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Abstract —Search-based software engineering is an emerging
paradigm that uses automated search algorithms to help designers
iteratively find solutions to complicated design problems. For example,
when designing a climate monitoring satellite, designers may want
to use the minimal amount of computing hardware to reduce weight
and cost, while supporting the image processing algorithms running
onboard. A key problem in these situations is that the hardware
and software design are locked in a tightly-coupled cost-constrained
producer/consumer relationship that makes it hard to find a good
hardware/software design configuration. Search-based software
engineering can be used to apply algorithmic techniques to automate
the search for hardware/software designs that maximize the image
processing accuracy while respecting cost constraints.

This paper provides the following contributions to research on search-
based software engineering: (1) we show how a cost-constrained
producer/consumer problem can be modeled as a set of two multidi-
mensional multiple-choice knapsack problems (MMKPs), (2) we present
a polynomial-time search-based software engineering technique, called
the Allocation-baSed Configuration Exploration Technique (ASCENT),
for finding near optimal hardware/software co-design solutions, and (3)
we present empirical results showing that ASCENT'’s solutions average
95%-+ of the optimal solution’s value.

1 INTRODUCTION

search technique to find designs that optimize a specifiesyst
quality while adhering to design constraints. Each time a
new design is produced, designers can use the knowledge
they have gleaned from the new design solution to craft
more precise constraints to guide the next design search.
Search-based software engineering has been applied to the
design of a number of software engineering aspects, ranging
from generating test data [26] to project management and
staffing [6, 4] to software security [10].

Open Problem. A common theme in domains where
search-based software engineering is applied is that thigrde
solution space is so large and tightly constrained thatithe t
required to find an optimal solution grows at an exponential
rate with the problem size. These vast and constrained solu-
tions spaces make it hard for designers to derive good sakuti
manually. One domain with solution spaces that exhibiteghes
challenging characteristics is hardware/software cagdes

Hardware/software co-design is a process whereby a sys-
tem’'s hardware and software are designed at the same-
time in order to produce optimizations that would not be
possible in either hardware or software alone. Traditiignal
hardware/software co-design has focused on determining ho

Current trends and challenges. Increasing levels of program-to partition application functionality between hardwaneda
ming abstraction, middleware, and other software advana®ftware. For example, developers can take a time-critical
ments have expanded the scale and complexity of softwameage processing step in an application and determine wheth
systems that we can develop. At the same time, the balloonbogimplement it in hardware or software. Typically, there
scale and complexity have created a problem where systeans limited resources available to implement functiogalit
are becoming so large that their design and developmémthardware and thus determining which pieces of func-
can no longer be optimized manually. Current large-scdienality to implement in hardware versus software becomes
systems can contain an exponential number of potentiadesextremely challenging. A number of search-based engingeri
configurations and vast numbers of constraints ranging fraechniques, ranging from particle swarm optimization [2] 2
security to performance requirements. Systems of thisssctd genetic algorithms [34, 28, 13] have been used to help
and complexity—coupled with the increasing importance @utomate this process.

non-functional characteristics [9] (such as end-to-esgoase

This paper examines another type of hardware/software co-

time)—are making software design processes increasinglgsign problem that is common in the domain of distributed

expensive [27].

real-time and embedded (DRE) systems. The problem we

Search-based software engineering [17, 16] is an emergfiogus on is the need to choose a set of hardware and soft-

discipline that aims to decrease the cost of optimizingesyst ware configuration options that maximizes a specific system
design by using algorithmic search techniques, such agigeneapability subject to constraints on cost and the prodactio
algorithms or simulated annealing, to automate the designd consumption of resources, such as RAM, by the hardware
search. In this paradigm, rather than performing the searghd software, respectively. This problem assumes that the
manually, designers iteratively produce a design by usingpartitioning of functionality between hardware and softwa



is fixed but that there are different configuration options ithe hardware and software design spaces.
the hardware and software that developers must set. Paper organization. The remainder of this paper is or-

