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Abstract

Software Product-lines (SPLs) are software architectures that use modular soft-
ware components that can be reconfigured into different variants for different re-
quirements sets. Feature modeling is a common method used to capture the config-
uration rules for an SPL architecture. A key challenge developers face when main-
taining an SPL is determining how to select a set of architectural features for an
SPL variant that simultaneously satisfy a series of resource constraints. This pa-
per presents an approximation technique for selecting highly optimal architectural
feature sets while adhering to resource limits. The paper provides the following con-
tributions to configuring SPL architecture variants: (1) we provide a polynomial
time approximation algorithm for selecting a highly optimal set of architectural fea-
tures that adheres to a set of resource constraints, (2) we show how this algorithm
can incorporate complex architectural configuration constraints; and (3) we present
empirical results showing that the approximation algorithm can be used to derive
architectural feature sets that are more than 90%+ optimal.

1 Introduction

Software Product-Lines (SPLs) are a technique for creating reconfigurable soft-
ware architectures that can be adapted for new requirement sets. For example,
an SPL for a face recognition system to identify known cheaters in a casino,
as shown in Figure 1, can provide a number of different face recognition algo-
rithms that can be configured depending on the desired accuracy, system cost,
and processing power of the hosting infrastructure. Customers with smaller
budgets can choose cheaper variants of the SPL that employ less accurate algo-
rithms capable of running effectively on commodity hardware. For more expen-
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Fig. 1. A Face Recognition System to Identify Cheaters in a Casino

sive variants, algorithms with greater accuracy and correspondingly increased
resource consumption can be paired with more expensive custom hardware.

A core part of building an SPL architecture is documenting the rules govern-
ing the configuration of the SPL’s constituent architectural components. For
example, although running two face recognition algorithms in parallel might
produce the highest accuracy, a system may not be capable of simultaneously
employing two different face recognition algorithms. It is therefore crucial to
capture these constraints that guide the configuration of the architecture. Fea-

ture modeling (Kang et al., 1998), is a commonly used technique to specify
an SPL’s configuration rules.

Feature models describe an SPL using a tree structure (e.g., shown in Figure 2)
where each node in the tree represents a point of architectural variation or in-
crement of functionality. The feature model for an SPL provides a compact
representation of all possible architectural variants of the application. Each
unique configuration of the SPL architecture—called a variant—is described
as a set of selected architectural features. Any given architectural feature se-
lection can be validated against its underlying feature model to check if it
represents a valid configuration of the SPL.

Choosing the correct set of architectural features for an application is hard
because even small numbers of design variables (i.e., small feature sets) can
produce an exponential number of design permutations. For example, the rela-
tively simple feature model shown in Figure 3, contains 30 features that can be
combined into 300 different distinct architectures. Requirement specifications
often try to meet certain goals, such as maximizing face recognition accuracy,
that further complicates architectural feature choices.
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Resource constraints, such as the maximum available memory or total bud-
get for a system, also add significant complexity to the architectural design
process. As shown in Section 4, finding an optimal architectural variant that
adheres to both the feature model constraints and a system’s resource con-
straints is an NP-hard problem (Cormen et al., 1990). The manual processes
commonly used to select architectural feature sets scale poorly for NP-hard
problems.

For large-scale systems—or in domains where optimization is critical—algorithmic
techniques are needed to help product-line engineers make informed architec-
tural feature selections. For example, developers can choose the features that
are deemed critical for the system or driven by physical concerns that are hard
to quantify (such as camera types and their arrangement). An algorithmic
technique can then be used to make the remaining architectural feature selec-
tions that maximize accuracy while not exceeding the remaining budgetary
allocation. Moreover, developers may want to evaluate tradeoffs in architec-
tures, e.g., use a specific camera setup that minimizes memory consumption
as opposed to maximizing accuracy.

Existing algorithmic techniques for aiding developers in the selection of archi-
tectural variants rely on exact methods, such as integer programming, that
exhibit exponential time complexity and poor scalability. Since industrial-size
architectural feature models can contain thousands of features, these exact
techniques are impractical for providing algorithmic architectural design guid-
ance, such as automated architectural feature selection optimization. With ex-
isting techniques, automated feature selection can take hours, days, or longer
depending on the problem size. For large problem sizes, this slow solving time
makes it hard for developers to evaluate highly optimized design variations
rapidly.

This paper presents a polynomial time approximation algorithm, called Fil-

tered Cartesian Flattening, that can be used to derive an optimal architec-
tural variant subject to resource constraints. Using Filtered Cartesian Flatten-
ing, developers can quickly derive and evaluate different architectural variants
that both optimize varying system capabilities and honor resource limitations.
Moreover, each architectural variant can be derived in seconds as opposed to
the days, hours, or longer that would be required with an exact technique,
thereby allowing the evaluation of more architectural variants in a shorter
time frame.

This paper provides the following contributions to the study of applying the
Filtered Cartesian Flattening algorithm to assist developers in selecting SPL
architectural variants:

(1) We prove that optimally selecting architectural feature sets that adhere
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to resource constraints is an NP-hard problem.
(2) We present a polynomial time approximation algorithm for optimizing

the selection of architectural variants subject to resource constraints.
(3) We show how any arbitrary Multi-dimensional Multiple-choice Knapsack

(MMKP) algorithm (MOSER et al., 1997; Pisinger, 1995; Sinha and Zolt-
ners, 1979) can be used as the final step in Filtered Cartesian Flattening,
which allows for fine-grained control of tradeoffs between solution opti-
mality and solving speed.

(4) We present empirical results from experiments performed on over 500,000
feature model instances that show how Filtered Cartesian Flattening av-
erages 92.56%+ optimality on feature models with 1,000 to 10,000 fea-
tures.

(5) We provide metrics that can be used to examine an architectural feature
selection problem instance and determine if Filtered Cartesian Flattening
should be applied.

The remainder of this paper is organized as follows: Section 2 provides a brief
overview of feature modeling; Section 3 presents a motivating example used
throught the paper; Section 4 describes the challenges of optimally selecting a
set of architectural features subject to a set of resource constraints; Section 5
presents the Filtered Cartesian Flattening approximation algorithm for opti-
mally selecting architectural feature sets; Section 6 presents empirical results
showing that our algorithm averages more than 90%+ optimality on feature
models ranging from 1,000 to 10,000 features; Section 7 compares our work to
related research; and Section 8 presents concluding remarks.

2 Overview of Feature Modeling

Feature modeling (Kang et al., 1998) is a modeling technique that describes the
variability in an SPL architecture with a set of architectural features arranged
in a tree structure. Each architectural feature represents an increment in func-
tionality or variation in the product architecture. For example, Figure 2 shows
a feature model describing the algorithmic variability in a system for identi-
fying faces (Phillips et al., 2000) in images. Each box represents a feature.
For example, Linear Discriminant Analysis (LDA) is an algorithm (Parker
and Parker, 1996) for recognizing faces in images that is captured in the LDA

feature.

A feature can (1) capture high-level variability, such as variations in end-
user functionality, or (2) document low-level variabilities, such as software

variability (e.g., variations in software implementation)(Metzger et al., 2007).
Each complete architectural variant of the SPL is described as a set of se-
lected features. For example, the feature model in Figure 2 shows how the fea-
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Fig. 2. Example Feature Model

ture set [Face Recognition System, Camera, Face Recognition Alg, PCA,
MahCosine] would constitute a complete and correct feature selection.

