

event

event event

event
event

30

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

59Pattern-Oriented Software Architecture

Leader/Followers at a Glance

Problem
How can we design an event-driven

component such that:

• A high-volume of events can be
processed concurrently.

Solution
Introduce a thread pool in which multiple

threads share a common event source:

• A leader thread gets exclusive access to
an event source, and blocks until an event arrives.

• Follower threads queue up behind the leader
and wait until it is their turn to be the leader.

• Processing threads are processing events received when being the leader

Event
Source

Event
Handler

events

processing
threads

follower
threads

leader
thread

Event
Handler

Event
Handler

Event
Handler

Event
Handler

Event
Handler

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

60Pattern-Oriented Software Architecture

Achieving Scalable Concurrency (2)

Implement the logging domain object using the Leader/ Followers
concurrency model, which uses a pre-allocated pool of threads to
avoid dynamic threading overhead.

31

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

61Pattern-Oriented Software Architecture

Crossing the OR Divide (1)

All data created and maintained by the warehouse management process
control system must be stored persistently, and changed transactionally,
using a relational database.

However, domain objects should not
become dependent on the relational
paradigm.

How can we bridge the chasm between
the object-oriented view—used within
the warehouse management system—
and the relational view—required by
the database—without exposing each
view to the other side?

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

62Pattern-Oriented Software Architecture

Database Access Layer at a Glance

Problem
How can we bridge the OR divide so that:

• Each side—application and database—
can benefit from the most appropriate and
familiar computational model without being
dependent on the paradigm used by the
other side.

Solution
Introduce a database access layer that provides

a bidirectional OR mapping:

• A logical access layer allows clients to store and retrieve application-
level business objects, and provides caching and transactions.

• A physical access layer represents the interface to a concrete database
and provides functionality for optimized database access.

Logical Access Layer

store(BusinesObject)
retrieve(BusinessObject)

1 n
Business ObjectClient uses

A Database

Physical Access Layer

read()
insert()
update()

32

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

63Pattern-Oriented Software Architecture

Crossing the OR Divide (2)

Introduce a Database Access Layer between the warehouse
management system and the relational database that separates the
logical, domain-specific representation of application data from the
physical representation of this data in tables.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

64Pattern-Oriented Software Architecture

Key Challenges And Their Solutions

The following patterns address the
six key requirements of the system:

• Modularity: Layers, Domain Object
Explicit Interface, Encapsulated
Implementation

• Distribution: Broker,
Half-Object plus Protocol

• Human-computer interaction:
Model-View-Controller

• Integration: Database Access Layer

• Scalability: Half-Object plus Protocol,
Active Object, Leader/Followers

• Performance: Half-Object plus Protocol, Active Object, Leader/Followers

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

33

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

65Pattern-Oriented Software Architecture

The End

And they happily lived ever after!

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

66Pattern-Oriented Software Architecture

Pattern Sequences

Pattern Sequences
• Remove the story from a pattern story and describe how a type of software

system, subsystem, or component can be developed with patterns using a
particular solution approach or architectural style.

They discuss:

• What type of problems are
to be resolved in what
typical order.

• How the selected patterns
are typically integrated with
one another according to
the envisioned style or
approach.

creates

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Broker
→ Model-View-Controller
→ Half-Object plus Protocol
→ Active Object
→ Leader / Followers
→ Database Access Layer

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

34

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

67Pattern-Oriented Software Architecture

Support for Designing With Patterns (1)

Pattern stories and pattern sequences support
designing with patterns… but:

• Although they consider interdependencies and role-based
integration of patterns, from a general and systems
perspective they still fail to support fully a truly pattern-based
software development!

Pattern Stories:
☺ Describe the pattern-based software

development of a specific system (part).
/ Describe one system instance only.

Pattern Sequences:
☺ Describe the pattern-based software

development of a type of system (part).
/ Cover one architectural style only.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

68Pattern-Oriented Software Architecture

Support for Designing With Patterns (2)

But: Different pattern sequences for the same type of system
describe different, alternative architectural styles, each
addressing different considerations and trade-offs!

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Broker
→ Model-View-Controller
→ Half-Object plus Protocol
→ Active Object
→ Leader / Followers

→ Database Access Layer

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Messaging
→ Presentation-Abstraction-Control
→ Replicated Component Group
→ Active Object
→ Half-Sync / Half-Async
→ Monitor Object
→ Database Access Layer

35

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

69Pattern-Oriented Software Architecture

Bridging the Network (1)

Most installations of the warehouse management systems are deployed
across a computer network to meet their operational requirements.

As a result there could be a process or machine boundary between any two
layers in the system and also between any two domain objects of a layer.

How can we shield Domain Objects
of the system from dealing with
networking issues directly while
supporting location-independent
interaction loose coupling
between them?

Warehouse
Management

Warehouse
Topology

Network

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

70Pattern-Oriented Software Architecture

Messaging at a Glance

Problem
How can we support remoting such that:

• Services are loosely coupled.

• Services can interact reliably.

Solution
Connect the services via a message bus

that allows them to transfer
messages asynchronously:

• Clients and servants provide application
functionality on any network node.

• A message bus mediates IPC between
clients and servants.

• Messages codify service requests, responses, and data exchanged
between clients and servants.

Messaging
System

Message Message Response
Message

Client 2 Servant 1

Messaging
System

Servant 2 Servant 3 Client 3

Message Message Request
Message

Client 1

Node 2

Node 1
IPC

36

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

71Pattern-Oriented Software Architecture

Bridging the Network (2)

Introduce a Messaging system to allow distributed domain objects of
the warehouse management system to exchange messages codifying
service requests and responses.

• Design the explicit interfaces of services so that they can receive request
messages asynchronously.

• Realize encapsulated implementations of the services so that they
dispatch messages on concrete functions and deliver response messages
asynchronously to message senders.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

72Pattern-Oriented Software Architecture

Separating User Interface (1)

Domain objects of the presentation layer neither implement any business
logic nor maintain any business state—both responsibilities are assigned
to other layers of the system that are accessed by the presentation layer.

Nevertheless, the information that is presented should be up-to-date,
regardless of the number and location of client.

How can we ensure that the
domain objects in the
presentation layer always
provide fresh and timely
state information to
their clients and that
each subsystem offers
its own UI paradigm? Warehouse Management

System?

37

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

73Pattern-Oriented Software Architecture

Presentation-Abstraction-Control at a Glance

Problem
How can we design user interfaces that:

• Support adaptation and change without
affecting the application’s functional core.

• Support subsystem-specific UI paradigms.

Solution
Divide an interactive application into

loosely coupled agents:

• Each agent is responsible for a providing a
self-contained part of the system's
functionality—including a specialized UI

• An agent consists of three parts: a presentation realizes the agent's UI; an
abstraction its domain functionality; a control connects the presentation and
abstraction, and allows communication with other agents.

TopLevelAgent

IntLevelAgent IntLevelAgent

BottomLevelAgent

BottomLevelAgent

...