A configuration option is a setting that can be changed ganized as follows: Section 2 presents a motivating example
the hardware or software design, such as the image resolutid a satellite hardware/software co-design problem; Sacsi
used in an image processing algorithm. Selecting a high#iscusses the challenges of solving software/-hardware co
resolution will yield better image processing results bult w design problems in the context of this motivating exam-
in turn require more CPU time. Similarly, the hardware hagsle; Section 4 describes the ASCENT heuristic algorithm;
multiple configuration options, such as the clock speed ef tisection 5 analyzes empirical results from experiments we
processor used. The goal of engineers is to find a seriespefformed with ASCENT; Section 6 compares ASCENT with
settings for these configuration options that maximize Eyti related work; and Section 7 presents concluding remarks and
function that describes the quality of the system. lessons learned from our work with ASCENT.

For example, when designing a satellite for monitoring
earth’s magnetosphere [12], the goal may be to maximi MOTIVATING EXAMPLE
the accuracy of the sensor data processing algorithms on
the satellite without exceeding the development budget ahBiS Section presents a satellite design example to metttiat
hardware resources. Ideally, to maximize the capabilitighe need to expand search-based software engineering teelsniqu
system for a given cost, system software and hardware shot@dencompass cost-constrained hardware/software produce
be configured in tandem to produce a design with a preciseG@nSumer co-design problems. Designing satellites, ssch a
between hardware capabilities and software resource dignate satellite for NASAs Magnetospheric Multiscale (MMS)

The more precise the fit, the less budget is expended on exd®ésion [12], requires carefully balancing hardwareisafe
hardware resource capacity. design subject to tight budgets. Figure 1 shows a satellite w

A key problem in these design scenarios is that th number of possible variations in software and hardware

create a complex cost-constrained producer/consumelgonobdesign. For example, the software design has a point of
involving the software and hardware design. The hardware
design determines the resources, such as processing pow
and memory, that are available to the software. Likewise, th

hardware consumes a portion of the project budget and tht
reduces resources remaining for the software (assumingé fix lggzg{gcaeggnmgﬁgg;g ,ngt‘,ﬁ’af‘f'\’!)'xmp Set2
budget). The software also consumes a portion of the budg¢ e e R e e el
and the resources produced by the hardware configuratien. Tfé

perceived value of system comes from the attributes of theg

Software Knapsack

Algorithm 3, Consumes Ram 50, CPU 450 Low, Consumes Ram 5, CPU 1

Algorithm 4, Consumes Ram 120, CPU 50,

software desigre.g, image processing accuracy in the satellite §
example. The intricate dependencies between the hardwdre a3
software’s production and consumption of resources, emst,
value makes the design solution space so large and comple
that finding an optimal and valid design configuration is hard - »

Solution approach — Automated Solution Space Explo- o = Ram 312
ration. This paper presents a heuristic search-based softwal Gpu 2000 Ram 2048
engineering technique, called thdlocation-baSed Configu- o
ration Exploration Techniqug ASCENT), for solving cost-
constrained hardware/software producer/consumer dgrades
problems. ASCENT models these co-design problems as tw
separate knapsack problems [21]. Since knapsack problems ¢
NP-Hard [11], ASCENT uses heuristics to reduce the solution
space size and iteratively search for near optimal designs fig. 1. Software/Hardware Design Variability in a Satellite
adjusting the budget allocations to software and hardware.
addition to outputting the best design found, ASCENT alsaariability where a designer can select the resolution ef th
generates a data set representing the trends it discoveredmages that are processed. Processing higher resolutagesn
the solution space. improves the accuracy but requires more RAM and CPU

A key attribute of the ASCENT technique is that, in theycles.
process of solving, it generates a large number of optimalAnother point of variability in the software design is the
design configurations that present a wide view of the trenitsage processing algorithms that can be used to identify- cha
and patterns in a system’s design solution space. This papeteristics of the images captured by the satellite’'s camer
shows how this wide view of trends in the solution spacEhe algorithms each provide a distinct level of accuracylevh
can be used to iteratively search for near optimal co-desiglso consuming different quantities of RAM and CPU cycles.
solutions. Moreover, our empirical results show that ASGENThe underlying hardware has a number of points of varigbilit
produces co-design configurations that average 95%+ obptirttzat can be used to increase or decrease the RAM and CPU
for problems with more than 7 points of variability in each opower to support the resource demands of different image