The constraints on what constitutes a valid feature selection are specified by
the parent child relationships in the tree. Every correct feature selection must
include the root feature of the tree. Moreover, if a feature is selected, the fea-
ture’s parent must also be selected. A feature can have required sub-features in-
dicating refinements to the feature. For example, Face Recognition System

has a required sub-feature called Face Recognition Alg. that must also be
selected if Face Recognition System is selected. The required relationship
is denoted by the filled oval above Face Recognition Alg..

The parent child relationships can indicate variation points in the SPL ar-
chitecture. For example, LDA requires the selection of either of its Euclidean
or IdaSoft sub-features, but not both. The Euclidean and IdaSoft features
form an exclusive-or subgroup, called an XOR group, of the Linear Discrim-
inant Analysis (LDA) feature that allows the selection of only one of the two
children. The exclusive-or is denoted with the arc crossing over the connec-
tions between Euclidean, IdaSoft, and their parent feature. Child features
may also participate in a Cardinality group, where any correct selection of the
child features must satisfy a cardinality expression.

Feature models can also specify a cardinality on the selection of a sub-feature.
For example, at least 1 and at most 4 instances of the Camera feature must be
selected. An unfilled oval above a feature indicates a completely optional sub-
feature. For example, a camera can optionally employ Image Compression.
Finally, a feature can refer to another feature that it requires or excludes
that is not a direct parent or child. These constraints are called cross-tree

constraints.
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3 Motivating Example

A key need with SPL architectures is determining how to select a good set of
architectural features for a requirement set. For example, given a face recogni-
tion system that includes a variety of potential camera types, face recognition
algorithms, image formats, and camera zoom capabilities, what is the most
accurate possible system that can be constructed with a given budget? The
challenge is that with hundreds or thousands of architectural features—and
a vastly larger number of architectural permutations—it is hard to analyze
the resource consumption and accuracy tradeoffs between different feature
selections to find an optimal architectural variant.

3.1 Motivating Example

As a motivating example of the complexity of determining the best set of archi-
tectural features for a requirement set, we provide a more detailed example of
the face recognition system for identifying known cheaters in a casino. A small
example feature model of the face recognition system’s architectural features
is shown in Figure 3. The system can leverage a variety of algorithms ranging

Euclidean MahCosine

PCA

Euclidean IdaSoft

LDA

MAP ML

Bayesian

Face Recognition Alg. (Alg.)

Low Medium High

JPEG

Uncompressed Zip

TIFF

Image Format (IF)

Wide Angle Camera (WAC)

200X 500X 1000X

Max Zoom

Uncompressed Zip

TIFF RAW

Image Format (IF)

Zoom Camera (ZC)

Face Recognition System

Fig. 3. Face Recognition System Arch. Feature Model

from versions of Linear Discriminant Analysis (LDA) to Bayesian networks.
The system requires a wide angle camera, but can be supplemented with a
zoom camera to provide closer images of specific faces in the environment.
Each camera can produce images in a variety of image formats ranging from
lossy low quality JPEG images to lossless RAW images from the camera’s
CCD sensor.

Each variability point in the architecture, such as the type of face recognition
algorithm, affects the overall accuracy and resource consumption of the sys-
tem. For example, when higher resolution images are obtained by a camera, the
overall accuracy of the system can improve. Higher resolution images, however,
consume more memory and require more CPU time to process. Depending on
the overall system requirements, therefore, choosing higher resolution images
to improve accuracy may or may not be possible, depending on the available
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memory and the memory consumed by other features.

Table 1 captures example information on the accuracy provided—and re-
sources consumed—by some of the architectural features. Each feature is iden-
tified by the path through the feature model to reach the feature. For exam-
ple, the high resolution JPEGs feature is identified by WAC/IF/JPEG/High.
The choice of architectural features is governed by the overall goal of the sys-
tem. In this example, we want to maximize face recognition accuracy without
exceeding the available memory, CPU, development budget, or development
staff. Our architectural goal and resource limits are shown in Table 2.

Arch. Feature Accuracy CPU Memory Cost Devel. Staff

WAC/IF/JPEG/High 0.10 8 1024 2 0

WAC/IF/JPEG/Low 0.03 2 128 2 0

...

ZC/IF/TIFF/Zip 0.13 16 256 30 1

...

Alg/LDA/Euclidean 0.85 112 2048 300 1

Alg/LDA/IdaSoft 0.84 97 1024 120 0

Table 1
Software Feature Resource Consumption, Cost, and Accuracy

Table 2 lists the architectural resource constraints and goal for the design of
the system. The first column lists the goal, which is to maximize the accuracy
of the system. Each subsequent column lists a resource, such as total system
memory, and the amount of that resource that is available for an architectural
variant’s features to consume.

Accuracy CPU Memory Cost Devel. Staff

Maximize ≤ 114 ≤ 4096 ≤ 330 ≤ 1

Table 2
Example Architectural Requirements: Maximize Accuracy Subject to Resource Con-
straints

7



4 Challenges of Feature Selection Problems with Resource Con-

straints

To make well-informed architectural decisions, developers need the ability to
easily create and evaluate different architecture variations tuned to maximize
or minimize specific system capabilities, such as minimizing total cost or re-
quired memory. Generating and evaluating a range of architectures allows
developers to gain insights into not only what architectural variants optimize
a particular system concern, but also other design aspects, such as patterns
that tend to lead to more or less optimal variants. The chief barrier to cre-
ating and evaluating a large set of optimized architectural feature models
is that generating highly optimized variants is computationally complex and
time consuming.

Optimally selecting a set of architectural features subject to a set of resource
constraints is challenging because it is an NP-hard problem. To help under-
stand why optimal feature selection problems with resource constraints is NP-
hard, we first need to formally define these problems. An architectural feature
selection problem with resource constraints is a five-tuple composed of a set
of features (F), a set of dependency constraints on the features (C) defined
by the arcs in the feature model graph, a function (Fr(i,j))that computes the
amount of the jth resource consumed by the ith feature, a set of values or
benefits associated with each feature (Fv), and a list of the resource limits for
the system (R):

P =< F, C, Fr(i, j), F v, R >

The features (F) correspond to the the feature nodes in the feature model
graph shown in Figure 3, such as Bayesian and LDA. The dependency con-
straints (C) correspond to the arcs connecting the feature nodes, such as Face
Recognition Alg is a required sub-feature of Facial Recognition System.
The resource consumption function (Fr) corresponds to the values in columns
3-6 of Table 1, such as the amount of memory consumed by each feature.
The feature values set (Fv) corresponds to the accuracy column in Table 1.
Finally, the resource limits set (R) corresponds to the resource limits captured
in columns 2-4 of Table 2.

We define the solution space to a feature selection problem with resource con-
straints as a set of binary strings (S) where for any binary string (s ⊂ S) the
ith position is 1 if the ith feature in F is selected and 0 otherwise. The subset
of these solutions that are valid (V s ⊂ S) is the set of solutions that satisfy
all of the feature model constraints (1) and adhere to the resource limits (2):
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V s = {s ⊂ S|
s → C, (1)

∀j ⊂ R, (
∑n

i=0 si ∗ Fr(i, j)) ≤ Rj} (2)

To prove that optimally selecting a set of architectural features subject to
resource constraints is NP-hard, we show below how any instance of an NP-
complete problem, the Multi-dimensional Multiple-choice Knapsack Problem
(MMKP), can be reduced to an instance of this definition of the optimal
feature selection problem with resource constraints.

A traditional knapsack problem is defined as a set of items with varying sizes
and values that we would like to put into a knapsack of limited size. The
goal is to choose the optimal set of items that fits into the knapsack while
maximizing the sum of the items’ values. An MMKP problem is a variation
on the traditional knapsack problem where the items are divided into sets
and at most one item from each set must be placed into the knapsack. The
goal remains the same, i.e., to maximize the sum of the items’ values in the
knapsack.