Abstraction

Control

Presentation

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

74Pattern-Oriented Software Architecture

Separating User Interface (2)

Use a Presentation-Abstraction
Control design to:

• minimize coupling between
domain objects in the
presentation layer and
domain objects in the
business layers,

• ensure their efficient
cooperation and
mutual consistency, and

• allow each self-contained
subsystem to provide its
own user interface.

38

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

75Pattern-Oriented Software Architecture

Distributing Functionality (1)

While having a single and central implementation of each domain object is
the simplest possible distribution model, it may, however, be insufficient for
domain objects to meet their performance and scalability availability
requirements.

Replication may also not help –
especially in case of stateful
domain objects.

How can we provide an
efficient yet highly available
access to a domain object that
maintains global state
and whose clients reside
in multiple address spaces?

Component

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

76Pattern-Oriented Software Architecture

Replicated Component Group at a Glance

Problem
How can we design objects in a

distributed system:

• such that they are highly available?

Solution
• Split a component into multiple replicas –

one half per address space from
which the object is accessed.

• Synchronize the state of the replicas via a protocol.

access

Replicas

Synchronization
Protocol

Client

Node 1 Node 2
access

39

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

77Pattern-Oriented Software Architecture

Distributing Functionality (2)

Realize the domain object as a Replicated Component Group that
replicates its functionality onto multiple component instances, with
one instance collocated in each client address space.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

78Pattern-Oriented Software Architecture

Achieving Scalable Concurrency (1)

Various types of information that the domain objects of the warehouse
management system can generate, for instance, errors and traces, are
logged for later evaluation.

However, using the logging functionality
should only have a minimal impact
on the system’s operational qualities.

How can we avoid having logging
becomes a performance
bottleneck, especially when
a high number of logging
records must be processed?

Logging Service

event

event

event

event

event

event event

event

event event

event
event

40

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

79Pattern-Oriented Software Architecture

Half-Sync/Half-Async at a Glance

Problem
How can we design using asynchronous

and synchronous processing such that:

• A reasonable volume of events can be
processed concurrently.

• Asynchronous can be programmed
with respect to performance.

• Synchronous services can offer a
simple programming model.

Solution
Separate synchronous and asynchronous

services from another by dedicated layers
and add a queuing layer between them to
mediate communication between services.

sy_svc_1 sy_svc_2 sy_svc_3

as_svc_1 as_svc_2 as_svc_3

Asynchronous Service Layer

Queuing Layer

interrupt

Synchronous Service Layer

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

80Pattern-Oriented Software Architecture

Achieving Scalable Concurrency (2)

Implement the logging domain object using the Half-Sync/Half-Async
concurrency model, which allows the service to receive logging
records asynchronously but process them synchronously.

41

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

81Pattern-Oriented Software Architecture

Implementing a Synchronized Request Queue (1)

At the heart of Half-Sync/Half-Async concurrency design is a logging record
queue. To coordinate concurrent access to the queue, we must
synchronize it.

• If 'simple' locking is used, threads can
'busy wait' when the queue is empty
or full, which degrades performance.

How can the queue avoid race
conditions or busy waiting
when threads in different
Half-Sync/Half-Async layers
put and get logging records
simultaneously?

Logging Service

event

event

event

event

event

event event

event

event event

event
event

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

82Pattern-Oriented Software Architecture

Monitor Object at a glance
Monitor Object

sync_method1()
sync_method2()

Monitor Lock

acquire()
release()

Monitor Cond.

wait()
notify()

uses uses 1..*

void sync_method1() {
// Acquire monitor lock.
lock.acquire();
... // Start processing.

// Suspend thread on a monitor
// condition if immediate
// progress is impossible.
if (progress_impossible)

condition_1.wait();

... // Resume processing.

// Notify waiting threads that
// can potentially resume their
// processing.
condition_2.notify();

// Release monitor lock
lock.release();

}

void sync_method2() {
lock.acquire();

... // Start processing.

if (progress_impossible)
condition_2.wait();

... // Resume processing.

condition_1.notify();

lock.release();
}

Problem
How can we coordinate multiple threads

cooperatively?

Solution
Allow only one method to execute

at any one time. Suspend the
execution of methods that make
no progress to allow other
methods to execute.

• A monitor object is shared
among multiple threads.

• Synchronized methods
implement thread-safe functions.

• One or more monitor conditions
allow the synchronized methods
to schedule their execution using
a monitor lock.

42

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

83Pattern-Oriented Software Architecture

Achieving Scalable Concurrency (2)

Implement the queue as
a Monitor Object to serialize
concurrent method calls
so that only one method
runs at a time, allowing
its methods to schedule
their execution sequences
cooperatively to prevent
threads from busy waiting
when the queue is full
or empty.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

84Pattern-Oriented Software Architecture

Support for Designing With Patterns (1)

The two pattern sequences address the following considerations
and trade-offs – and thus, different architectural styles!

Messaging: Message Exchange

PAC: One User Interface per Subsystem

Replicated Object Group: Replicated State,
Extreme Availability

Half-Sync / Half-Async & Monitor Object:
High Volume Logging

Broker: Remote Method Invocation

MVC: One User Interface per System

HOPP: Federated State, High Availability

Leader/Followers: Very High
Volume Logging

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Broker
→ Model-View-Controller
→ Half-Object plus Protocol
→ Active Object
→ Leader / Followers

→ Database Access Layer

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Messaging
→ Presentation-Abstraction-Control
→ Replicated Component Group
→ Active Object
→ Half-Sync / Half-Async
→ Monitor Object
→ Database Access Layer

43

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

85Pattern-Oriented Software Architecture

Support for Designing With Patterns (2)

Obviously a set of pattern sequences supports
designing with patterns… but:

Multiple Pattern Sequences:
☺Describe the pattern-based software

development of an type of system (part)
☺ Cover multiple architectural styles
/ Describe each style separately from other

architectural styles – thus ignoring
commonalities and variabilities among them

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

86Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

44

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

87Pattern-Oriented Software Architecture

Towards Pattern Languages (1)

Pattern sequences come close to the idea of designing with patterns:
• Their scope is a system type.

• They describe the what and the how in building an
instance of this system type.

• But they lack genericity, supporting only one
narrow interpretation of an architectural style.

Intuitive idea: what if we integrate several
pattern sequences for designing a system
for a specific domain with one another?

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

88Pattern-Oriented Software Architecture

Towards Pattern Languages (2)

Pattern Languages
• Integrate multiple pattern sequences that describe how a type of software

system, subsystem, or component can be developed systematically with
patterns according to different feasible architectural styles.

They discuss:

• What type of problems are to be
resolved in what typical order.

• What alternative patterns help
resolving the problems according
to the envisioned architectural styles.

• How the selected patterns are
typically integrated with one another
according to the chosen
architectural style.