Provide Sufficient Resources

for Software Solution\l/

Hardware

Hardware MMKP Set 1 Hardware MMKP Set 2

Hardware Knapsack




processing configurations. Each configuration option, fachfit into. Clearly, just selecting the optimal set of software
the chosen algorithm or RAM value, has a cost associatitures subject to a maximum budget is an instance of the
with it that subtracts from the overall budget. A key quastioNP-Hard [11] MMKP problem.
design question for the satellite ishat set of hardware and For the overall satellite design problem, we must contend
software choices will fit a given budget and maximize theith not one but two individual knapsack problems. One
image processing accuracy problem models the software design and the second problem
Many similar design problems involving the allocatiormodels the hardware design. The first of the two MMKP
of resources subject to a series of design constraints h@veblems for the satellite design is its software MMKP
been modeled aslultidimensional Multiple-Choice Knapsackproblem. The hardware design options are modeled in a
Problems(MMKPs) [20, 22, 2]. A standard knapsack probseparate MMKP problem with each set containing the potentia
lem [21] is defined by a set of items with varying sizes anbardware options. An example mapping of the software and
values. The goal is to find the set of items that fits into lardware design problems to MMKP problems is shown in
fixed sized knapsack and that simultaneously maximizes thigure 1.
value of the items in the knapsack. An MMKP problem is a We call this combined two problem MMKP modeMMKP
variation on a standard knapsack problem where the items agedesign problemWith this MMKP co-design model of the
divided into sets and at most one item from each set may $afellite, a design is reached by choosing one item from each
placed into the knapsack. set €.g., an Image Resolution, Algorithm, RAM value, and
Figure 2 shows an example MMKP problem where tw&PU) for each problem. The correctness of the design can

sets contain items of different sizes and values. At moge validated by ensuring that exactly one item is chosen
from each set and that the items fit into their respective

!Z'i?:zxgxs 1.5x1g.5><10 1x§x7 1.5?1.5)(5 1A5x111A5x5 1§5x4x7 software and hardware knapsaCkS- This definition, however,
re s | P is still not sufficient to model the cost-constrained harcyia

‘. Y €5 &% NS N \ P, software producer/consumer cp-de3|gn problem_ since we hav

set - not accounted for the constraint on the total size of the two

knapsacks or the production and consumption of resources by
hardware and software.

\129’"] J

1

A correct solution must also uphold the constraint that the
Knapsack items chosen for the solution to the software MMKP problem
Avallabls Space: 5X20X5 do not consume more resources, such as RAM, than are
produced by the items selected for the solution to the hamrelwa
Fig. 2. An Example MMKP Problem MMKP problem. Moreover, the cost of the entire selection of

items must be less than the total development budget. We know

one of the items A,B, and C can be put into the knapsadkat solving the individual MMKP problems for the optimal
Likewise, only one of the items D, E, and F can be putardware and software design is NP-Hard but we must also
into the knapsack. The goal is to find the combination afetermine how hard solving the combined co-design problem
two items, where one item is chosen from each set, that fiss
into the knapsack and maximizes the overall value. A numberin this simple satellite example, there are 192 possible
of resource related problems have been modeled as MME®&ellite configurations to consider, allowing for exhaest
problems where the sets are the points of variability in theearch to be used. For real industrial scale examples, lemwev
design, the items are the options for each point of varighili there are a significantly larger number of possibilities ahhi
and the knapsack/item sizes are the resources consumedniakes it infeasible to use an exhaustive search technique. F
different design options [25, 22, 33, 8, 3]. example, a system with design choices that can be modeled