We provide a simple example of transforming an MMKP problem into a feature
selection problem with resource constraints. Figure 4 shows a simple MMKP
problem with six items divided into two sets. At most one one of the items A,

Fig. 4. A Multi-dimensional Multiple-choice Knapsack Problem

B, and C can be in the knapsack at a given time. Moreover, at most one of
the items D, E, and F can be in the sack.

To transform the MMKP problem into a feature selection problem with re-
source constraints, we create a feature model to represent the possible solu-
tions to the MMKP problem, as shown in Figure 5. The generalized algorithm
for converting an instance of an MMKP problem into an equivalent feature
selection problem with resource constraints is as follows:
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D E F
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MMKP Solution

Fig. 5. A Feature Model of an MMKP Problem Instance

(1) Create a root feature denoting the MMKP solution,
(2) For each set, create a mandatory sub-feature of the root feature,
(3) For each set, add an XOR group of sub-features corresponding to the

items in the set,
(4) For each item, initialize its feature’s resource consumption value entries

in the feature properties table to the length, width, and height of the
item,

(5) For each item, initialize its feature’s value entry in the feature properties
table, shown in Table 3, to the item’s value, and

(6) Set the total available resources to be the length, width, and height of
the knapsack.

Feature Value Resource 1 (length) Resource 2 (width) Resource 3 (height)

A 5 2 2 5

B 9 1.5 1.5 10

C 6 1 3 7

D 2 1.5 1.5 5

E 11 1.5 1.5 5

F 8 1.5 4 7

Table 3
MMKP Feature Properties Table

Steps 1&2 define the sets (F ) and (C) for our feature selection problem. Step
3 creates a table, shown in Table 3, that can be used to define the function
(Fr(i, j)) to calculate the amount of each resource consumed by a feature.
Step 4 initializes the set of values (Fv) defining the value associated with
selecting a feature. Finally, Step 5 creates the set of available resources (R).

With this generalized algorithm, we can translate any instance of an MMKP
problem into an equivalent feature selection problem with resource constraints.
Since any instance of an MMKP problem can be reduced to an equivalent fea-
ture selection problem with resource constraints, then feature selection prob-
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lems with resource constraints must be NP-hard. Any exact algorithm for
solving feature selection with resource constraints will thus have exponential
time complexity.

5 Filtered Cartesian Flattening

This section presents the Filtered Cartesian Flattening (Filtered Cartesian
Flattening) approximation technique for optimal feature selection subject to
resource constraints. Filtered Cartesian Flattening transforms an optimal fea-
ture selection problem with resource constraints into an approximately equiv-
alent MMKP problem, which is then solved using an MMKP approximation
algorithm. The MMKP problem is designed such that any correct answer to the
MMKP problem is also a correct solution to the feature selection problem (but
not necessarily vice-versa). Filtered Cartesian Flattening allows developers to
generate highly optimal architectural variants algorithmically in polynomial-
time (roughly ∼10s for 10,000 features), rather than in the exponential time
of exact algorithmic techniques, such as integer programming.

As shown below, Filtered Cartesian Flattening addresses the main challenge
from Section 4, i.e., the difficulty of selecting a highly optimal feature selection
in a short amount of time. The key to Filtered Cartesian Flattening’s short
solving times is that it is a polynomial time approximation algorithm that
trades off some solution optimality for solving speed and scalability.

The Filtered Cartesian Flattening algorithm, which we will describe in the
following subsections, is listed in the APPENDIX.

5.1 Step 1: Cutting the Feature Model Graph

The first step in Filtered Cartesian Flattening, detailed in code listing (2) of
the APPENDIX, is to begin the process of producing a number of independent
MMKP sets. We define a choice point as a place in an architectural feature
model where a configuration decision must be made (e.g., XOR Group, Op-
tional Feature, etc.). A choice point, A, is independent of another choice point,
B, if the value chosen for choice point A does not affect the value chosen for
choice point B. An MMKP problem must be stated so that the choice of an
item from one set does not affect the choice of item in another set.

For example, the choice point containing Image Compression in Figure 2 is
independent of the choice point containing MAP and ML, i.e., whether or not
image compression is enabled does not affect the type of Bayesian algorithm
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chosen. The choice point of the type of face recognition algorithm, which
contains the feature Bayesian, is not independent of the choice point for the
type of Bayesian algorithm (e.g., the XOR group with MAP and ML).

Filtered Cartesian Flattening groups choice points into sets that must be in-
dependent. Each group will eventually produce one MMKP set. Starting from
the root, a depth-first search is performed to find each optional feature that
has no ancestors that are choice points. A cut is performed at each of these
optional features with no choice point ancestors to produce a new independent
sub-tree, as shown in Figure 6. After these cuts are made, if the sub-trees have
cross-tree constraints, they may not yet be completely independent. These
cross-tree constraints are eliminated in Step 4, described in Section 5.4

Fig. 6. Cutting to Create Independent Sub-trees

5.2 Step 2: Converting to XOR

Each MMKP set forms an XOR group of elements. Since MMKP does not
support any other relationship operators, such as cardinality, we must con-
vert the configuration solution space captured in each feature model sub-tree
into an equivalent representation as a series of partial configurations related
through XOR. Since a feature model allows hierarchical modeling and cardi-
nality constraints, the conversion to XOR can require an exponential number
of partial configurations for the XOR representation. 1 The filtering process of
Filtered Cartesian Flattening is an approximation step that puts a polynomial
bound on the number of configuration permutations that are encoded into the
XOR representation to avoid this state explosion.

The first step in converting to XOR is to convert all Cardinality groups and
optional features into XOR groups. Cardinality groups are converted to XOR
by replacing the cardinality group with an XOR group containing all possible
combinations of the cardinality group’s elements that satisfy the cardinality
expression. Since this conversion could create an exponential number of ele-
ments, we bound the maximum number of elements that are generated to a

1 This state explosion is similar to what happens when a State Chart with hierarchy
is converted to its equivalent Finite State Machine representation Harel (1987).
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constant number K. Rather than requiring exponential time, therefore, the
conversion can be performed in constant time.

The conversion of cardinality groups is one of the first steps where approxi-
mation occurs. We define a filtering operation that chooses which K elements
from the possible combinations of the cardinality group’s elements to add to
the XOR group. All other elements are thrown away.

Any number of potential filtering options can be used. Our experiments in Sec-
tion 6 evaluated a number of filtering strategies, such as choosing the K highest
valued items, a random group of K items, and a group of K items evenly dis-
tributed across the items’s range of resource consumptions. The best results
occurred when selecting the K items with the best ratio of V alue√

∑

rc2
i

, where rci

is the amount of the ith resource consumed by the partial configuration. This
sorting criteria has been used successfully by other MMKP algorithms (Akbar
et al., 2001). An example conversion with K = 3 and random selection of
items is shown in Figure 7.

Fig. 7. Converting a Cardinality Group to an XOR Group with K=3 and Random
Selection

Individual features with cardinality expressions attached them are converted
to XOR using the same method. The feature is considered as a Cardinality
group containing M copies of the feature, where M is the upper bound on
the cardinality expression (e.g. [L..M ] or [M ]). The conversion then proceeds
identically to cardinality groups.

Optional features are converted to XOR groups by replacing the optional
feature O with a new required feature O′. O′ in turn, has two child features,
O and ∅ forming an XOR group. O′ and ∅ have zero weight and value. An
example conversion is shown in Figure 8.