Layers
→ Domain Object
→ Explicit Interface
→ Encapsulated Implementation
→ Broker | Messaging
→ Model-View-Controller |

Presentation-Abstraction-Control
→ Half-Object plus Protocol |

Replicated Component Group
→ Active Object
→ Leader / Followers |

(Half-Sync/Half-Async → Monitor Object)
→ Database Access Layer

45

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

89Pattern-Oriented Software Architecture

Pattern Languages

An Example

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

90Pattern-Oriented Software Architecture

A Pattern Language for Distributed Computing

Four observations:
• Many of today‘s software systems are

distributed.

• Developers ask for guidance in building
distributed systems.

• Many published patterns relate to
distribution.

• Most of these patterns are described as
if they were living in isolation.

Why not integrating these existing
patterns into a pattern language
for distributed computing?

46

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

91Pattern-Oriented Software Architecture

Intent and Scope

The prime intent of the
Pattern Language for
Distributed Computing
is to serve as a guide
through, and communication
vehicle for, the best
practices in major
areas of distributed
computing.

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

92Pattern-Oriented Software Architecture

Audience

The language's main audience is:
• Software architects. They are supported

in the design of new distributed
middleware and applications, but also
in improving and refactoring existing ones.

• Application developers. The
language provides an overview of,
and introduction to, the best
practices and current state-of-the-art
in distributed computing.

47

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

93Pattern-Oriented Software Architecture

Structure

The pattern language is partitioned into 13 problem areas…
… ranging from strategic infrastructural concerns to tactical aspects of

component design and resource management:

• From Mud to Structure
• Distribution Infrastructure
• Application Control
• Interface Partitioning
• Component Partitioning
• Concurrency
• Synchronization
• Event Handling
• Adaptation & Extension
• Object Interaction
• Modal Behavior
• Resource Management
• Database Access

Language
Entry From Mud

to Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control

Object
Interaction

Database
Acccess

Modal
Behavior

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

94Pattern-Oriented Software Architecture

Content

The pattern language integrates 114 patterns, and connects to
about 150 patterns from other pattern languages:

Domain Model, Layers, Broker, Client-Dispatcher-Server, Pipes and Filters, Shared Repository, Blackboard, Model-View-Controller, Presentation-Abstraction-
Control, Reflection, Microkernel, Domain Object, Explicit Interface, Extension Interface, Proxy, Facade, Object Group, Whole-Part, Composite, Master-Slave,
Half-Object plus Protocol, Half-Sync/Half-Async, Leader/Followers, Active Object, Monitor Object, Guarded Suspension, Future, Thread-Safe Interface,
Double-Checked Locking, Strategized Locking, Scoped Locking, Thread-Specific Storage, Immutable Value, Reactor,
Proactor, Acceptor-Connector, Asynchronous Completion
Token, Interceptor, Bridge, Visitor, Decorator, Template
Method, Strategy, Wrapper Facade, Command Processor,
View Handler, Forwarder-Receiver, Publisher-Subscriber,
Adapter, Command, Chain of Responsibility, Mediator,
Memento, Composite Message, Double Dispatch,
(Objects for) State, Collections for State, Execute-Around
Object, Combined Method, Enumeration Method, Batch
Method, Null Object, Interpreter, Container, Component
Configurator, Object Manager, Annotations,
Coordinator, Lookup, Iterator,
Pooling, Caching, Evictor,
Activator, Leasing, Counting
Handle, Explicitly Counted
Object, Linked Handles,
Flyweight, Eager Acquisition,
Partial Acquisition, Lazy
Acquisition, Lifecycle Callback,
Database Access Layer, Data Mapper,
Row Data Gateway, Table Data
Gateway, Active Record, Abstract
Factory, Builder, Mutable Companion,
Factory Method, Disposal Method, Prototype, …

48

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

95Pattern-Oriented Software Architecture

Presentation (1)

The presentation of the pattern language is structured
into three levels:

• A general introduction outlines intent, scope, audience, structure and
content of the language

• An introduction to each problem area presents
• the challenges arising in that problem area,
• the original abstracts of all patterns that

address these challenges,
• diagrams that illustrate how the patterns

are integrated into the language,
• A brief discussion and comparison of

the patterns.

• The pattern descriptions in Alexandrian form

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

96Pattern-Oriented Software Architecture

Presentation (2)

All patterns are described in
Alexandrian form

• Stars rating the maturity of the
pattern

• General context and "inbound"
patterns – those patterns in
whose realizations the pattern
can be of use

• Problem and forces

• Solution description and visual
sketch

• Discussion of consequences,
core implementation hints, and
"outbound" patterns that can help
realizing the solution

49

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

97Pattern-Oriented Software Architecture

Known Uses

The language has informed the
development of multiple real
world systems:

• Communication and Component
Middleware (CORBA, .NET, JEE)

• Network Management and Control
Systems

• Warehouse Management

• Medical Imaging

• Real-Time Telecommunication

• Supervisory Control and Data
Acquisition Systems

• ...

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

98Pattern-Oriented Software Architecture

Warehouse Management Revisited

The pattern language for distributed computing suggests further
patterns that can complete the architecture of the warehouse
management system:

• Reactor to dispatch logging records
that can arrive currently to multiple
(concurrent) handlers that process
the records

• Component Configurator to support
(re-)configuration and deployment
without degrading availability

• Application Controller to provide
workflow support

• ... (see POSA4) ...

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

50

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

99Pattern-Oriented Software Architecture

Dispatching Logging Records Efficiently

Use a Reactor for receiving, demultiplexing, and dispatching logging
records that can arrive concurrently from clients efficiently to handler
threads in a Leader/Followers (or Half-Sync/Half-Async) design that
process these records.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

100Pattern-Oriented Software Architecture

Reactor at a Glance

Problem
How can we provide an event

handling infrastructure so that:
• Events can arrive concurrently

from multiple clients?
• Event throughput is maximized?

Solution
Separate event demultiplexing and

dispatching from event processing:
• A Synchronous Event Demultiplexer detects

and demultiplexes events that occur on a
set of event sources (Handles).

• A Reactor provides functionality to dispatch
events to application services realized
as Event Handlers.

maintains

*

*

notifies

owns

Reactor

register()
unregister()
handle_events()

Event Handler

handle_event()
get_handle()

Event
Demuxer

select()

Handle Concrete
Event Handler

void handle_events() {
// Listen for events to occur.
result = select(…);

// Dispatch event handler.
for (HANDLE h = 0; h < max_Handle; ++h) {

if (FD_ISSET (&read_fds, h)
handler_table[h].event_handler->

handle_event(READ_EVENT);
// Same for WRITE and EXCEPT events.

}
}

void handle_event(Event e) {
switch (e) {

case READ_EVENT: // …
case WRITE_EVENT: // …
// …

}
}

51

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

101Pattern-Oriented Software Architecture

Run-Time Configurability

Introduce a configuration and activation service realized as a
Component Configurator to ensure run-time deployment,
configuration, and exchange of components and services without
degrading the availability of other system components.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

102Pattern-Oriented Software Architecture

Component Configurator at a Glance

Problem
How can we support run-time

(re-) deployment and (re-)
configuration of a system?

