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ABSTRACT
The non-blocking work-stealing algorithm of Arora, Blu-
mofe, and Plaxton (henceforth ABP work-stealing) is on its
way to becoming the multiprocessor load balancing technol-
ogy of choice in both industry and academia. This highly ef-
ficient scheme is based on a collection of array-based double-
ended queues (deques) with low cost synchronization among
local and stealing processes. Unfortunately, the algorithm’s
synchronization protocol is strongly based on the use of fixed
size arrays, which are prone to overflows, especially in the
multiprogrammed environments for which they are designed.
We present a work-stealing deque that does not have the
overflow problem.

The only ABP-style work-stealing algorithm that elimi-
nates the overflow problem is the list-based one presented
by Hendler, Lev and Shavit. Their algorithm indeed deals
with the overflow problem, but it is complicated, and intro-
duces a trade-off between the space and time complexity,
due to the extra work required to maintain the list.

Our new algorithm presents a simple lock-free work-stealing
deque, which stores the elements in a cyclic array that can
grow when it overflows. The algorithm has no limit other
than integer overflow (and the system’s memory size) on the
number of elements that may be on the deque, and the total
memory required is linear in the number of elements in the
deque.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—load balancing, lock-free; E.1 [Data]: Data Struc-
tures

General Terms
Algorithms
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1. INTRODUCTION
The ABP work-stealing algorithm of Arora, Blumofe, and

Plaxton [2] has been gaining popularity as the multiproces-
sor load-balancing technology of choice in both industry and
academia [2, 1, 4, 9]. The scheme implements a provably ef-
ficient work-stealing paradigm due to Blumofe and Leiserson
[3] that allows each process to maintain a local work deque,1

and steal an item from others if its deque becomes empty.
The deque’s owner process pushes and pops local work to
and from the deque’s bottom end. To minimize synchro-
nization overhead for the deque’s owner, stolen elements are
taken from the top end of the deque. No elements are added
to the top end of the deque. An ABP deque thus presents
three methods in its interface:

• pushBottom(Object o):
Pushes o onto the bottom of the deque.

• Object popBottom():
Pops an object from the bottom of the deque if the
deque is not empty, otherwise returns Empty.

• Object steal():
If the deque is empty, returns Empty. Otherwise, re-
turns the element successfully stolen from the top of
the deque, or returns Abort if this process loses a race
with another process to steal the topmost element2.

Note that pushBottom and popBottom operations are in-
voked only by the deque’s owner.

Unfortunately, the use of fixed size arrays introduces an
inefficient memory-size/robustness tradeoff: for n processes
and total allocated memory size m, one can tolerate at most
m

n
items in a deque. Using cyclic arrays, or the reset-on-

empty heuristic presented in the original ABP algorithm,3

reduces the chance of overflow but does not eliminate it.
The list-based work-stealing deque algorithm presented by

1Actually, the work-stealing algorithm uses a work-stealing
deque, which is like a deque [8] except that only one process
can access one end of the queue (the “bottom”), and only
Pop operations can be invoked on the other end (the “top”).
For brevity, we refer to the data structure as a deque in the
remainder of the paper.
2In our implementation, as we describe, Abort is also re-
turned if a steal operation lost a race with an array memory
reclamation caused by a concurrent popBottom operation.
3The reset-on-empty heuristic resets top and bottom to
point to the beginning of the array whenever the deque be-
comes empty. It was used by the original ABP algorithm to
make overflow scenarios less frequent.



Hendler, Lev and Shavit[5] uses a list of small arrays to
eliminate the overflow problem. However, it is relatively
complicated, does not use cyclic arrays (and therefore wastes
some memory), and introduces a trade-off between its time
and space complexity due to the extra work required for the
list’s maintenance.

This paper presents the first work-stealing deque that uses
a dynamic-cyclic-array. The algorithm is remarkably sim-
ple, efficient, and completely eliminates the overflow prob-
lem. Also, unlike all previous algorithms, the top and bottom

fields are used merely to indicate the two ends of the deque—
no tag field is required to eliminate the ABA problem. There-
fore, the only restriction on the deque size is due to integer
overflow. A 64-bit integer is large enough to accommodate
64 years of pushes, pops, and steals executing at a rate of
4 billion operations per second, so it appears that this will
not be a problem in practice.