Fig. 8. Converting an Optional Feature into an XOR Group
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5.3 Step 3: Flattening with Filtered Cartesian Products

For each independent sub-tree of features that now only have XOR and re-
quired relationships, an MMKP set needs to be produced. Each MMKP set
needs to consist of a number of partial configurations that could be produced
from each sub-tree. To create the partial configurations that constitute each
MMKP set, we perform a series of recursive flattening steps using filtered
Cartesian products, as shown in code listing (4) in the APPENDIX.

The procedure flatten takes a feature and recursively flattens its children
into a MMKP set that is returned as a list. The list is constructed such that
each item represents a complete and correct configuration of the feature and its
descendants. The first step in the algorithm (5) simply takes a feature with no
children and returns a list containing that feature, i.e., if the feature’s subtree
contains only a single feature, the only valid configuration of that subtree is
the single feature. The second step (6) merges the valid partial configurations
of two nested XOR groups into a single partial configuration by merging their
respective partial configuration sets into a single set. A visualization of this
step is shown in Figure 9.

Fig. 9. Flattening an XOR Group

The third step (7) takes all required children of a feature and produces a
partial configuration containing a filtered Cartesian product of the feature’s
children, i.e., the step selects a finite number of the valid configurations from
the set of all possible permutations of the child features’ configurations. A
visualization of this step is shown in Figure 10. In code listing (8) in the

Fig. 10. A Cartesian Product of Required Children

APPENDIX, the Cartesian product is filtered identically to the way filters are
used in Section 5.2. The filter chooses K elements from the Cartesian product
of the two sets using a selection strategy. The experiments in Section 6 shows
that a value of K=400 produced a good blend of speed and optimality.
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Once each independent sub-tree has been converted into a set of partial con-
figurations, we must mark those sets that represent optional configuration
choices. For each set that does not include the root feature, we add an item ∅
with zero weight and zero value indicating that no features in the set are cho-
sen. Either a partial configuration from the set is selected or ∅ (representing no
selection) is chosen. This method is a standard MMKP technique for handling
situations where choosing an item from some sets is optional. Since the root
feature must always be chosen, a partial configuration from its sub-tree’s set
must also be chosen, so the ∅ item is not added to its set.

5.4 Step 4: Handling Cross-tree Constraints

If any of the partial configurations in the MMKP sets contain cross-tree con-
straints, these constraints must eliminated before the MMKP solver is used.
There are two cases for the cross-tree constraints that must be handled:

(1) A partial configuration has a cross-tree constraint that refers to a feature
in a sub-tree other than the sub-tree that produced its containing MMKP
set.

(2) A partial configuration has a cross-tree constraint that refers to a feature
within the same sub-tree that produced its containing MMKP set.

The first case is handled by applying a series of filtered Cartesian products to
each series of two sets that is connected through one or more cross-tree con-
straints. During the process of calculating the Cartesian product, when two
partial configurations are chosen from each of the two sets, the combination
of the configurations is validated to ensure that it does not violate any cross-
tree exclusionary constraints. If the combination violates a cross-tree excludes
constraint, the combined configuration is not added to the filtered Cartesian
product of the two sets. In the case that a violation occurs, a constant number
of retries, w, can be performed to find an alternate pair of compatible config-
urations. If no compatible pair is found within w tries, K is decremented for
that set, and the Cartesian product continues.

The second case is handled by checking the validity of each partial configu-
ration that contains one or more cross-tree constraints. Each of these partial
configurations is checked to ensure that it adheres to its cross-tree constraints.
If the configuration is valid, no changes are made. Invalid configurations are
removed from their containing MMKP set. Cross-tree constraints within the
same sub-tree are always handled after cross-tree constraints between sub-trees
have been eliminated.
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5.5 Step 5: MMKP Approximation

The first four steps produce an MMKP problem where each set contains items
representing potential partial configurations of different parts of the feature
model. One set contains partial configurations for the mandatory portions of
the feature model connected to the root. The remaining sets contain partial
configurations of the optional sub-trees of the feature model.

The final steps in deriving an optimal architectural feature selection involve
running an existing MMKP approximation algorithm to select a group of
partial configurations to form the architectural feature selection and then to
combine these partial configurations into a complete architectural variant.
For our implementation of Filtered Cartesian Flattening, we used a simple
modification of the Modified Heuristic (M-HEU) algorithm (Akbar et al., 2001)
that puts an upper limit on the number of upgrades and downgrades that
can be performed. Since Filtered Cartesian Flattening produces an MMKP
problem, we can use any other MMKP approximation algorithm, such as the
Convex Hull Heuristic algorithm (C-HEU) (Mostofa Akbar et al., 2006), which
uses convex hulls to search the solution space. Depending on the algorithm
chosen, the solution optimality and solving time will vary.

The items in the MMKP sets are built by concatenating the partial configura-
tions of feature sub-trees during Cartesian products. With this arrangement,
architectural feature configuration solutions can readily be extracted from the
MMKP solution since they consist of a partial configurations represented as
a series of strings containing the labels of features that should be selected.

5.6 Algorithmic Complexity

The algorithmic complexity of Filtered Cartesian Flattening’s constituent
steps can be decomposed as follows (where n is the number of features):

• The first step in the Filtered Cartesian Flattening algorithm—cutting the
tree—requires O(n) time to traverse the tree and find the top-level optional
features where cuts can be made.

• The second step of the algorithm requires O(Kn ∗ S) steps, where S is the
time required to perform the filtering operation. Simple filtering operations,
such as random selection, add no additional algorithmic complexity. In these
cases, at most n sets of K items must be created to convert the tree to XOR
groups, yielding O(Kn). Our experiments in Section 6 selected the K items
with the best value to resource consumption ratio. With this strategy, the
sets must be sorted, yielding O(Kn ∗ n log n).
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• The third step in the algorithm requires flattening at most n groups using
filtered Cartesian products, which yields a total time of O(Kn ∗ S).

• The fourth step in the algorithm requires producing filtered Cartesian prod-
ucts from at most n sets with w retries. Each configuration can be checked
in O(c log n), where c is the maximum number of cross-tree constraints in
the feature model. The total time to eliminate any cross-tree constraints
between sets is O(wKn ∗ S ∗ c log n). The final elimination of invalid con-
figurations within individual sets requires O(cn log n), yielding a total time
of O(wKn ∗ S ∗ c log n + cn log n)

• The solving step incurs the algorithmic complexity of the MMKP approx-
imation algorithm chosen. With M-HEU, the algorithmic complexity is
O(mn2(l − 1)2), where m is the number of resource types, n is the number
of sets, and l is maximum items per set.

• The final step, extracting the feature selection, can be performed in O(n)
time.

This analysis yields a total general algorithmic complexity of O(n+(Kn∗S)+
(Kn∗S)+(wKn∗S)+MMKP+n) = O(wKn∗S∗c log n+cn log n+MMKP ).
If there are no cross-tree constraints, the complexity is reduced to O(Kn ∗
S + MMKP ). Both algorithmic complexities are polynomial, which means
that Filtered Cartesian Flattening scales significantly better than exponential
exact algorithms. The results in Section 6.2 show that this translates into a
significant decrease in running time compared to an exact algorithm.

5.7 Technique Benefits

Beyond the benefit of providing polynomial-time approximation for optimal
feature selection problems with resource constraints, Filtered Cartesian Flat-
tening exhibits the following other desirable properties:

One-time Conversion to MMKP: The Filtered Cartesian Flattening flat-
tening process to create an MMKP problem need only be performed once per
feature model. As long as the structure and resource consumption character-
istics of the features do not change, the same MMKP problem representation
can be used even when the resource allocations (we merely update the knap-
sack size) or desired system property to maximize change.