Solution

Provide an infrastructure for run-time
lifecycle control of components.

• Components provide Configuration Interfaces
separated from their operational interfaces

• A Component Repository maintains the
component (to be) used in a specific
system configuration.

• A Component Configurator controls and
monitors the deployment and configuration
of components.

Component
Configurator

install()
uninstall()

*

Component
Repository

insert()
remove()

Configuration
Interface

init()
fini()
suspend()
resume()
info()
service()

Concrete
Component1

Concrete
Component2

maintainsinstalls

52

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

103Pattern-Oriented Software Architecture

Workflow Support

Introduce an Application Controller for
workflow driven applications, such as
Receiving and Shipping, that decides
what UI view to display and what
UI controllers and commands to offer
in a given workflow state.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

104Pattern-Oriented Software Architecture

Application Controller at a Glance

Problem
How can we design workflow-oriented

user interfaces so that:

• Workflow information is not scattered
across multiple UI controllers?

• Workflow logic is not coupled with
presentation logic?

Solution
Introduce an Application Controller

that captures the application workflow
to provide the UI with information about:

• What Commands can be executed in a specific workflow state in response
to concrete request.

• What View to display in the UI.

Command

execute()

Application
Controller

getCmd()
getView()

creates

User Interface
executes

gets views
& commands

View

display()

displays

creates

53

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

105Pattern-Oriented Software Architecture

Pattern Languages

The Concept

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

106Pattern-Oriented Software Architecture

A Pattern Network for A Domain

A pattern language is a collection of patterns that build on each
other to generate a system.

• A pattern in isolation solves an isolated design problem; a pattern language
builds a system. It is through
pattern languages that
patterns achieve their
fullest power.
James O. Coplien

generates

generates

Language
Entry

From Mud
to Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control

Object
Interaction

Database
Acccess

Modal
Behavior

54

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

107Pattern-Oriented Software Architecture

A Process and a Thing

A pattern language is both a process and a thing:
• How to design a system of

a specific type or domain?

• What design space exists
for this type of system?

• How to create a specific, feasible
design option systematically?

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

Communication
Services

OS-Access
Layer

Broker

Component
Configurator
Component
Configurator

Proxy Proxy

Broker

Admin
Controllres

Admin
Views

AdminClient

Picking
Controllres

Picking
Views

PickingClient

Broker

Logging
HandlerThreadPool

*

Reactor

Broker

Scheduler/
ActivationList

Service
Request

Service
Request

Service
Request

WarehouseRepHalfX

Many more...

Language
Entry

From Mud
To Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control

Object
Interaction

Database
Acccess

Modal
Behavior

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

108Pattern-Oriented Software Architecture

The Things

The thing of a pattern language can be any domain in software:
• A type or domain of software system,

such as for Distributed Computing,
Enterprise Applications, or
Warehouse Management.

• A technical domain, such as Security,
Resource Management, Messaging,
Remoting, and Component Development.

• A good programming style, such as for
C++ memory management and
Java exception handling.

55

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

109Pattern-Oriented Software Architecture

The Process (1)

The domain-specific process to create the thing of a pattern
language is defined by the language's pattern network and the
creation processes for the patterns within this network:

• One or more patterns define the
entry point into the language.

• The creation process for the chosen
entry point pattern describes how
to resolve this pattern’s problem,
if feasible by using other patterns.

• Navigating the network, descending
from the entry pattern, and applying
the creation processes of the
visited patterns defines a pattern
sequence that creates the
system under development.

Layers

Broker

Reactor

MVC

Reflection

Proxy Acceptor-
Connector

Leader/
Followers

... Brokers enable the exchange of
requests and responses ... Often the
core of a broker is based on a Reactor
design ... Servants must come along
with appropriate client-side and
server-side Proxies ...

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

110Pattern-Oriented Software Architecture

The Process (2)

The process defined by a pattern language gives concrete and
precise guidance in developing systems for a specific domain:

• What are the key problems to be resolved?

• In what general order should the problems
be tackled?

• What alternatives exist for resolving a specific
problem?

• How are mutual dependencies between
the problems to be handled?

• How is each individual problem resolved
most optimally in the presence of its surrounding problems?

This concreteness and domain-orientation differentiates the processes
defined by pattern languages from general purpose processes.

56

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

111Pattern-Oriented Software Architecture

Quality

A good pattern language helps
to create high-quality systems:

• The selection of their constituent
patterns as well as their arrangement
is based on successful design and
development experience.

• Its constituent patterns, as well as the
supported pattern sequences,
represent thoughtful designs.

Language
Entry

From Mud
to Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control
Object

Interaction

Database
Acccess

Modal
Behavior

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

112Pattern-Oriented Software Architecture

Forces

Forces, the heart of every pattern language:
• Guide and inform the concrete paths

through a language.

• Specify the requirements and constraints
of the problems along these paths.

Forces reside at three levels:
• Language: core forces of the domain,

e.g., real-time and flexible.

• Problem areas: forces related to
technical concerns in the domain,
e.g., distribution infrastructure and
event handling.

• Patterns: forces of an individual pattern.

Messaging Remote Method Invocation

throughput &
loose coupling

determinism &
tight coupling

Language
Entry

From Mud
to Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control

Object
Interaction

Database
Acccess

Modal
Behavior

57

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

113Pattern-Oriented Software Architecture

Context

Pattern Contexts Define Topology and Architectural Style
• The context of a pattern in a language describes when in general the problem

the pattern addresses can arise, and lists all patterns of the language in which
implementation this problem can occur.

• The contexts of all patterns in a language define a pattern topology that
includes all supported pattern sequences.

• The contexts of all patterns in a language define a set of architectural styles.

Half-Sync/Half-Async **

When developing a concurrent
Encapsulated Implementation or a
network server that employs a Reactor or
Proactor event handling infrastructure ...

... we need to make performance efficient
and scalable while also ensuring that any
use of concurrency simplifies programming.

Language-specific Context

General Context

Language
Topology

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

114Pattern-Oriented Software Architecture

Grammar and Vocabulary

The patterns in a pattern language define its vocabulary, the
supported pattern sequences its grammar.

Broker → Layers
→ Reflection
→ Wrapper Facade
→ (Reactor | Proactor)
→ Acceptor-Connector
→ (Leader/Followers | Half-Sync/Half-Async)
→ Forwarder-Receiver
→ (Strategy | Template Method)
→ Proxy → Facade → Adapter

Broker → Layers → Reflection → Wrapper
Facade → Reactor → Acceptor-Connector →
Forwarder-Receiver → Strategy → Proxy →
Facade → Adapter

Broker → Layers → Reflection → Wrapper
Facade → Proactor → Acceptor-Connector
→ Forwarder-Receiver → Template Method
→ Proxy → Facade → Adapter

Broker → Layers → Reflection → Wrapper
Facade → Reactor → Acceptor-Connector →
Leader/Followers → Forwarder-Receiver →
Template Method → Proxy → Facade → Adapter

Broker → Layers → Reflection → …

Pattern Sequences

Pattern Language Grammar

58

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

115Pattern-Oriented Software Architecture

Genericity (1)

A pattern language spawns a
whole design space, not just a
single specific, concrete
design:

• Each pattern in the language may
refer to multiple alternative patterns
for implementing a particular aspect of
its solution.