The rest of the paper is organized as follows: Section 2
presents the simplest version of the algorithm, which re-
quires a garbage collector to reclaim unused buffers. Sec-
tion 3 adds to the algorithm the ability to shrink the array
if the deque retracts from its maximum size, and by that
improves its space complexity. Section 4 presents the final
version of the algorithm, that works with a shared pool of
buffers and does not depend upon a garbage collector for
buffer reclamation. Section 5 presents some preliminary ex-
periments results, and we summarize in Section 6.

2. THE BASIC ALGORITHM

2.1 Overview
The deque is implemented using a cyclic array, together

with two indexes: top and bottom, indicating the two ends of
the deque. Specifically, the bottom index indicates the next
available slot in the array where the next new element is
pushed, and is incremented on every pushBottom operation.
The top index indicates the topmost element in the deque (if
there is any), and is incremented on every steal operation.
If bottom is less than or equal to top, the deque is empty.

Since the algorithm uses a cyclic array it makes more
efficient use of the array, and does not need the reset-on-
empty heuristic used in the original ABP algorithm. If a
pushBottom operation discovers that the current circular ar-
ray is full, it enlarges it by copying the deque’s elements into
a bigger array, and pushes the new element into the new en-
larged array. The deque elements stored in the circular array
are indexed modulo its size, and therefore when moving the
elements into a bigger array, there is no need to update top

or bottom although the actual array indexes where the el-
ements are stored might change. Since the only operation
that modifies top is steal, top is never decremented, and
there is no need for a tag field as in all previous work-stealing
algorithms.4

2.2 The deque operations
The pseudocode for the pushBottom, steal and popBottom

operations appears in Figures 1, 2 and 3 respectively. The
steal and popBottom methods are similar to their counter-
parts in the original ABP algorithm. The main difference

4We assume that top never overflows. As explained in the
previous section, with a 64-bit integer implementation this
is a very reasonable assumption.

is that the new algorithm does not have a tag field in the
top variable—instead, it maintains the property that top

is never decremented. The deque object also has a private
casTop method (depicted in Figure 1), which receives two
values for top, old and new, and atomically modifies top to
the new value if and only if it has the old value. In practice
this method is implemented using the Compare-And-Swap
(CAS) instruction, which is widely available on current ma-
chines.

public class CircularWSDeque {
public final static Object Empty = new Object();
public final static Object Abort = new Object();

private final static int LogInitialSize = /* Log of
the initial array size */;

private volatile long bottom = 0;
private volatile long top = 0;
private volatile CircularArray activeArray =

new CircularArray(LogInitialSize);

private boolean casTop(long oldVal, long newVal) {
boolean preCond;
atomically {

preCond = (top==oldVal);
if (preCond)

top=newVal;
}
return preCond;

}

public void pushBottom(Object o) {
1 long b = this.bottom;
2 long t = this.top;
3 CircularArray a = this.activeArray;
4 long size = b - t;
5 if (size >= a.size()-1) {
6 a = a.grow(b, t);
7 this.activeArray = a;

}
8 a.put(b, o);
9 bottom = b+1;
10 }

Figure 1: The pushBottom operation

public Object steal() {
11 long t = this.top;
12 long b = this.bottom;
13 CircularArray a = this.activeArray;
14 long size = b - t;
15 if (size <= 0) return Empty;
16 Object o = a.get(t);
17 if (! casTop(t, t+1))
18 return Abort;
19 return o;

}

Figure 2: The steal operation

The pushBottom operation: As in the original algorithm,
the pushBottom operation inserts the pushed entry to the
deque simply by writing it in the location specified by bottom,
and then incrementing bottom by 1. In our algorithm, how-
ever, the pushBottom operation is also responsible for en-
larging the array if an element is pushed into an already-full



public Object popBottom() {
20 long b = this.bottom;
21 CircularArray a = this.activeArray;
22 b = b - 1;
23 this.bottom = b;
24 long t = this.top;
25 long size = b - t;
26 if (size < 0) {
27 bottom = t;
28 return Empty;

}
29 Object o = a.get(b);
30 if (size > 0)
31 return o;
32 if (! casTop(t, t+1))
33 o = Empty;
34 this.bottom = t+1;
35 return o;

}

Figure 3: The popBottom operation

array. Whether the array is enlarged or not, the abstract
pushBottom operation takes place when bottom is updated
at Line 9.