Flexible Filtering and Solving Strategies: Due to the speed of the Fil-
tered Cartesian Flattening process, a number of different filtering strategies
can be used and each resultant MMKP problem stored and used for optimiza-
tion. In fact, to produce the most optimal results, a number of MMKP prob-
lems can be produced from each feature model and then each MMKP problem
solved with several different MMKP techniques, and the most optimal solution
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produced can be used. Since there are multiple problem representations and
multiple algorithms used to solve the problem, there is a much lower prob-
ability that all of the representation/algorithm combinations will produce a
solution with low optimality.

Flattening Parallelization: Another desirable property of Filtered Carte-
sian Flattening is that it is amenable to parallelization during the phase that
populates the MMKP sets with partial configurations. After each subtree is
identified, the Filtered Cartesian Flattening flattening process for each sub-
tree can be run in parallel on a number of independent processors or processor
cores.

Exact MMKP Algorithms Compatiblity: Finally, although we have fo-
cused on approximation algorithms for the MMKP phase of Filtered Carte-
sian Flattening, exact methods, such as integer programming, can be used to
solve the MMKP problem. In this hybrid scenario, Filtered Cartesian Flatten-
ing would produce an approximate representation of the architectural feature
model solution space using an MMKP problem and the exact optimal MMKP
answer would be obtained. Filtered Cartesian Flattening allows the use of a
wide variety of both Cartesian flattening strategies and MMKP algorithms to
tailor solving time and optimality.

6 Results

This section presents empirical results from experiments we performed to eval-
uate the types of architectural feature selection problem instances on which
Filtered Cartesian Flattening performs well and those for which it does not.
When using an approximation algorithm, such as Filtered Cartesian Flatten-
ing, that does not guarantee an optimal answer a key question is how close the
algorithm can get to the optimal answer. Another important consideration is
what problem instance characteristics lead to more/less optimal answers from
the algorithm. For example, if the algorithm attempts to derive an architec-
tural variant for the face recognition system, will a more optimal variant be
found when there is a larger or smaller budget constraint?

We performed the following two sets of experiments to test the capabilities of
Filtered Cartesian Flattening:

• Effects of MMKP problem characteristics. Since Filtered Cartesian
Flattening uses an MMKP approximation algorithm as its final solving step,
we first performed experiments to determine which MMKP problem char-
acteristics had the most significant impact on the MMKP approximation
algorithm’s solution optimality.
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• Effects of feature selection problem characteristics. Our next set
of experiments were designed to test which problem characteristics most
influenced the entire Filtered Cartesian Flattening technique’s solution op-
timality. These experiments also included a large experiment that derived
Filtered Cartesian Flattening’s average and worst optimality on a set of
500,000 feature models.

All experiments used 8 dual processor 2.4ghz Intel Xenon nodes with 2 GB
RAM on Vanderbilt University’s ISISLab cluster (www.isislab.vanderbilt.edu).
Each node was loaded with Fedora Core 4. A total of two processes (one per
processor) were launched on each machine enabling us to generate and solve
16 optimal feature selection with resource constraints problems in parallel.

6.1 Testing MMKP Problem Characteristics

To determine the extent to which the various attributes of MMKP problems
would affect the ability of the solver to generate a highly optimal solution, we
generated several MMKP problems with a single parameter adjusted. These
problems were then solved using the MMKP approximation algorithm de-
scribed in Section 5.5. Solutions were rated by their percentage of optimality
vs. the optimal solution (MMKPApproximationAnswer

OptimalAnswer
) (we used the problem gen-

eration technique devised by (Akbar et al., 2001) to generate random MMKP
problem instances for which we knew the optimum answer). Our test prob-
lems included a mix of problems with a correlation between value and total
resource consumption and those without any correlation.

MMKP problem instances can vary across a number of major axes. Problem
instances can have larger and smaller numbers of sets and items per set. The
range of values and resource consumption characteristics across the items can
follow different distributions. We examined each of these MMKP problem
attributes to determine which ones lead to the generation of solutions with a
higher degree of optimality. Each experiment was executed thirty times and
averaged to normalize the data.

First, we manipulated the total number of sets in an MMKP problem. The
Filtered Cartesian Flattening algorithm produces one set for each independent
subtree in the feature model. This experiment allowed us to test how feature
models with a large number of independent subtrees and hence a large number
of MMKP sets would affect solution optimality. Figure 11 shows that as the
total number of sets was increased from 10 to 100, the solution optimality
only varied a small amount, staying well above 95% optimal. These results are
nearly identical to (Akbar et al., 2001), where the M-HEU MMKP approxima-
tion algorithm, which was the basis of our MMKP solver, produced solutions
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Fig. 11. Total Number of Sets

well above 98% optimal regardless of the number of sets or items per set.

We next varied the number of items in each MMKP set. Figure 12 shows
that an increase from 500 to 10,000 items per set has almost no affect the
optimality of the solution. Regardless of the number of items per set, the

Fig. 12. Items per Set

generated solution was well over 90% optimal. Based on this data, we conclude
that the number of sets and total items per set do not significantly impact the
optimality of the solution produced by the MMKP solver. This result implies
that architectural feature models for very large industrial systems will not be
problematic for the MMKP phase of Filtered Cartesian Flattening.

While the items per set and number of sets have little affect on the optimality
of a solution, the number of resources, and the amount of resources consumed
by items were found to negatively impact the ability of the solver to find a so-
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lution with high optimality. Figure 13 shows the affect of raising the minimum
amount of resources consumed by an item. The optimality drops drastically as

Fig. 13. Minimum Resource Consumption per Item

the minimum amount of resources consumed by an item becomes a larger per-
centage of the total available resources. For a solution to maintain a forecasted
optimality of over 80% percent, the minimum amount of resources consumed
by an item must be less than 10% percent of the total amount of available
resources. Increasing the minimum amount of resources consumed by an item
causes more items to consume a relatively large share of the total available
resources.

The results from the experiment that gradually increased the minimum item
resource consumption led us to hypothesize that the MMKP solver will pro-
duce less optimal solutions when the average item consumes a very large per-
centage of the available resources. We performed another experiment where we
(1) calculated a resource tightness metric that measured the average resource
consumption of the items and (2) estimated how many items with the average
resource consumption could fit into the available resource allocation, i.e., how
many of the average sized items could be expected to fit into the knapsack.
Our tightness metric was calculated as:

√

R2
0 + . . . R2

m
√

(
∑n

i=0 r(i, 0)2 + . . . r(i, m)2)/n

where m is the total number of resource types, Ri is the maximum avail-
able amount of the ith resource, and r(i, j) is the amount of the jth resource
consumed by the ith item.

The results from the resource tightness experiment are shown in Figure 14. The
x-axis shows the estimated number of average sized items that are expected
to fit into the knapsack for a feature model with 50 sets. As shown in the
figure, there is a dramatic dropoff in optimality when less than 1.65 average
sized items can fit in the knapsack. The exact value for the tightness metric
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Fig. 14. Effect of Resource Constraint Tightness on MMKP Optimality

at which the dropoff occurs varies based on the number of MMKP sets. With
100 sets, the value was ∼1.83.

The fewer average items that can fit into the knapsack, the more likely the
solver is to make a mistake that will fill up the knapsack and widely miss
the optimal value. This result implies that the Filtered Cartesian Flattening
algorithmic approach works well when making are a relatively large number
of finer-grained feature selection decisions. For architectures with a few very
coarse-grained decisions, a developer or exact technique (Benavides et al.,
2007) is more likely to pick a more appropriate architectural variant.