• With different constraints and
requirements different alternatives
apply, which leads to different pattern
sequences.

• Different pattern sequences result in
architectures with different designs
and correspondingly different qualities.

Reactor

Half-Sync/
Half-Async

Leader/
Followers

Broker

Potential Concurrency
architectures for an ORB core
• reactive / synchronous
• proactive / asynchronous

Proactor

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

116Pattern-Oriented Software Architecture

Genericity (2)

Genericity implies that a pattern
language can "be implemented a
million times over without ever
being twice the same".
Christopher Alexander

Communication
Services

OS-Access
Layer

Broker

Component
Configurator

Component
Configurator

Proxy Proxy

Broker

Admin
Controllres

Admin
Views

AdminClient

Picking
Controllres

Picking
Views

PickingClient

Broker

Logging
HandlerThreadPool

*

Reactor

Broker

Scheduler/
ActivationList

Service
Request

Service
Request

Service
Request

WarehouseRepHalfX

Reactor Event_
Handler

*

HTTP_
Acceptor

HTTP_
Handler

select() Handle

dispatches

maintains*
*

notifies

owns

Thread_
Pool

shares

(de)
activates

*

join()
leader()

LRU

LFU Evictor Virtual_
Filesystem

Abstract_
Eviction Guard

Service
Interface

A. Method
Request

Future

Activation
List

Scheduler

*

Memento

Scheduling
StrategyFIFO

Macro
Command

Warehouse
Core

Store
Item

Fetch
Item

Storage
Capacity

*

Abstract
Visitor

Leafs
Only

Abstract
Strategy

LoadIn
Layers

Abstract
Iterator

*

Storage
Manager

Real
Bin

Hazardous
SOC

SOC
Factory

*

Hazardous
Value

Bin

*

Abstract
Storage

Warehouse

Successor

Atomic
Storage

Composite
Storage

Aisle

Client

Distribution
Infrastructure

Event Handling
Infrastructure

Concurrent
Component

Language
Entry

From Mud
to Structure

Distribution
Infrastructure

Component
Partitioning

Concurrency

Interface
Partitioning

Adaptation &
Extension

Event Handling

Synchronization
Resource

Management

Application
Control

Object
Interaction

Database
Acccess

Modal
Behavior

59

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

117Pattern-Oriented Software Architecture

Maturity

A pattern language is always work in progress:
• Design experience evolves over time.

• Software technology evolves over time.

• Individual patterns evolve over time

• …

Consequently:
• The arrangement of patterns in a language …

• The concrete patterns of a language …

• The pattern descriptions …

… are subject to continuous revision, improvement, and evolution!

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

118Pattern-Oriented Software Architecture

Smart Solutions

A fool with a tool is still a fool – a pattern language does not
automatically lead to quality designs:

• A pattern language supports—through its pattern sequences—the creation of
high-quality, smart architectures and solutions.

• Choosing an inappropriate pattern sequence for a system under development
results in an inappropriate design for that particular system (though that design
may be of high quality under different constraints and requirements).

• Using a pattern language,
therefore, requires smart people,
people who have some
software development
experience, appreciate
the language's power,
and use it with care.

60

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

119Pattern-Oriented Software Architecture

Understanding

A pattern language initiates a dialog about a system and tells
many software engineering success stories:

• It encourages its users to think first
and then act, not vice versa.

• It forces its users to consider, evaluate,
and weight alternative design options
for addressing specific challenges.

• It guides its users through a design
space, helping them to explore and
understand this space.

• Each concrete pattern sequence tells a
success story about how to design a software
system under a specific set of forces
(requirements/constraints).

Communication
Services

OS-Access
Layer

Broker

Component
Configurator

Component
Configurator

Proxy Proxy

Broker

Admin
Controllres

Admin
Views

AdminClient

Picking
Controllres

Picking
Views

PickingClient

Broker

Logging
HandlerThreadPool

*

Reactor

Broker

Scheduler/
ActivationList

Service
Request

Service
Request

Service
Request

WarehouseRepHalfX

ERP

Warehouse
Management

Material Flow
Control

H
C
I

Base Automation

Warehouse
Representation

Fault
Mgr

User
Mgr

DB
Access

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

120Pattern-Oriented Software Architecture

Application Area: Construction

The major application area for pattern languages is software
construction.

Much of today's software is consciously
designed with pattern languages.

• Telecommunication
Management Networks

• Real-Time (Tele-)
Communication Applications

• Hot Rolling Mill Process Automation

• Medical Imaging

• Power Distribution

• Warehouse Management

• Middleware

• Media and News Distribution

A Telegram Handling Framework

Do ThatDo This

class Forwarder {
public:
void send(Msg& m) {
pack(msg);
deliver(msg);
}
private:
void pack(Msg& m);
void deliver(Msg& m);
};

Core Architecture

Command

Core-
Implementation

Adaptable
Interfaces

Forwarder Receiver

Telegram
Office

Customer-specific
Adaptations

Log
Everything

Command
Processor

Logging
Strategy

Forwarder-
Receiver

Strategy

Command
Processor

Command

61

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

121Pattern-Oriented Software Architecture

Application Area: Understanding and Using

Pattern languages help understanding modern software products.
How are they designed, how do they work, why are they how they are?

• CORBA / CCM

• J(2)EE / EJB

• Swing

• .NET

• …

How do you Implement Singleton in .NetImplementing Singleton in .Net

How do you make an instance of an object globally available and guarantee that only one instance of the
class is created?

Singleton

How do you Implement Broker in .Net?Implementing Broker with .Net Remoting

How can you structure a distributed system so that application developers don’t have to concern themselves
with the details of remote communication?

Broker

Application Domain B

Client

Formatters

Channels

Envoy Sinks

Real Proxy

Transparent Proxy

Remote Object

Formatters

Channels

Server Context Sinks

Stack Builder Sinks

Network

Application Domain A

Distributed
Application

.NET
Remoting

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

122Pattern-Oriented Software Architecture

Application Area: Technology Enabling

Patterns support several other software technologies:
• Aspect-Oriented Software Development

• Model-Driven Software Development

• Product-Line Architectures

Code
Generation

Framework
Configuration#include <iostream.h>

#include “FooS.h”

int maín (int argc, char *argv[]) {
try {

// Initialize the ORB and POA.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references(“RootPOA”);

PortableServer::POA_var poa =
PortableServer::POA::_narrow(obj);

PortableServer::POAManager_var mgr =
poa->the_POAManager();

mgr->activate();

// Create the servant and write its IOR to stdout.
Foo_I foo_servant;
FooI_var foo = foo_servant._this();
CORBA::String_var str =

orb->object_to_string(foo);
cout << str.in() << endl;

// Start the ORB event loop.
orb->run();

}
catch (const CORBA::Exception& e) { return –1; }
return 0;

}

Domain
Modeling

Pattern-Based Architecture
Style Selection

Pattern-based
Architecture Refinement

62

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

123Pattern-Oriented Software Architecture

GOF is not a Pattern Language

The GOF patterns do not form a
pattern language:

• A common misconception that
the GOF never claimed.