To check whether the current array is full, the opera-
tion subtracts the value of top from bottom (which gives
the number of elements that were in the deque when top

was read), and compares it to the size of the array. For
memory reclamation reasons described in Section 4.1, the
pushBottom operation always leaves one array cell unused.
If necessary, the pushBottom operation uses the grow method
(of the CircularArray class) to enlarge the current array.

The growable circular array: The simplest implementa-
tion of a growable circular array is a power-of-two-sized ar-
ray that grows by doubling its size. When the array is full,
a new doubled size array is allocated, and the elements are
copied from the old array to the new one. The pseudocode
for the CircularArray class appears in Figure 4. Note that
since the elements are indexed modulo the array size, the
actual array indexes where the elements are stored might
change when copying from one array to another, but the
value of top and bottom remains the same.

The steal operation: As in the original algorithm, the
steal method begins by reading top and bottom, and check-
ing whether the deque is empty by comparing these values.
If the deque is not empty, it reads the element stored in
the top position of the cyclic array, and tries to increment
top using a CAS operation. If the CAS fails, it implies that
a concurrent steal operation successfully removed an ele-
ment from the deque, so the operation returns the Abort
value; otherwise it returns the element read right before the
successful CAS operation. Since the algorithm uses a cyclic
array, it is important to read the element from the array be-
fore we do the CAS, because after the CAS completes, this
location may be refilled with a new value by a concurrent
pushBottom operation.

A successful CAS is the point at which the abstract steal
operation takes place. Note that because top is read be-
fore bottom, it is guaranteed that the values read represent
a consistent view of the memory. Specifically, it implies
that bottom and top indeed had their observed values when
bottom was read at Line 12. A subtle case may arise, how-
ever, if the deque is emptied by a concurrent popBottom

operation after bottom is read, but before the CAS is exe-
cuted. For that reason, as we describe later, any popBottom

operation that empties the deque tries to modify top (using
a CAS operation), to guarantee that no concurrent steal

operation will also returns the deque’s last entry.
The popBottom operation: As in the original algorithm,

the owner can pop inexpensively (without using a CAS op-
eration) provided that doing so does not cause the deque
to become empty. If the deque was already empty, then it
simply resets it to a canonical empty state (bottom = top)
and returns the Empty value (Lines 26-28). If the deque
becomes empty, then the owner must perform a CAS on top

to see if it won or lost any race (with a concurrent steal

operation) to pop the last item. Unlike the original ABP al-
gorithm, the new algorithm performs the CAS on the value
of the top index and not on a tag value (note that incre-
menting top when the deque is empty leaves the deque in
an empty state). Right after the CAS operation, whether it
succeeds or not, the value of top is t + 1 (note that if the
CAS fails, then some concurrent steal operation updated
top to that value). Therefore the deque is empty, and the
operation completes by storing t + 1 in bottom (by that, re-
setting the deque to a canonical empty state). In any case
that the popBottom operation does not return the empty
value, the abstract popBottom operation takes place when
bottom is updated at Line 23.

class CircularArray {
private int log_size;
private Object[] segment;

CircularArray(int log_size) {
this.log_size = log_size;
this.segment = new Object[1<<this.log_size];

}
long size() {

return 1<<this.log_size;
}
Object get(long i) {

return this.segment[i % size()];
}
void put(long i, Object o) {

this.segment[i % size()] = o;
}
CircularArray grow(long b, long t) {

CircularArray a =
new CircularArray(this.log_size+1);

for (long i=t; i<b; i++) {
a.put(i, this.get(i));

}
return a;

}
}

Figure 4: Growable Circular Array

2.3 Avoid top accesses in pushBottom
Unlike the original ABP algorithm, the new algorithm re-

quires reading top on every execution of the pushBottom

operation. This may result in more data-cache misses com-
pared to the original algorithm (recall that unlike bottom,
top is modified by all processes).