Resource tightness also played a role in how the total number of resource types
affected solution optimality. Figure 15 shows how the optimality of solving
problems with 50 sets was affected as the total number of resource types
climbed from 2 to 95. For this experiment, the tightness metric was kept above
the 1.65 dropoff threshold. As can be seen, the total number of resources
had a relatively slight impact of approximately 5% on solution optimality.
The results in Figure 16, however, are quite different. In the experiment that
produced Figure 16, the tightness metric was kept at a relatively constant
1.55, i.e., below the dropoff value. As shown by the results, the total number
of resource types had a significant impact on solution optimality.
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Fig. 15. Total Number of Resources

Fig. 16. Total Number of Resources

6.2 Comparing Filtered Cartesian Flattening to CSP-based Feature Selection

Our initial tests with Filtered Cartesian Flattening compared its performance
and optimality on small-scale feature selection problems to the Constraint Sat-
isfaction Problem (CSP) based feature selection technique described in (Be-
navides et al., 2005). This technique uses a general-purpose constraint solver
to derive a feature selection. For these small scale- problems, we tracked
the time required for Filtered Cartesian Flattening to find a solution vs.
the CSP-based technique based on open-source Java Choco constraint solver
(choco-solver.net). For each solution, we compared Filtered Cartesian Flat-
tening’s answer to the guaranteed optimal answer generated by the CSP-based
technique.

Figure 17 shows the time required for Filtered Cartesian Flattening and the
CSP-based technique to find architectural variants in feature models with
varying numbers of XOR groups. The x-axis shows the number of XOR groups
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Fig. 17. Comparison of Filtered Cartesian Flattening and CSP-based Feature Se-
lection Solving Times

in the models and the y-axis displays the time required to find an architectural
variant. The total features in each model was ∼3-10 times the number of
XOR groups (the maximum size was < 140 features). Each feature-model
had a maximum of 10% of the features involved in a cross-tree constraint,
c ≤ 0.1n. As shown in the figure, the CSP-based technique initially requires
approximately 30ms to find a solution. The CSP technique’s time, however,
quickly grows at an exponential rate to over 198,000ms. In contrast, Filtered
Cartesian Flattening required less than 1ms for every feature model.

Even though Filtered Cartesian Flattening ran substantially faster than the
CSP-based technique, it still provided a high level of optimality. Overall, the
solutions generated by Filtered Cartesian Flattening were 92% optimal com-
pared to 100% optimal for the CSP-based technique. The Filtered Cartesian
Flattening solution with the lowest optimality was 80% optimal. Although
Filtered Cartesian Flattening does not provide 100% optimal results, it can
be used to derive good architectural variants for architectures that are too
large to solve with an exact technique.

6.3 Filtered Cartesian Flattening Test Problem Generation

Due to the exponential time curve required to solve a feature selection prob-
lem using an exact technique, it was not possible to solve large-scale problems
using both Filtered Cartesian Flattening and an exact technique. This section
presents the problem generation technique we used to create large-scale fea-
ture selection problems for which we knew the optimal answer. This problem
generation approach allowed us to generate extremely large problems with a
known optimal solution that were not feasible to solve with an exact technique.
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Filtered Cartesian Flattening problem instances vary based on the structural
properties of the feature model tree, such as the percentage of XOR groups,
max depth, and maximum number of children per feature. The MMKP prop-
erties tested in Section 6.1, such as the resource tightness of the problem,
can also vary based on how features consume resources. We tested the effect
of these problem characteristics by both generating problem instances that
exhibited a specific characteristic and by performing post-mortem analysis
on the results of solving over 500,000 random Filtered Cartesian Flattening
problem instances. The post-mortem analysis determined the problem char-
acteristics associated with the problem instances that were solved with the
worst optimality.

To create test data for the Filtered Cartesian Flattening technique, we gener-
ated random feature models and then created random feature selection prob-
lems with resource constraints from the feature models. For example, we first
generated a feature model and then assign each feature an amount of RAM,
CPU, etc. that it consumed. Each feature was also associated with a value. We
then randomly generated a series of available resource values and ask Filtered
Cartesian Flattening to derive the feature selection that maximized the sum
of the value attributes while not exceeding the randomly generated available
resources. Finally, we compared the Filtered Cartesian Flattening answer to
the optimum answer. No models included any cross-tree constraints because
there are no known methods for generating large feature selection problems
that include cross-tree constraints and have a known optimal solution.

In an effort to make the feature models as representative of real architec-
tural feature models as possible, we created models with a number of specific
characteristics. For example, developers with significant object-oriented de-
velopment experience often create models where commonality is factored into
parent features, identical to how an inheritance hierarchy is built. Figure 3
shows a hierarchy used to categorize the various facial recognition algorithms.
SPL architectural analysis techniques, such as Scope, Commonality, Variabil-

ity Analysis (Coplien et al., 1998) are used to derive these hierarchies.

Developers desires to provide a well structured hierarchy has two important
ramifications for the feature model. First, feature models typically have a rela-
tively limited number of child features for each feature. Hierarchies are used to
model a large number of child features as subtrees rather than simply a long
list of alternatives. Second, the actual features that consume resources and
provide value are most often the leaves of the feature model. In the catego-
rization of facial recognition algorithms shown in Figure 3, the actual resource
consumption and accuracy of the algorithm is not specifically known until
reaching one of the leaves, such as Euclidean or MahCosine. To mirror these
properties of developer-created feature models, we limited the number of child
features of a feature to 10 and heavily favored the association of resource con-
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sumption and value with the leaves of the feature model.

We used a feature model generation infrastructure that we developed previ-
ously (White et al., 2008). A key challenge was determining a way to randomly
assign resource consumption values and values to features such that we knew
the exact optimum value for the ideal feature selection. Moreover, we needed
to ensure that the randomly generated problems would not exhibit charac-
teristics that would make them easily solved by specific MMKP algorithms.
For example, if every feature in the optimum feature selection also had the
highest value in its selection set, the problem could be solved easily with a
greedy algorithm.

To assign resource consumption values to features and generate random avail-
able resource allocations, we used a modified version of the algorithm in (Akbar
et al., 2001) to ensure that the highest valued features were no more likely
part of the optimal solution than any other feature. The steps to generate a
feature selection problem with k different resource types and n features were
as follows:

(1) Generate a k-dimensional vector, ra, containing random available alloca-
tions for the k resource types,

(2) Randomly generate a slack value vs,
(3) Randomly generate an optimum value vopt,
(4) For each top-level XOR group, q, in each independent sub-tree, randomly

choose a feature, fqj , to represent the optimal configuration and assign it
value optqj = vopt,

(5) For each optimal feature, assign it a k dimensional resource consumption
vector, rqj , such that the sum of the components of the optimal resource
consumption vectors exactly equal the available resource allocation vec-
tor,

∑

rqj = ra,
(6) For each top-level XOR group member fi that is not the optimal feature

fqj in its group either:
• assign the feature value vi, where vi < (optqj −vs) and randomly assign

it a resource consumption vector
• assign the feature value vi, where optqj < vi < optqj +vs, and randomly

assign fi a resource consumption vector such that each component
is greater than the corresponding component in rqj. After each XOR
group’s features are completely initialized, set vs = max(vi) − optqj ,
where max(vi) is the the highest value of any item in the XOR group.