• It is the map in the book that
causes this misconception.

But a map is not the territory!
• It is largely not about uses relationships.

• The uses shown are often not useful.

The map is sometimes misleading:
• What is the most important pattern?

• What are the most isolated patterns?

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

124Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

63

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

125Pattern-Oriented Software Architecture

Observations (1)

Quality architectures expose
a high pattern density:

• Patterns that focus on problem
domain understanding and broad
architecture help in specifying the
base-line architecture.

• Patterns further help in refining
the base-line architecture.

• Patterns that are focused on the
languages and technologies help
in the implementation of a
software architecture.

Forwarder-
Receiver

Acceptor-
Conector

Strategy

Reactor

Strategy

Proxy
Proxy

Adapter

Broker

Facade

Reflection

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

126Pattern-Oriented Software Architecture

Observations (2)

Patterns support the development of frameworks:
• Patterns for structural decomposition

and component cooperation support
the creation of usable software systems
and components with a stable and
reasoned software design.

• Patterns for flexibility and configuration
open a stable design for adaptation,
extension, and evolution in a well-defined
manner.

• Frameworks = Patterns + Components
Ralph Johnson

A Telegram Handling Framework

Do ThatDo This

class Forwarder {
public:
void send(Msg& m) {
pack(msg);
deliver(msg);
}
private:
void pack(Msg& m);
void deliver(Msg& m);
};

Core Architecture

Command

Core-
Implementation

Adaptable
Interfaces

Forwarder Receiver

Telegram
Office

Customer-specific
Adaptations

Log
Everything

Command
Processor

Logging
Strategy

Forwarder-
Receiver

Strategy

Command
Processor

Command

64

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

127Pattern-Oriented Software Architecture

Soft Benefits

• Solutions to design problems are based
on proven standard concepts.

• Consideration of alternatives are possible.

• Explicit consideration of developmental
and quality-of-service aspects.

• Improved communication.

• Improved documentation.

• Knowledge is available to the whole organization.

Soft benefits support understanding!

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

128Pattern-Oriented Software Architecture

Hard Benefits*

• Reduction of original development costs:

• 10% – 15 % for individual systems

• 20% – 35 % for product lines
(total over all instantiations)

• Reduction of time to market:

• Up to 10% for individual systems

• Up to 20% for product lines

• Reduction of maintenance costs:

• 15% - 20%

Hard benefits support productivity!

* Based on a Siemens-internal survey on software projects that used
patterns and whose products were in operation for at least three years

65

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

129Pattern-Oriented Software Architecture

Caveats

• Hype / Resistance

• Finding the right patterns is not always easy.

• Implementing patterns correctly requires
some experience.

• Using patterns does not automatically
result in a high-quality design.

• People often see patterns as blueprints
and modular building blocks.

• Many people expect that patterns help
to automate software development.

• People often fell prey to the
"hammer–nail" syndrome.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

130Pattern-Oriented Software Architecture

Lessons Learned

• Patterns are useful but are no silver bullet.

• Patterns complement but do not replace
existing technology and methods.

• Patterns do not substitute for human
intelligence, creativity, judgement,
and diligence in software engineering.

• Education is crucial for success:
seminars followed by training with workshops
and mentored follow-up.

• Don't force developers to use patterns.

• Apply patterns carefully.

• JUST DO IT!

66

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

131Pattern-Oriented Software Architecture

Where we are

� Introduction

� Stand-Alone Patterns

� Pattern Complements / Pattern Compounds

� Pattern Stories / Pattern Sequences

� Pattern Languages

� Outroduction

� References

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

132Pattern-Oriented Software Architecture

Design Patterns (Gang of Four)

The Gang of Four book is the first, and still the most popular pattern
book. It contains 23 general purpose design patterns and idioms for:

• Object creation: Abstract Factory, Builder, Factory Method, Prototype, and Singleton

• Structural Decomposition: Composite and Interpreter

• Organization of Work: Command, Mediator,
and Chain of Responsibility

• Service Access: Proxy, Facade, and Iterator

• Extensibility: Decorator and Visitor

• Variation: Bridge, Strategy, State, and Template Method

• Adaptation: Adapter

• Resource Management: Memento and Flyweight

• Communication: Observer

67

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

133Pattern-Oriented Software Architecture

Design Patterns (in Java and C#)

The Design Patterns Java Workbook and Design Patterns in C# are
books on implementing the Gang of Four patterns and selected
patterns from other sources in Java and C#.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

134Pattern-Oriented Software Architecture

A System of Patterns

A System Of Patterns is the first volume of the POSA series and the
second most popular pattern book. It contains 17 general purpose
architectural patterns, design patterns, and idioms for:

• Structural Decomposition: Layers, Blackboard,
Pipes and Filters, and Whole Part

• Distributed Systems: Broker, Forwarder- Receiver,
and Client-Dispatcher-Server

• Interactive Systems: Model-View-Controller and
Presentation-Abstraction-Control

• Adaptive Systems: Microkernel, Reflection

• Organization of Work: Master Slave

• Service Access: Proxy

• Resource Management: Counted Pointer,
Command Processor, and View Handler

• Communication: Publisher-Subscriber

68

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

135Pattern-Oriented Software Architecture

Patterns for Concurrent and Networked Objects

Patterns For Concurrent And Networked Objects is the second
volume of the POSA series. It contains 17 architectural patterns,
design patterns and idioms for concurrent, and networked systems:

• Service Access and Configuration: Wrapper Facade,
Component Configurator, Interceptor,
and Extension Interface

• Event Handling: Reactor, Proactor,
Asynchronous Completion Token, and Acceptor-Connector

• Synchronization: Scoped Locking, Double-Checked Locking,
Strategized Locking, and Thread-Safe Interface

• Concurrency: Active Object, Monitor Object,
Leader/Followers, Thread-Specific Storage,
and Half-Sync/Half-Async

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

136Pattern-Oriented Software Architecture

Patterns for Resource Management

Patterns For Resource Management is the third volume of the POSA
series. It contains 10 patterns that address the lifecycle of resources:
memory, threads, connections, and services:

• Resource Acquisition: Lookup, Lazy Acquisition,
Eager Acquisition, and Partial Acquisition

• Resource Lifecycle: Caching, Pooling, Coordinator,
and Resource Lifecycle Manager

• Resource Release: Leasing and Evictor

69

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

137Pattern-Oriented Software Architecture

Patterns for Distributed Computing

A Pattern Language for Distributed Computing is the fourth volume
of the POSA series. It contains 114 (well-known) patterns and
connects to about 180 patterns from other sources. The language
covers 13 "problem areas" that are relevant for distributed computing.