The frequency of accesses to the top variable can be sig-
nificantly reduced, by keeping a local upper bound on the
size of the deque, and only read top when the upper bound



indicates that an array expansion may be necessary. Such a
local upper bound can be easily achieved by saving the last
value of top read in a local variable, and using this variable
to compute the size of the deque (instead of the real value
of top). Because top is never decremented, the real size of
the deque can only be smaller than the one calculated using
this local variable.

3. SHRINKING AFTER GROWTH
One disadvantage of the algorithm as presented is that

it does not shrink the array as the deque retreats from its
maximum. That means that the memory used by the deque
is a constant factor times its maximum size, which might
result in a big waste of memory.

Shrinking the array is no harder than growing the array;
it only requires that the algorithm check against a mini-
mum use fraction of the current array when performing a
popBottom operation5. The code for the popBottom opera-
tion with the possible shrinking operation appears in Fig-
ures 5 and 6. As illustrated by the code, Line 31 was modi-
fied to call the perhapsShrink method just before returning
the popped value. The perhapsShrink method shrinks the
array if the number of elements in the deque is less than
some fraction 1/K of the array size, where K ≥ 3. We omit
the code for the CircularArray’s shrink method since it is
almost identical to the code of this class’s grow method.

Finally, note that the perhapsShrink method is indepen-
dent of the popBottom operation, and therefore can be in-
voked by the deque’s owner on other occasions (for example
after a pushBottom operation).

public Object popBottom() {
20 long b = this.bottom;
21 CircularArray a = this.activeArray;
22 b = b - 1;
23 this.bottom = b;
24 long t = this.top;
25 long size = b - t;
26 if (size < 0) {
27 bottom = t;
28 return Empty;

}
29 Object o = a.get(b);
30 if (size > 0) {
31.1 perhapsShrink(b, t);
31.2 return o;

}
32 if (!casTop(t, t+1))
33 o = Empty;
34 this.bottom = t+1;
35 return o;
}

Figure 5: The popBottom operation with shrinking

3.1 Shrinking without copying
The simplest way to shrink back to a smaller array is

similar to the way we grow it: Allocate a new smaller array,
and copy the data from the big array to the smaller one.

We can save the allocation time, however, if whenever we
extend an array, we retain a reference from the bigger array

5With the current implementation, this fraction must be
strictly less than 1

2
, to guarantee that the deque elements

could fit into the smaller array while leaving one array cell
unused.

void perhapsShrink(long b, long t) {
36 CircularArray a = this.activeArray;
37 if (b-t < a.size()/K) { // K constant >= 3
38 CircularArray aa = a.shrink(b, t);
39 this.activeArray = aa;

}
}

Figure 6: Simple conditional shrinking

to the smaller one. If each array has a reference to the
smaller array from which it was extended, then the garbage
collector cannot deallocate all the arrays that precede the
current active one, and the algorithm can reuse these arrays
when shrinking.

Keeping the references to the smaller arrays not only saves
the allocation time, it can also save some of the copying
work: when the algorithm shrinks back from the big array
to its previous smaller array, only the elements that were
modified while the bigger array was active need to be copied
(because the smaller array was not deallocated and therefore
was not modified while the bigger array was active). This
can be accomplished by maintaining a low-water-mark with
each array: an integer that indicates the lowest value of
bottom in which an element was stored while the array was
active. When a deque shrinks its array, only the elements
stored in indexes greater than or equal to the low water mark
of the bigger array are copied. Also, the smaller array’s low
water mark is updated to the minimum of the larger and
smaller array’s low water mark values.

Note that the space overhead for referencing all the smaller
arrays when growing is relatively low: if we double the array
size every time we grow the array, the total overhead is less
than the size of the current array.