The software and hardware design problems are harduging 64 MMKP sets, each with 2 items, will haa*
solve individually. Each design problem consists of a numbpossible configurations. For systems of this scale, manual
of design variability points that can be implemented by exolving methods are clearly not feasible, which motivates t
actly one design option, such as a specific image processitegd for a search-based software engineering technique.
algorithm. Each design option has an associated resourcze co
sumption, such as cost, and value associated with it. Mereo\2.1  MMKP Co-design Complexity
the design options cannot be arbitrarily chosen because thBelow, we show that MMKP co-design problems are NP-Hard
is a limited amount of each resource available to consumeand in need of a search-based software engineering te@niqu

It is apparent that the description of the software desighle are not aware of any approximation techniques for solving
problem directly parallels the definition of an MMKP problemMMKP co-design problems in polynomial time. This lack of
An MMKP set can be created for each point of variabilitapproximation algorithms—coupled with the poor scal@pili
(e.g., Image Resolution and Algorithm). Each set can thesi exact solving technigues—hinders DRE system desigmners’
be populated with the options for its corresponding point @bilities to optimize software and hardware in tandem.
variability (e.g., High, Medium, Low for Image Resolution). To show that MMKP co-design problems are NP-Hard, we
The items each have a size (cost) associated with them andst build a formal definition of them. We can define an
there is a limited size knapsack (budget) that the items cBMKP co-design problemCoP, as an 8-tuple:



constraint corresponds to Rule (2) in Figure 3 that each
solution must fit into the budget for its respective knapsack

CoP =< Pr,Co,51, 5,5, R, Uc(x, k), Up(z, k) > The MMKP co-design problem adds two additional con-

where: straints on the solutionsandec. First, we require that the items

« Pris the producer MMKP probleme(., the hardware in ¢ do not consume more of any resource than is produced
choices). ’ by the items inp:

o Co is the consumer MMKP probleneg., the software j .
choices). vk C R),S Uele;, k) < S Uplp,

o S; is the size of the producePr, knapsack. ( )’zo: (e k) < ZO: p(pis )

e S5 is the size of the consumet,o, knapsack.
« R is the set of resource types.d., RAM, CPU, etc.) Wherej is the total number of items ia, ¢; is thejy, item in
that can be produced and consumed By and Co, ¢ [ is the total number of items ip, andp; is the jy, item

respectively. in p. Visually, this means that the consumer solution can fit
« Sisthe total allowed combined size of the two knapsacl'k@fto the producer solution’s resources as shown in Rulen(1) i
for Pr andCo (e.g., total budget). Figure 3.

e Uc(z,k) is a function which calculates the amount of The second constraint ahandp is an interesting twist on
the resourcé C R consumed by an item C Co (e.g., traditional MMKP problems. For a MMKP co-design problem,
RAM consumed). we do not know the exact sizeS;, Ss, of each knapsack. Part

o Up(z, k) is a function which calculates the amount of thef the problem is determining the sizes as well as the items fo
the resourcés C R produced by an itemx ¢ Pr (e.g., each knapsack. Since we are bound by a total overall budget,

RAM provided). we must ensure that the sizes of the knapsacks do not exceed
Let a solution to the MMKP co-design problem be definetis budget:
as a 2-tuple< p,c >, wherep C Pr is the set of items S+ S, <8

chosen from the producer MMKP problem andc Co is
the set of items chosen from the consumer MMKP problerhis constraint on the overall budget corresponds to Rule (3
A visualization of a solution tuple is shown in Figure 3. Wén Figure 3.

To show that solving for an exact answer to the MMKP
problem is NP-Hard, we will show that we can reduce any
, instance of the NP-completenapsack decision problero
. Producer an instance of the MMKP co-design problem. The knapsack
Solution (Hardware) decision problem asks if there is a combination of items
{attazEs) with value at leasti’ that can fit into the knapsack without
exceeding a cost constraint.