(7) For each feature in a top-level XOR group, reset the available resources
vector to the feature’s resource consumption vector, reset the optimum
value to the feature’s value, and recursively apply the algorithm, treating
the feature as the root of a new sub-tree
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6.4 Filtered Cartesian Flattening Optimality

After determining the key MMKP problem characteristics that influence the
optimality of the MMKP phase of Filtered Cartesian Flattening, we ran a
series of experiments to evaluate the parameters that affect the feature model
flattening phase. Figure 18 presents results illustrating how the percentage
of features involved in XOR groups within the feature model affects solution
optimality. As shown in this figure, as the percentage of features in XOR

Fig. 18. Effect of Feature Model XOR Percentage on Filtered Cartesian Flattening
Optimality

groups increases from 10% to 90% of features, there is a negligible impact on
optimality of the solutions produced by Filtered Cartesian Flattening.

We tested a wide range of other Filtered Cartesian Flattening properties, such
as the maximum depth and the maximum branching factor of the feature
model tree, and saw no impact on solution optimality. Other experiments
included tests that assigned and distributed value and resource consumption
to sub-trees in correlation to the size of the sub-tree. We also experimented
with feature models that evenly distributed value and resource consumption
across all features as opposed to clustering resource consumption and value
towards the leaves. The effect of different value ranges was also tested.

In each case, we observed no affect on solution optimality. The result graphs
from these experiments have been omitted for brevity. As discussed in Sec-
tion 6.5, our resource tightness metric had the most significant impact on
Filtered Cartesian Flattening solution optimality, just as it did with MMKP
approximation optimality.

Our largest experiment checked the range of solution optimalities produced
by using Filtered Cartesian Flattening to solve 450,000 optimal feature se-
lection problems with resource constraints. The total number of features was
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set to 1,000, the XOR Group percentage to 50%, K = 2500, and the resource
tightness metric was greater than 2.0 for the majority of the problem instances
(well above the dropoff point). As shown in Figure 19, the results are presented
with a histogram showing the number of problem instances that were solved
with a given optimality. The overall average optimality across all instances

Fig. 19. A Histogram Showing the Number of Problems Solved with a Given Opti-
mality from 450,000 Feature Models with 1,000 Features

was 95.54%. The lowest solution optimality observed was 72%.

Figure 20 presents data from solving approximately 8,000 feature selection
problems with 10,000 features. Again, we used a filtering scheme with K =
2500 that chose the K items with the best ratio of value to weight. The average
optimality across all problem instances was approximately 92.56%.

Across all feature model sizes (both 1,000 and 10,000 features), 90% of the
problem instances were solved with an optimality greater than ∼91%. More-
over, 99% were solved with an optimality greater than ∼80%. These result
cutoffs only hold when the tightness metric is above the drop-off value.

An interesting result can be seen by comparing Figures 20 and 19. As the
number of features increases, the range of solution optimalities becomes much
more tightly clustered around the average solution optimality. Akbar’s re-
sults (Akbar et al., 2001) showed an increase in M-HEU solution optimality
as the number of sets and items per set increased. Our results showed a slight
decrease of 3% in average solution optimality for Filtered Cartesian Flatten-
ing as the total features increased from 1,000 to 10,000. We expect that the
slight decrease is a result of more potentially good partial configurations be-
ing filtered out during the Filtered Cartesian Flattening Cartesian flattening
phase.
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Fig. 20. A Histogram Showing the Number of Problems Solved with a Given Opti-
mality from 8,000 Feature Models with 10,000 features

6.5 Summary and Analysis of Experiment Results

From the data we obtained from our Filtered Cartesian Flattening experi-
ments, we confirmed that the key predictor of MMKP solution optimality—
resource tightness—was also applicable to Filtered Cartesian Flattening prob-
lems. For all experiments we ran, those problems that were solved with less
than 70% optimality had an average resource tightness metric of 0.94, which
is well below the dropoff point of roughly 1.65 that we observed for 50 sets.
Moreover, the max tightness value for these problems was 1.67, which is right
at the edge of the dropoff.

Although a low value for the resource tightness metric indicates that a low
optimality is possible, it does not guarantee it. Some problems with tightness
metrics below the drop-off were solved with 100 or 90%+ optimality. Once the
MMKP problem representation is produced, calculating the tightness metric is
an O(n) operation. Due to the ease of calculating the resource tightness metric,
developers should always use it to rule out problem instances were Filtered
Cartesian Flattening is unlikely to produce an 80-90%+ optimal solution.
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7 Related Work

This section describes related work on algorithmic techniques for feature se-
lection and resource allocation and compares it with our Filtered Cartesian
Flattening algorithm.

7.1 Exact Techniques

Benavides et al. (Benavides et al., 2005) present a technique for using Con-
straint Satisfaction Problems (CSPs) to model and solve feature selection
problems. This technique can be modified to solve feature selection prob-
lems subject to resource constraints (White et al., 2007). Their technique
works well for small-scale problems, where an approximation technique is not
needed. For larger-scale problems, however, their technique is too computa-
tionally demanding. In contrast, Filtered Cartesian Flattening performs well
on these large-scale problems.

Other approaches to automated feature selection rely on propositional logic,
such as those presented by Mannion (Mannion, 2002) and Batory (Batory,
2005). These techniques were not designed to handle integer resource con-
straints and thus are not equipped to handle optimal feature selection prob-
lems subject to resource constraints. Moreover, these techniques rely on SAT
solvers that use exponential algorithms. Filtered Cartesian Flattening is a
polynomial-time algorithm that can handle integer resource constraints and
thus can perform optimal feature selection subject to resource constraints on
large-scale problems.

Dudley et al (Dudley et al., 2004) describe a method for implementing au-
tomatic self-healing systems. When an integral element of the system archi-
tecture becomes disabled, another element is selected by the system that will
allow the system to be restored to a functional configuration. Potential el-
ements that could restore the system without detriment to the system are
defined by policies. The validity of the selection of an element that matches
the constraints defined by these policies are modeled as CSPs. Since Dudley’s
technique is designed for runtime healing, it must operate quickly and cannot
consider resource constraints. The solver searches for any solution, regardless
of the resource consumption that would result form its architectural imple-
mentation. In contrast, Filtered Cartesian Flattening, can be used to find a
solution that is valid and honors resource consumption constraints, which are
critical for correctness.
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7.2 Approximation Algorithms

Although exact algorithms to solve NP-hard problems have exponential com-
plexity, each NP-hard problem typically has a number of approximation al-
gorithms that can be use to solve it with acceptable optimality. For exam-
ple, approximation algorithms are commonly used in the shipping industry
to solve Traveling Salesman Problems (Lin and Kernighan, 1973). Moreover,
simple heuristic algorithms, such as First Fit Decreasing (Coffman Jr et al.,
1996), can be used to effectively solve Bin-Packing Problems (Coffman Jr
et al., 1996). As we will show in this section, however, there are no existing
approximation algorithms that can be applied to optimal feature selection
with resource constraints.

Bin-packing approximation algorithms (Coffman Jr et al., 1996; Lodi et al.,
1999), such as First Fit Decreasing (Coffman Jr et al., 1996), cannot be applied
to architectural feature selection problems because they assume that all of the
N items can and must be selected. For example, in Figure 3, there is no way to
represent that either Euclidean or IdaSoft should be put into a bin but not
both. That is, bin-packing algorithms can guarantee that resource constraints
are not exceeded but they cannot ensure that the architectural constraints in
(C) are also simultaneously satisfied.

Knapsack problems (Ibarra and Kim, 1975) also suffer from this same limita-
tion of bin-packing algorithms. Knapsack algorithms (Kellerer and Pferschy,
1999) assume that any combination of the items can be placed into the knap-
sack. These algorithms can guarantee that the resource limits are not exceeded
but again cannot ensure that (C) is simultaneously satisfied. Some knapsack
approximation algorithms have been extended with the ability to handle car-
dinality constraints (Caprara et al., 2000), but cardinality constraints are not
sufficient to guarantee (C).