3.2 Combining multiple shrinks
Sometimes it is useful to combine multiple shrink opera-

tions, that is to shrink back not to the previous smaller array,
but to one (or more) preceding it. For example, suppose that
we had 5 growing operations: a1 → a2 → a3 → a4 → a5

(here ai represents an array, and ai+1 is a bigger array than
ai), and that on the next popBottom operation we find out
that almost all the deque elements were stolen, and that the
number of elements left is less than some fraction of the size
of a1. In such a case it makes more sense to shrink from
a5 directly to a1, without going through all the intermedi-
ate arrays. Extra caution should be taken, however, when
choosing which entries to copy using the low water mark:
when copying from a5 to a1, the low water mark is the min-
imum of the low water marks of a5 and all the intermediate
arrays (that is a4, a3 and a2).

4. WORKING WITH A SHARED POOL OF
BUFFERS

The deque algorithm presented depends upon a garbage
collector to reclaim the unused buffers. For work-stealing
algorithms, where each process has its own deque and the
maximum amount of memory needed by all deques together
can usually be bounded, it is often more suitable to use the
shared pool model.

With the shared pool model, the extra available buffers
for all the deques are kept in a shared pool. Whenever the
deque’s owner needs a bigger array, it allocates one (of the



appropriate size) from the pool, and whenever it shrinks to
a smaller array and does not need the bigger array anymore,
it can return it to the pool. There are two main advantages
for the shared pool model: First, it is much less expensive
to reclaim and allocate buffers from the shared pool than
to allocate them from the heap and use the garbage collec-
tor for reclamation. Second, as described in this section, by
assuming that the reclaimed buffers are not returned to a
global use by the operating system, the deque’s owner can
reclaim a buffer while there may be still some thieves refer-
encing it (something that the garage collector will not do),
which leads to a better use of the allocated space.

4.1 Allocating and reclaiming buffers
Whenever the deque’s owner needs a new array it allocates

the array’s buffer from the shared pool. Reclaiming buffers
is trickier: Consider the case in which a steal operation
executes Line 13, and then a concurrent popBottom opera-
tion shrinks the array and returns the bigger array’s buffer
to the shared pool. When the steal operation resumes and
executes Line 16, it reads and returns an element from the
old bigger array which was already reclaimed, and therefore
may be used by another deque. This scenario, of course,
could not be allowed. Therefore, to return an array’s buffer
to the shared pool when shrinking back to a smaller one,6 the
deque’s owner must have some guarantee that any thieves
concurrently referencing that array will be forced to abort
and will not return data read from it after it was reclaimed.

One way to do it is by self-stealing: the deque’s owner
steals an item from its own deque and returns that item
instead of an item popped from the bottom of the deque.
This solution, however, is problematic because it breaks the
LIFO behavior that is normally expected for the deque’s
owner.

Instead, we can use the property that the algorithm ref-
erences the array modulo its size, and increment top and
bottom in a way that aborts concurrent steal operations,
but does not change the content of the deque. For a given
array size N , x and x+N both address the same element in
the array. Therefore, incrementing top and bottom by the
size of the new array when an array is shrunk or grown pre-
serves the deque’s content, but aborts any concurrent thefts.
In Section 4.4 we show that modifying top and bottom as
described still allows us to assume that they will not over-
flow.

The modified perhapsShrink and steal methods appear
in Figures 7 and 8. The new perhapsShrink method con-
tains the bottom and top modifications (Lines 39.2-39.6),
right after making the new array active (Line 39.1), and
before returning the old array’s buffer to the shared pool
(Line 39.7). The order in which bottom and top are modi-
fied is important, because while the deque’s owner is between
these modifications, thieves must not spuriously return a
value from an empty deque or report empty when elements
are actually in the deque. Because the new perhapsShrink

method modifies bottom before top, a new empty deque
scenario is added, which is when the difference between
bottom and top is exactly the current array size. Because

6We assume that we do not reclaim the buffers of the smaller
arrays when growing to bigger ones (for a faster shrink op-
eration as described in Section 3.1). It is straightforward,
however, to use the same solution for reclaiming buffers also
when growing.

the pushBottom method never fills the array to its maximum
capacity, this difference uniquely identifies the new empty
scenario, and can be detected by the steal method.