A knapsack problem can easily be converted to a MMKP
problem as described by Akbar et al. [2]. For each item, asset i
created containing the item and thétem. Thef) item has no
value and does not take up any space. Using this approach, a
/ knapsack decision probler,,,, can be converted to a MMKP
g decision problemMg,, where we ask if there is a selection
of items from the sets that has value at leEst
Fig. 3. Structure of an MMKP Co-design Problem To reduce the decision problem to an MMKP co-design

problem, we can use the MMKP decision problem as the

define the value of the solution as the sum of the values ¢@nsumer knapsack’p = Mg,), set the producer knapsack to

1. Fits Provided
Resources

Overall
M Budget

N/
3. Fits Budget: ~ 2

the elements in the consumer solution: an MMKP problem with a single item with zero weight and
p value (0), and let our set of produced and consumed resources,

V= Zvalueof(cj) R be empty,R = (Z)..Next, we can I.et the total 'knapsack
5 size budget be the size of the decision problem’s knapsack,

. . . . . S = sizeof(My,).
where is the total number of items in, ¢; is the j;, item 7 (May)

) . ; The co-design solution, which is the maximization of the
in ¢, andvalueof() is a function that returns the value of an . ; ,

: : . consumer knapsack solution value, will also be the optimal
item in the consumer soution.

. . . answer for the decision proble . We have thus setup the
We require thap andc are valid solutions taPr and Co, P Moy b

: . . co-design problem so that it is solving for a maximal answer
respectively. Fop and ¢ to be valid, exactly one item from gn p g

. to M, without any additional producer/consumer constraints
each set inPr and Co must have been chosen. Moreover dp y b

the items must fit into the knapsacks 8% and Co. LThis or knapsack size conmdergﬂ_ons. Since any instance of the
NP-complete knapsack decision problem can be reduced to

1. A more formal definition of MMKP solution correctness isadable  @n MMKP co-design problem, the MMKP co-design prOblem
from [2]. must be NP-Hard.



3 CHALLENGES OF MMKP Co-DESIGN with unique sequential divisions of the total budget. Tytic
PROBLEMS designers would choose a budget with little information on

This section describes the two main challenges to buiIdiﬂiﬁe ramifications of a potential budget choice. By sampling

an approximation algorithm to solve MMKP co-design prob:— € slolutl_?; space ﬁt a gu"?ber Oftﬂ'SthCttbu?gft altlrc])c;ﬂon
lems. We discuss the challenges that make it infeasible H)e algorithm can show designers the best solution thafit ca

directly apply existing MMKP algorithms to MMKP co-designpmduce at each budget allocation. The informgtion produce
problems. The first challenge is that determining how to sy not show the a_ctual best budget allocations to choqse,
t should help designers to make better budget allocation

the budget allocations of the software and hardware is . than blindlv choosi budaet allocati ith
straightforward since it involves figuring out the preciszes choices than blindly choosing a budget aflocation with no

of the software and hardware knapsacks where the hardW&Ingat'ﬁn atl a!l. A key chadllenge IS fr|]gur|ng|out hdow_to
knapsack produces sufficient resources to support the abti amp e_t € so ut|on_ space an pres,entt € resu s _to esigne
software knapsack solution (which itself is unknown). Th Section 4.4 we discuss ASCENT's solution to this problem

second challenge is that the tight-coupling between preldugnd in Section 5 we present empirical data showing how

and consumer MMKP problems makes them hard to sol@CENT allows designers to sample design spaces for a

individually, thus motivating the need for a heuristic to- denumber of MMKP co-design problems.

couple them.

3.2 Challenge 2: Tight-coupling Between the

3.1 Challenge 1: Undefined Producer/Consumer
Producer/Consumer

Knapsack Sizes

One challenge of the MMKP co-design problem is that thanother key issue to contend with is how to rank the solutions
individual knapsack size budget for each of the MMKRo the producer MMKP problem. Per the definition of an
problems is not predetermindd., we do not know how much MMKP co-design problem from Section 2.1, the producer
of the budget should be allocated to software versus hasjwagolution does not directly impart any value to the overall
as shown in Figure 4. The only constraint is that the sum of teelution. The producer’s benefit to a solution is its ability

to make a good consumer solution viable. MMKP solvers

Consumer

Budget must have a way of ranking solutions and items. The problem,
(Software) however, is that the value of a producer solution or item cann
be calculated in isolation.
P,;‘f,‘:,‘;‘;i’ A consumer solution must already exist to calculate the
(Hardware) value of a particular producer solution. For example, waeth

or not 1,024 kilobytes of memory are beneficial to the overall
solution can only be ascertained by seeing if 1,024 kilobgfe
memory are needed by the consumer solution. If the consumer
solution does not need this much memory, then the memory

" overall'

Querati produced by the item is not helpful. If the consumer soluion
RAM starved, the item is desperately needed. A visualinatio
of the problem is shown in Figure 5.