• Base-Line Architecture: 10 patterns
• Distribution Infrastructure: 12 patterns
• Event Handling: 4 patterns
• Interface Partitioning: 11 patterns
• Component Partitioning: 6 patterns
• Application Control: 8 patterns
• Concurrency: 4 patterns
• Synchronization: 9 patterns
• Object Interaction: 7 patterns
• Adaptation and Extension: 13 patterns
• Modal Behavior: 3 patterns
• Resource Management: 22 patterns
• Database Access: 5 patterns

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

138Pattern-Oriented Software Architecture

Pattern Concept

On Patterns and Pattern Languages is the fifth volume of the POSA
series. It does not present concrete patterns but provides an in-depth
exploration of the pattern concept:

• Stand-Alone Patterns

• Pattern Complements

• Pattern Compounds

• Pattern Stories

• Pattern Sequences

• Pattern Languages

70

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

139Pattern-Oriented Software Architecture

Security Patterns

Security Patterns contains 46 patterns that help building secure
applications and system. The patterns reside at multiple levels:

• Enterprise Level Security: patterns for security management, principles, institutional
policies, and enterprise needs.

• Architectural Level Security: patterns providing
solutions responding to enterprise level policies.

• User Level Security: patterns concerned with
achieving security in operational contexts.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

140Pattern-Oriented Software Architecture

Architecting Enterprise Solutions

Architecting Enterprise Solutions contains 26 patterns that help
building secure, flexible, and available high-capacity internet systems:

• Fundamental: patterns that shape the base-line
architecture of internet systems.

• System Performance: patterns that address
performance and throughput.

• System Control: patterns concerned with
security, logging, tracing, and monitoring.

• System Evolution: patterns that help building
flexible, evolvable internet systems.

71

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

141Pattern-Oriented Software Architecture

Server Component Patterns

Server Component Patterns is a pattern language of 37 patterns that
illustrates core design concepts for containers as well as fundamental
design criteria for components.

• Core Infrastructure: patterns that describe the types
of components and their hosting environment.

• Component Building Blocks: patterns that help
structuring a component.

• Component Environment: patterns that support accessing
a component in a container and in application.

• Component Deployment: patterns that help deploying
components.

• The book outlines how each pattern is implemented
in EJB, CCM, and COM+.

• A separate part in the book describes
the EJB implementation in full depth.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

142Pattern-Oriented Software Architecture

Remoting Patterns

Remoting Patterns is a pattern language for remoting that consists of
31 patterns:

• Basic Remoting: patterns that detail the Broker architecture
underlying remoting infrastructures.

• Identification: patterns that help finding and accessing
remote objects.

• Lifecycle Management: patterns that address the lifecycle
of remote objects and support resource management.

• Extension: patterns that allow to add out-of-band
and QoS functionality to remote objects.

• Invocation Asynchrony: patterns that support asynchronous
access to remote objects.

• The book also includes technology projections of the
language onto .NET, CORBA, and Web Services.
It thus provides a vendor-independent view onto remoting.

72

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

143Pattern-Oriented Software Architecture

Computer-Mediated Interaction Patterns

Patterns for Computer-Mediated Interaction is a pattern language for
designing user interfaces for collaborative work environments and
tools that consists of 82 patterns:

• Community support: patterns that address arrival, guidance
and survival in an interactive electronic community.

• Group support: patterns that help working on shared
documents, create places for collaboration, support
communication, and raise group awareness.

• Base technology: patterns for handling sessions,
management of common data, and ensuring
data consistency.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

144Pattern-Oriented Software Architecture

Patterns for Fault Tolerant Software

Patterns for Fault Tolerant Software is a pattern language of 63
patterns for designing highly available software systems:

• Error detection: patterns for detecting faults
and the errors they cause.

• Error processing, including recovery: patterns
for fixing errors by resuming computation at
a known stable state.

• Error mitigation: patterns for the mitigation of error
effects without changing the application or system state.

• Fault treatment: patterns for repairing faults.

73

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

145Pattern-Oriented Software Architecture

Robust Communications Software

Robust Communications Software is a pattern collection for
designing highly available, scalable, and reliable systems:

• Object creation and access

• Thread scheduling.

• Distribution of work

• Fault protection

• Recovery

• Messaging

• Overload handling

• Failover

• Software installation

• System and software operability

• Debugging

• Capacity management

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

146Pattern-Oriented Software Architecture

Patterns of Enterprise Application Architecture

Patterns of Enterprise Architecture is a pattern language with 51
patterns that illustrates how to design 3-tier enterprise business
information applications.

• Domain Logic: patterns that help partitioning the
application domain into tangible parts.

• Data Source: patterns that provide fundamental
ways of designing an object-relational mapping.

• OR-Behavioral: patterns that help detailing
an object-relational mapping.

• Web Presentation: patterns regarding the design
of web-based UIs.

• Key strength of the book is its fine collection
of patterns to map from an object-oriented
application to a relational database. About 30 patterns
in the language deal with this particular subject.

74

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

147Pattern-Oriented Software Architecture

Enterprise Integration Patterns

Enterprise Integration Patterns is a pattern language with 66 patterns
on message-based computation and communication.

• Integration Styles: patterns that describe fundamental EI approaches.

• Messaging Systems: patterns for structuring
message-oriented middleware.

• Messaging Channels: patterns for different message
exchange strategies.

• Message Construction: building blocks for messages.

• Message Routing: patterns for routing messages through
a system.

• Message Transformation: patterns that describe how to
enrich messages with additional information and to transform
messages into other formats.

• Messaging Endpoints: patterns for designing message
recipients.

• System Management: patterns for MoM monitoring and control.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

148Pattern-Oriented Software Architecture

Small Memory Software

Small Memory Software includes 26 patterns that help building
embedded systems with stringent memory limitations.

• Architecture: patterns for designing small memory software.

• Secondary Storage: patterns to design external
data repositories.

• Compression: patterns for saving memory footprint.

• Small Data Structures: patterns for designing
data structures with low memory consumption.

• Memory Allocation: patterns with various allocation
techniques and strategies.

75

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

149Pattern-Oriented Software Architecture

PLoPD Series

Pattern Languages Of Program
Design vol. 1 – 5 include edited
collections of patterns from the
PLoP (Pattern Languages of
Programming) conference series:

• The patterns in these volumes are not all of
high quality, some are even questionable.

• Highlights are definitely the
telecommunication analysis patterns
(PLoPD1 & PLoPD2), as well as some
organizational patterns (PLoPD1), patterns
for accessing databases (PLoPD2, PLoPD3
& PLoPD4), as well as some general
purpose patterns (in all volumes).

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

150Pattern-Oriented Software Architecture

J2EE Patterns

Core J2EE Patterns and Core Security Patterns describes the
patterns that help to build successful and secure J2EE applications.