The CAS operation at Line 39.5 tries modifying top. If it
fails, then there must have been a concurrent steal opera-
tion that modified top after it was read by perhapsShrink

at Line 39.4, at which point the smaller array is already
active. This implies that any subsequent CAS by another
concurrent steal operation that read an element from the
old array will fail. Therefore if the CAS at Line 39.5 fails, the
perhapsShrink method simply returns bottom to its original
value (Line 39.6), and reclaims the old array buffer.

void perhapsShrink(long b, long t) {
36 CircularArray a = this.activeArray;
37 if (b-t < a.size()/K) { // K constant >= 3
38 CircularArray aa = a.shrink(b, t);
39.1 this.activeArray = aa;
39.2 long ss = aa.size();
39.3 this.bottom = b + ss;
39.4 t = this.top;
39.5 if (! casTop(t, t+ss))
39.6 this.bottom = b;
39.7 a.free();

}
}

Figure 7: Conditional shrinking in the shared pool
model

public Object steal() {
11 long t = this.top;
11.1 CircularArray oldArr = this.activeArray;
12 long b = this.bottom;
13 CircularArray a = this.activeArray;
14 long size = b - t;
15 if (size <= 0) return Empty;
15.1 if ((size % a.size())==0) {
15.2 if (a == oldArr && t == this.top)
15.3 return Empty;
15.4 else return Abort;

}
16 Object o = a.get(t);
17 if (! casTop(t, t+1))
18 return Abort;
19 return o;

}

Figure 8: Steal operation when shrinking in the
shared pool model

The steal method is modified in two places: An addi-
tional read of the active array is added (Line 11.1), and the
emptiness check is extended (Lines 15.1-15.4). The empti-
ness check must be extended because the steal operation
may read bottom and top values that correspond to a deque
in the “intermediate state” between the bottom and top up-
dates of a shrink operation. These values may indicate an
empty deque although the difference between them is possi-
tive. Therefore, instead of only checking whether the differ-
ence between bottom and top is non-positive, the modified
steal method also checks whether this difference modulo the
array size is 0 (Line 15.1), for the array reference read at
Line 13.

If the test at Line 15.1 succeeds, and the values read for
top, bottom, and activeArray at Lines 11,12 and 13, corre-
spond to some state of the memory, then this state indicates



an empty deque. To check whether these values indeed cor-
respond to an actual state of the memory, we use the addi-
tional activeArray reference read at Line 11.1. It can be
shown that if the values of both top and activeArray were
not modified from before reading bottom at Line 12 until
right after reading activeArray at Line 13, then the val-
ues read correspond to the memory state during the read
of bottom at Line 12. Therefore, if the test at Line 15.2
succeeds, the method returns Empty;7 otherwise, some con-
current operation successfully popped an element from the
deque,8 and the method returns Abort.

Note that the deque’s reference to the array is the first to
be updated by the perhapsShrink method (Line 39.1), but
the last to be read by the steal operation (Line 13), thereby
guaranteeing that if the steal operation sees an intermedi-
ate state, it sees the new (smaller) array. In the full version
of the paper, we prove that the shared pool version of the
algorithm implements a linearizable ABP-style deque that
cannot overflow. Here we only informally show that using
the above perhapsShrink and steal methods, prevents a
steal operation from returning an entry read from an array
after it was returned to the shared pool.

Definition 1. Array States:

• A live array is an array whose buffer does not reside
in the shared pool.

• The active array of a deque is the array referenced by
the activeArray data member of the deque object.

Lemma 1. The steal method never returns an entry that
was read from an array which is not live.

Proof. The only statement that returns buffers to the
shared pool is Line 39.7 in the perhapsShrink method, which
is executed only by the deque’s owner. Also, the deque’s
owner is the only process that may activate or de-activate
an array (that is, replace the active array of the deque).
Since the perhapsShrink method set the new smaller array
to be the active array before executing Line 39.7, then an
active array is never deallocated.