MMKP problems (Akbar et al., 2001), which are the basis of Filtered Cartesian
Flattening, are more closely related to architectural feature selection prob-
lems. MMKP problems define a group of sets from which at most one item
can be selected from each set. For special cases of the architectural feature
selection problem where there are no nested variabilities, such as in Figure 5,
these algorithms can be applied. When nesting of variabilities occurs, these
approximation algorithms (Akbar et al., 2001) are no longer applicable.

For example, the nested choice of general algorithm type (LDA, PCA, etc.) fol-
lowed by the choice of the exact variant of the algorithm (LDA Euclidean vs.
LDA IdaSoft) cannot be directly solved with an existing MMKP approxima-
tion algorithm. In Section 5, we show how a feature model can be transformed
into a format that can be operated on by existing MMKP approximation al-
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gorithms to create an approximation algorithm for optimal feature selection
problems with resource constraints.

8 Concluding Remarks

To make the sound architectural feature selection decisions, developers need
the ability to algorithmically generate architectural variants that optimize de-
sired system properties. A key challenge, however, is that selecting a set of
architectural features that maximizes a system capability while adhering to
resource constraints is an NP-hard problem. Although there are numerous
approximation algorithms for other NP-hard problems, they do not directly
support optimal feature selection subject to resource constraints. MMKP ap-
proximation algorithms can be applied to specific subsets of optimal feature
selection problems, but in general, these algorithms are not designed to handle
the hierarchical structure and non-XOR constraints in a feature model. This
lack of approximation algorithms limits the scale of model on which developers
can realistically optimize and evaluate architectural design alternatives.

This paper shows how the Filtered Cartesian Flattening approximation tech-
nique can be applied to select good feature sets subject to resource constraints.
Filtered Cartesian Flattening produces an approximate MMKP representa-
tion of a feature selection problem with resource constraints. Each MMKP set
contains partial configurations of the architectural feature model and select-
ing one partial configuration from each MMKP set is guaranteed to produce
a correct and complete architectural variant. With this MMKP problem rep-
resentation, existing MMKP approximation algorithms can be used to solve
for an architectural variant that maximizes a specific system property while
honoring resource constraints.

Our empirical results show how Filtered Cartesian Flattening can achieve
an average of more than 90% optimality for large feature models. More-
over, the results revealed a key problem characteristic, resource tightness
( AvailableResources

Avg.ItemResourceConsumption
), that could be used to predict which problem in-

stances Filtered Cartesian Flattening does not perform well on. These results
could be further improved by using more exact MMKP approximation algo-
rithms for the final Filtered Cartesian Flattening phase, such as M-HEU (Ak-
bar et al., 2001).

From our experience developing and evaluating Filtered Cartesian Flattening,
we have learned the following lessons:

• The resource tightness metric presented in Section 6.1 is an accurate indica-
tor of whether or not the Filtered Cartesian Flattening technique should be
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applied to a problem. When the tightness metric value is low, there is little
guarantee that Filtered Cartesian Flattening will produce a 90%+ optimal
solution.

• For large-scale feature models (e.g., with > 5,000 features) exact techniques
typically require days, months, or more, to solve optimal feature selection
problems subject to resource constraints. In contrast, Filtered Cartesian
Flattening requires between 1-12 seconds for a problems with 1,000-10,000
features. The algorithmic complexity of Filtered Cartesian Flattening is
polynomial.

• Once Filtered Cartesian Flattening subdivides a feature model into a num-
ber of independent subtrees, these subtrees can be distributed across inde-
pendent processors to flatten in parallel. The Filtered Cartesian Flattening
technique is thus highly amenable to multi-core processors and parallel com-
puting.

• Although other papers (Akbar et al., 2001) have shown that MMKP ap-
proximation algorithm solution optimality improves as the number of items
and sets grows, Filtered Cartesian Flattening shows a slow degradation in
optimality as the number of features grows. When increasing from 1,000
to 10,000 features, we observed a roughly 3% decrease in optimality from
95.54% to 92.56% optimality. In our experiments, K was held constant. We
hypothesize that for larger problems, because K was held constant,the drop
in optimality is due to the Filtered Cartesian Flattening Cartesian flattening
phase being forced to filter out more good partial configurations. K could
be increased for larger problems to counteract this decrease in optimality.

• A key attribute of Filtered Cartesian Flattening is its ability to leverage any
MMKP solver and any arbitrary filtering strategy for the Cartesian flat-
tening. Simultaneously using and solving problems with multiple filtering
strategies and MMKP solvers should provide further guarantees on the opti-
mality of the solution found. The speed of the Filtered Cartesian Flattening
algorithm and MMKP solvers makes this multi-pronged solving approach
possible.

An implementation of Filtered Cartesian Flattening is included with the open-
source GEMS Model Intelligence project and is available from sf.net/projects/gems.

APPENDIX

This appendix contains a detailed pseudo-code listing for the Filtered Carte-
sian Flattening algorithm.

cardGroupToXOR: a function that takes a cardinality group and converts

it to an XOR group with K elements using a filtering

strategy

cardFeatureToXOR: a function that takes a Feature with a cardinality

expression and converts it to an XOR group with K

items

optionalFeatureToXOR: a function that takes an optional feature and converts
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it to an XOR group

NULL_ITEM: an item with zero resource consumption and value that

represents a set that has no items selected

Filtered Cartesian Flattening(RootFeature) (1)

List Subtrees = new List

Subtrees.add(RootFeature)

cut(RootFeature,Subtrees)

for each Root in Subtrees

convertToXOR(Root)

List MMKPSets = new List

for each Root in Subtrees

MMKPSets.add(flatten(Root))

for each MMKPSet in MMKPSets

if(!MMKPSet.includes(RootFeature))

MMKPSet.add(NULL_ITEM)

List solution = MMKPSover.solve(MMKPSets)

cut(Feature, SubtreeRoots) (2)

if(Feature.isOptional)

Feature.parent.children.remove(Feature)

Feature.parent = null

SubtreeRoots.add(Feature)

else

for each Child in Feature.children

cut(Child,SubtreeRoots)

convertToXOR(Feature) (3)

if(Feature.childrenAreCardGroup)

cardGroupToXOR(Feature)

else if(Feature.isOptional)

optionalFeatureToXOR(Feature)

else if(Feature.hasCardExpression)

cardFeatureToXOR(Feature)

for each Child in Feature.children

convertToXOR(Child)

List flatten(Feature) (4)

List flattened = new List

if Feature.children.size == 0

flattened.add(Feature) (5)

else if Feature.childrenAreXORGroup

for each Child in Feature.children

flattened.addAll( flatten(Child) ) (6)

else if Feature.childrenAreRequired

flattened.addAll( flattenAll(Feature.children))

return flattened

List flattenAll(Features)

List flattened = flatten(Features.first)

for each Feature in Features

if(Feature != Features.first)

flattened = filteredCartesianProduct(flattened,flatten(Feature)) (7)

return flattened

List filteredCartesianProduct(A,B)

List product = new List

for 1 to K (8)

choose an item from A

choose an item from B that satisfies all of A.crossTreeConstraints

C = new Item(A.partialConfiguration + B.partialConfiguration)

C.resourceConsumption = A.resourceConsumption + B.resourceConsumption

C.value = A.value + B.value

C.crossTreeCons = A.crossTreeCons + B.crossTreeCons

product.add(C)

return product
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