• Many Core J2EE patterns also apply in Microsoft's .NET and MCF
(formerly code-named Indigo) worlds!

76

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

151Pattern-Oriented Software Architecture

.NET Patterns

Enterprise Solution Patterns Using Microsoft .NET describes 18
patterns that help to build successful .NET applications.

• The patterns are not at all Microsoft specific, but describe how they are implemented in
Microsoft .NET or should be implemented when building .NET-based enterprise systems.

• The patterns in this book address the same domain and
as Patterns of Enterprise Application Architecture.

How do you create a systems infrastructure that
can meet critical operational requirements?

Performance and Reliability

How do you communicate with objects that reside
in different processes or different computers?

Distributed Systems

How do you divide an application into layers and
then deploy them onto a multi-tiered hardware
infrastructure?

Deployment

How do you create dynamic Web applications?Web Presentation

ProblemCluster

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

152Pattern-Oriented Software Architecture

Programming Patterns

Advanced C++ Styles and Idioms
presents useful patterns that help
mastering the C++ language.

Smalltalk Best Practice Patterns presents
more than 90 idioms for programming in
Smalltalk. Yet many of these patterns
apply to other languages as well, in
particular C++ and Java.

Implementation Patterns presents 77
patterns for code-level detail, with a focus
on Java.

Concurrent Programming in Java
presents many patterns that help with
implementing concurrent programs in
Java. Many patterns apply in other
languages as well, specifically in C++.

77

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

153Pattern-Oriented Software Architecture

Analysis Patterns

Analysis Patterns includes a collection of patterns that describe the
structure and workflow of systems in the health care and finance
application domains.

• Yet many of these patterns apply in other domains
as well, for instance in most business information
systems, as well as in a large number of systems
that observe and measure values, and trigger
actions in response to these observations and
measurements, such as process control systems.

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

154Pattern-Oriented Software Architecture

Domain-Driven Design

Domain-Driven Design is a useful pattern language that helps you to
identify a proper domain model for an application and to transfer this
model into a feasible component-based software architecture.

• Domain-Driven Design is more about development process
rather than software technology or software architecture.

• The book helps you keeping the focus on the "business"
case of a software system, and providing a partitioning
of its functionality that is appropriate for that business.

78

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

155Pattern-Oriented Software Architecture

Pattern Almanac

The Pattern Almanac is an index to many patterns that are
documented and published somewhere.

• The almanac classifies the patterns according to different criteria, such as domain, scope,
etc., and presents the intent of each pattern as well as a reference to its original source.

• The almanac serves as a good starting
point to search for a specific pattern.

• There is an online-almanac available:
http://www.smallmemory.com/almanac

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

156Pattern-Oriented Software Architecture

Other Pattern Books

Patterns, Patterns, ... Patterns? There are
many more "pattern" books available on the
bookshelf.

• Discretion does not allow us to comment on some
books, unfortunately :-)

• Some books we simply have not read, so there may be
some yet undiscovered treasures on the bookshelf.

79

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

157Pattern-Oriented Software Architecture

References (1)

C. Alexander: The Timeless Way of Building, Oxford
University Press, 1979

M. Fowler: UML Distilled, Addison-Wesley, 1997

R.P. Gabriel: Patterns of Software, Oxford
University Press, 1996

E. Gamma, R. Helm, R. Johnson, J. Vlissides:
Design Patterns – Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

Various Eds. : Pattern Languages of Program
Design, Vol. 1- 5, Addison-Wesley, 1995, 1996,
1997, 1999, 2005

F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal: Pattern-Oriented Software
Architecture—A System of Patterns, John Wiley
and Sons, 1996

D.C. Schmidt, M. Stal , H. Rohnert, F.Buschmann:
Pattern-Oriented Software Architecture—
Patterns for Concurrent and Networked Objects,
John Wiley and Sons, 2000

M. Kircher, P. Jain: Pattern-Oriented Software
Architecture—Patterns for Resource
Management, John Wiley and Sons, 2004

F. Buschmann, K. Henney, D.C. Schmidt: Pattern-
Oriented Software Architecture—A Pattern
Language for Distributed Computing, John Wiley
and Sons, 2007

F. Buschmann, K. Henney, D.C. Schmidt: Pattern-
Oriented Software Architecture—On Patterns
and Pattern Languages, John Wiley and Sons,
2007

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

158Pattern-Oriented Software Architecture

References (2)

M. Fowler: Analysis Patterns, Addison-Wesley,
1997

E. Evans: Domain-Driven Design, Addison-Wesley,
2004

M. Fowler: Patterns of Enterprise Application
Architecture, Addison-Wesley, 2003

G. Hohpe, B. Woolf: Enterprise Integration Patterns,
Addison-Wesley, 2004

M. Völter, M. Kircher, U. Zdun: Remoting Patterns,
John Wiley and Sons, 2004

J. Noble, C. Weir: Small Memory Software,
Addison-Wesley, 2000

K. Beck: Smalltalk Best Practice Patterns, Prentice
Hall, 1997

J.O. Coplien: Advanced C++ Styles and Idioms
Addison-Wesley, 1992

D. Lea: Concurrent Programming in Java, Design
Principles and Patterns, Addison-Wesley, 1999

M. Völter, A. Schmid, E. Wolff: Server Component
Patterns — Component Infrastructures illustrated
with EJB, John Wiley and Sons, 2002

D. Alur, J. Crupi, D. Malks: Core J2EE Patterns –
Best Practices and Design Strategies, Prentice
Hall, 2001

C. Steel, R. Nagappan, R. Lai: Core Security
Patterns: Best Practices and Strategies for J2EE
Web Services, and Identity Management, 2005

Microsoft Corporation: Enterprise Solution Patterns
Using Microsoft .NET, Microsoft Press, 2003

S. Metsker: Design Patterns Java Workbook,
Addison-Wesley, 2002

S. Metsker: Design Patterns C#, Addison-Wesley,
2004

G. Utas: Robust Communications Software –
Extreme Availability, Reliability, and Scalability
for Carrier Grade Systems, John Wiley and Sons,
2006

80

© Frank Buschmann, Kevlin Henney, all rights reserved

P
A

 T
 T

 T
 E

 R
 N

 –
O

 R
 I

E
N

 T
 E

 D

S
O

 F
 T

 W
 A

 R
 E

 A

 R
 C

 H
 I

T
E

C
 T

 U
 R

 E

159Pattern-Oriented Software Architecture

References (3)

T. Schümmer, S. Lukosch: Patterns for Computer-
Mediated Interaction, John Wiley & Sons, 2007

R. Hanmer: Patterns for Fault Tolerant Software,
John Wiley and Sons, 2008

L. Rising: Pattern Almanac 2000, Addison-Wesley,
2000

J. Vlissides: Pattern Hatching, Addison-Wesley,
1998

D.C. Schmidt, S.D. Houston: C++ Network
Programming, Volume 1 and 2, Addison-Wesley,
2002 / 2003

The Patterns Home Page
http://www.hillside.net/