Flg 4. Undefined Knapsack Sizes Provides Resources to
-Make Designs Feasible_ i
budgets must be less than or equal to an overall total budget. N
Every pair of budget values for hardware and software rgsult Soft@ | Hardware
in two new unique MMKP problems. Even minor transfers /
of capital from one problem budget to the other can therefore ——— -
completely alter the solution of the problem, resulting imeav Rank Designs
;nxz)g{néjen;i:/eﬂu;'zf)g?ttwg MIZI;SF;;ﬁc,;anlgg\?vsnéssume that ﬂ?:elg. 5. Producer/Consumer MMKP Tight-coupling
There is currently no information to aid designers in deter-
mining the allocation of the budgets. As a result, many desig The inability to rank producer solutions in isolation of
ers may choose the allocation arbitrarily without realigthe consumer solutions is problematic because it creates &erhic
profound impact it may have. For example, a budget allonatiand the egg problem. A valid consumer solution cannot be
of 75% software and 25% software may result in a solutiathosen if we do not know what resources are available
that, while valid, provides far less value and costs comaiolg for it to consume. At the same time, we cannot rank the
more than a solution with a budget allocation of 74% and 26%&lue of producer solutions without a consumer solution as
percent. a context. This tight-coupling between the producer/coreu
There is, however, useful information in the solution spads a challenging problem. We discuss the heuristic ASCENT
that can be determined by solving instances of the problames to solve this problem in Section 4.3.



4 THE ASCENT ALGORITHM Inputs:

This section presents our polynomial-time ap_proximatign_a CoP = < Pr,Co,58,5 8, R,Uc(z, k), Up(z, k) >
rithm, called theAllocation-baSed Configuration ExploratioN D = stepsize

Technique(ASCENT), for solving MMKP co-design prob- )

lems. The pseudo-code for the ASCENT algorithm is shownAlgorithm:

in Figure 6 and explained throughout this section. 1) Forint i = 0to |S/D|, setS; = ix D and Sy =

4.1 ASCENT Algorithm Overview 2)

A MMKP co-design problem{oP, as defined as an 8-tuple;

CoP =< Pr,Co,51,52,5, R, Uc(z,k),Up(x, k) >

The ASCENT algorithm solves for a series of potentia
solutions toCoP using an iterative heuristic algorithm. The
input to the algorithm is the problem definitiatioP and a
step size increment), which is discussed in Section 4.2. The
ASCENT algorithm then proceeds as shown in Figure 6

4.2 Producer/Consumer Knapsack Sizing

The first issue to contend with when solving an MMKRF
co-design problem is Challenge 2 from Section 3.1, whig
involves determining how to allocate sizes to the individu
knapsacks. ASCENT addresses this problem by dividing the
overall knapsack size budget into increments of dizeThe
size increment is a parameter provided by the user. ASCENT
then iteratively increases the consumer’'s budget allopati
(knapsack size) from 0% of the total budget to 100% of th
total budget in steps of sizB. The incremental expansion of|
the producer’s budget can be seen in tho loop in step 1
of Figure 6 and the setting of values for 6f, S, in step 2.
For example, if there is a total size budget of 100 and
increments of size 10, ASCENT firsts assign 0 to the consumer
and 100 to the producer, 10 and 90, 80 and 20, and so farth
until 100% of the budget is assigned to the consumer. Sirlce
we are focused on DRE systems, we assume that the resources
of the system are fixed and that 100% utilization cannpt
be exceeded. The allocation process is shown in Figure|7.
ASCENT includes both the 0%,100% and 100%,0% budget
allocations to handle cases where the optimal configuration

S — 51
For each set of values faf; and Ss:

2.1) Solve for a solutiontc, to Co, given S,
2.2) Calculate a resource consumption heuri
Vr(k) for the resource i € R:

S Ueltes, k)
R c
S S Ueltes k)
2.3) Solve for a solutiory, to Pr that maximizes the

Vor(r)

stic

sum of the values of the items selected for the

knapsack,z‘,f:‘O Value(py), where the value of
the k;, item is calculated as:
|R|
Value(py) = Z Vir(ry) « Up(pk, )
=0
2.4) For each resources € R, calculate the amoun
of that resourceP(r), produced by the items i
p:

P(r) = Up(po,r;)+Up(p1,75) ... Up(Djp|-1,75)

2.5) Create a new multidimensional knapsack pr
lem, C'mo, from Co, such that the maximum siz
of each dimension of the new knapsack is defin
by the vector:

Smay = (S2,70,71,---T|R|—1)

2.6) Solve for a solution;, to Cmo and add a solutior
tuple < p, ¢ > to the list of candidate solutiong
lc, for CoP

3) Sort the potential solutiond¢, of CoP and output

both the highest valued solution and the list of otk
potential solutions

—F

N

ed

er

includes producer or consumer items with zero cost.

Fig. 6.

The ASCENT Algorithm

Consumer

4.3 Ranking Producer Solutions

At each allocation iteration, ASCENT has a fixed set of sizes
for the two knapsacks. In each iteration, ASCENT must solve
the coupling problem presented in Section 3.2, which is: how
do we rank producer solutions without a consumer solution
After the coupling is loosened, ASCENT can solve for a highly
valued solution that fits the given knapsack size restristio
To break the tight-coupling between producer and consume
ordering, ASCENT employs a special heuristic. Once the
knapsack size allocations are fixed, ASCENT solves for ¢
maximal consumer solution that only considers the curren
size constraint of its knapsack and not produced/consume
resources. This process is shown in step 2.1 of Figure 6.

The process of solving the consumer knapsaek in Step Fig. 7.

Budget
(Software)

Producer
Budget
(Hardware)

%
/74,

Overall
Budget
,'/ / ’

Iteratively Allocating Budget to the Consumer

2.1, uses an arbitrary MMKP approximation algorithm to finénapsack



a solution that only considers the consumer’s budget. This3) in each iteration, values of at most producer items
approach is similar to asking “what would the best possible = must be updated.

solution look like if there were unlimited produced/consen This breakdown yields an algorithmic complexity of i +
resources.” Once ASCENT has this idealized consumer sol)/ K P)), where MMKP is the algorithmic complexity of
tion, it calculates a heuristic for assigning a value to p  the chosen MMKP algorithm. With M-HEU (one of the most
solutions. accurate MMKP approximation algorithms [2]) the algorith-
ASCENT uses a commonly used heuristic from prior workhic complexity is Ofnn?(I — 1)2), wherem is the number
on MMKPs to assign values for ranking potential solutioris [2of resource types; is the number of sets, arids maximum
The heuristic that ASCENT uses to assign value to produgg§ms per set. Our experiments in Section 5 uged 100 and
items is:how valuable are the resources of a producer item t®und that it provided excellent results. With our expeniriad
the idealized consumer solutiohhis heuristic is calculated assetup that used M-HEU, the overall algorithmic complexity
a set of values for th&, variables in Step 2.2 of Figure 6. Wewas therefore QQ0(mn?(l — 1)> + n)). This algorithmic
calculate the value of a resource as the amount of the resowemplexity is polynomial and thus ASCENT should be able

consumed by the idealized consumer solution divided by the scale up to very large problems, such as the co-design of
sum of the total resources consumed by the solution. In Stgf@pduction satellite hardware and software.