The steal operation returns an entry only if the CAS
statement at Line 17 successfully writes the t + 1 value to
top, in which case it returns the entry read at Line 16. The
steal operation reads the deque’s active array at Line 13,
and therefore the array is live at that point. Thus, if the
steal operation reads an entry from a non-live array, it must
be the case that a concurrent perhapsShrink operation:

1. Executes Line 39.7 before the steal operation exe-
cutes Line 16, and

2. Executes Line 39.1 after the steal operation executed
Line 13.

This implies that Line 39.5 is executed after the steal oper-
ation reads top at Line 11, but before it executes Line 17. If
the CAS at Line 39.5 succeeds, then the CAS at Line 17 fails.
Otherwise, there must have been a concurrent steal oper-
ation that modified top after the perhapsShrink executed

7In the correctness proof we show that we do not need to
worry about the ABA problem on the activeArray value.
8Assuming the perhapsShrink method is called only for a
successful popBottom operation.

Line 39.4, which also guarantees that the CAS at Line 17
fails. We can conclude then that if a steal operation read
an entry from a non-live array, then the CAS operation at
Line 17 fails, which implies that the entry is not returned
by that operation.

4.2 Lock freedom
The algorithm we presented is clearly wait-free: the only

loop in the algorithm is the one that copies the data from
one array to another, and it is guaranteed to be finite (linear
in the length of the array from which we copy).

A more interesting property, which we formally prove in
the full version of the paper, is that even if the steal op-
eration retries every time it returns Abort, the algorithm
is lock-free. Informally, this is correct because a steal op-
eration only returns Abort when either top is modified by
a concurrent pop operation (either a popBottom or a steal

operation), or that top or activeArray are modified by a
perhapsShrink operation. Note that neither a pop nor a
perhapsShrink operation can cause more than 2 steal op-
erations by the same process to return Abort. Therefore,
if a steal operation by a process returns Abort infinitely
often, then there must be other concurrent operations that
complete successfully.

4.3 Deallocating memory from the shared pool
In case the shared pool runs out of buffers, it is possible

to allocate more memory to it. Freeing memory from the
shared pool is a more sensitive issue, especially in a strongly
typed language, because reuse of the freed buffers can cause
differently-typed data to be stored into these buffers. This
may cause what is locally an actual typing error (between
lines 16 and 19), because there might be some thieves that
still reference the array that was stored in this buffer (even
in non-strongly typed languages, releasing memory to the
operating system and then referencing it may cause a run-
time error). Therefore in order to safely free an array’s
buffer from the shared pool, we must first ensure that no
thief is referencing that array. This is done automatically
by a garbage collector, if one exists. Otherwise, other mech-
anisms should be used, like the Pass the Buck algorithm by
Herlihy, Luchangco and Moir [7]. It is important to note,
however, that freeing memory from the shared pool is a rare
operation (usually it is not needed at all), and therefore
even using a relatively expansive algorithm (like a garbage
collector) should not significantly hurt the performance of
the algorithm.

4.4 Analysis
Shrinking in the shared pool model consumes deque in-

dices more rapidly than the earlier form of the algorithm,
because every time the array is shrunk, top and bottom are
incremented by the size of the smaller array. However, be-
cause of the policy of shrinking only at a particular utiliza-
tion, the consumption of indices is still linear in the number
of operations. Indices are consumed fastest when the deque
oscillates between containing N/2 and N/K elements, where
N is the capacity of the larger of two arrays and 1/K is the
utilization fraction under which we shrink the array. Each
time the deque grows to N/2 elements, it expands out of
the small array; each time it reduces to N/K elements, it
shrinks, and the top and bottom indices are bumped for-
ward by N/2. The number of operations in a grow-shrink



cycle is 2N × (1/2 − 1/K). Growth of top is maximized if
the operations that remove the elements from the deque are
steals. The growth in one worst-case grow-shrink cycle is
top is N × (1/2 − 1/K) + N/2. Dividing, cancelling, and
simplifying produces a worst-case growth of (K−1)/(K−2)
indices per operation, which is small given that K ≥ 3.

If K is 3, then the amortized index consumption of each
operation is no larger than 2. A 64-bit index will not over-
flow until at least 263 operations are performed. If oper-
ations occur at a rate of 232 per second, this provides at
least 231 seconds of run-time. One year is roughly equal to
225 seconds, so a 64 bit index permits at least 64 years of
continuous operation without overflow.

Because the active array in the deque is at least 1/K filled,
and because the total size of the smaller blocks is at most
the size of the active array, the storage overhead of this
algorithm is at most 2K times the current deque size.9

5. PERFORMANCE
We evaluated the performance of the new dynamic cir-

cular work-stealing algorithm in comparison to the original
fixed-array ABP work-stealing algorithm. We implemented
both algorithms in C++, and used a simple shared pool al-
gorithm that allocates and frees a buffer with a single CAS
instruction.

The benchmark we ran simulates load balancing of a gen-
eral computation by building the DAG corresponding to the
computation [3], as follows: Initially a single deque contains
a single node representing the first work item of the com-
putation. Processes pop nodes from their own deques, and
steal nodes from other deques if their own deque is empty.
Each time a process pops a node from a deque, it gener-
ates up to B child nodes, and pushes them into its deque
(B represents the maximum branch of the DAG, and it is a
configurable parameter). The number of child nodes gen-
erated for a node is randomly chosen with probability that
is inversely proportional to the depth of that node in the
DAG. The expected number of child nodes for a node of
depth d in a DAG of maximum depth D is: B · (1 −

d

D
). To

get the most accurate measure of the performance difference
between the two algorithms, we did not perform any work
on a node other than pushing its child nodes to the process’s
deque.

We ran the benchmark on a 16 node Sun EnterpriseTM

6500, an SMP machine formed from 8 boards of two 400MHz
UltraSparcr processors, connected by a crossbar UPA switch,
and running a SolarisTM 9 operating system. We chose the
maximum branch of the DAG to be 13, and the maximum
depth to be 10. We used 72-element arrays for the original
ABP deques, and our algorithm allocated the deques with
an initial size of 64-elements, plus a few 128-element arrays
in the shared pool.

Figure 9 presents the throughput of both algorithms, run-
ning stand-alone, as a function of the number of processes.
As can be seen, both algorithms scale well, and the perfor-
mance difference is relatively small. Recall that our bench-
mark does not perform any real computation - it only mea-
sures the load-balancing algorithm overhead. In real ap-
plications the time spent on the load-balancing algorithm

9This upper bound assumes that the perhapsShrink
method is called by the deque’s owner often enough to shrink
the deque’s array when necessary.
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Figure 9: The performance of the two algorithms
with no multiprogramming

is usually relatively small, and therefore the above perfor-
mance difference would probably not be noticed.
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Figure 10: The performance of the two algorithms
in a multiprogrammed environment

Next we ran our benchmark in a multiprogrammed fash-
ion by running multiple instances of it in parallel, where each
instance is running with 16 processes (as the number of pro-
cessors on the machine). Figure 10 presents the throughput
of an instance as a function the multiprogramming level. As
can be seen, there is no significant difference in the perfor-
mance of the two algorithms.

To compare the stability of the two algorithms, we mea-
sured how many of our 64-element arrays overflowed and
needed a 128-element array from the shared pool, and no-
ticed that at most one 128-element array is ever needed. On
the other hand, the 72-element array allocated for each of
the deques in the original ABP algorithm was not always
sufficient, and in some cases the algorithm failed to com-
plete due to an overflow of an array. These failures became
more frequent as the level of multiprogramming increased.
Therefore, for the same amount of array space (notice that
16·72 = 128+(16·64)), we get more robustness with our new
algorithm than with the original ABP algorithm, without a
noticeable cost in performance.



6. SUMMARY
We present the first ABP-style circular work stealing deque

that cannot overflow. Our algorithm is simple, its space
complexity is linear in the number of elements in the deque,
and it does not require a garbage collector for its memory
management. It may be interesting to see how our tech-
niques are applied to other schemes that improve on ABP-
work stealing such as the locality-guided work-stealing of
Acar, Blelloch and Blumofe [1] or the steal-half algorithm
of Hendler and Shavit [6].
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