2.3 of Figure 6, the resource ratiog.(values) are known and
each item in the producer MMKP problem is assigned a valug A NALYSIS OF EMPIRICAL RESULTS
by multiplying each of its provided resource values by t

corresponding ratio and summing the resuilts. h%ms section presents empirical data we obtained from exper

iments using ASCENT to solve MMKP co-design problems.
) . The empirical results demonstrate that ASCENT produces
4.4 Solving the Individual MMKP Problems solutions that are often near the maximum value that can
Once sizes have been set for each knapsack and the valuati@nachieved while not exceeding resource constraints. The
heuristic has been applied to the producer MMKP problergsults also show that ASCENT can not only provide near
existing MMKP solving approaches can be applied. First, thgtimal designs for the co-design problems, such as the
producer MMKP problem, with its new item values, is solvedatellite example, but also scale to the large problem sifes
for an optimal solution, as shown in Step 2.3 of Figure Groduction DRE systems. Moreover, we show that the data sets
In Step 2.5, a new consumer MMKP problem is created wifenerated by ASCENT—which contain high valued solutions
constraints reflecting the maximum available amount of eagh each budget allocation—can be used to perform a number
resource produced by the solution from the producer MMK& important search-based software engineering studighen
problem. The consumer MMKP problem is then solved for agb-design solution space.
solution in Step 2.6. The producer and consumer solutioms ar Qur empirical results also compare the performance of
then combined into the 2-tuple; p,c > and saved. ASCENT to implementations of Genetic and Particle Swarm
In each iteration, ASCENT assigns sizes to the producgptimization (PSO) algorithms for solving the MMKP Co-
and consumer knapsacks and the solving process is repeagedign problem. The results show that ASCENT produces
A collection of the 2-tuple solutions is compiled duringsolutions with superior optimality. At the same time, ASCEN
the process. The output of ASCENT, returned in Step 3 giins roughly 10 times faster than either the Genetic or PSO
Figure 6, is both the 2-tuple with the greatest value and tagorithms.
collection of 2-tuples. Each experiment used a total of 100 budget iterations
The reason that the 2-tuples are saved and returned as part= 100). We also used the M-HEU MMKP approxima-
of the output is that they provide valuable information oa thtion algorithm as our MMKP solver. All experiments were
trends in the solution space of the co-design problem. Eachgdnducted on an Apple MacBook Pro with a 2.4 GHz Intel
tuple contains a high-valued solution to the co-designierob Core 2 Duo processor, 2 gigabyes of RAM, running OS X
at a particular ratio of knapsack sizes. This data can betasedersion 10.4.11, and a 1.5 Java Virtual Machine (JVM) run in
graph and visualize how the overall solution value changes aclient mode. The JVM was launched with a maximum heap
function of the ratio of knapsack sizes. As shown in Sectipn §ize of 64mb (-Xmx=64m).
this information can be used to ascertain a number of usefule chose the M-HEU algorithm since it is straight-forward
solution space characteristics, such as determining hoshmyo implement and provided good results in our initial ex-
it costs to increase the value of a specific system propertygeriments. Many other excellent MMKP heuristic algorithms
a given level or finding the design with the highest value pefre available that may produce better results at the expense

unit of cost. of increased solving time and implementation complexity.
ASCENT does not require the use of any specific MMKP
4.5 Algorithmic Complexity algorithm, such as M-HEU, and thus designers can choose

The overall algorithmic complexity of ASCENT can be broke/!t€rnate MMKP heuristic algorithms if they prefer.
down as follows:
1) there areT iterations of ASCENT 5.1 MMKP Co-design Problem Generation
2) in each iteration there are 3 invocations to an MMKR key capability needed for the experiments was the abitity t
approximation algorithm randomly generate MMKP co-design problems for test data.



For each problem, we also needed to calculate how good AS- (Vk C R), size(Iopt;, k) < size(I,j, k)

CENT'’s solution was as a percentage of the optimal solution: « The item has a smaller value than the optimal item’s
”““l‘e"f(ASCENTSOl“?w”). For small problems with less than value minusVy, valueof(I;;) < Vopt; — V4. This

valueo f(OptimalSolution . X X . J7. i

7 sets per MMKP problem, we were able to use a constraint constraint will be important in the next step. In this

logic programming (CLP) [31] technique built on top of case, each component of the item’s size vector is
the Java Choco constraint solverhpco- sol ver. net) to randomly generated.

derive the optimal solution. At this point, we have a very random MMKP problem. What

For larger scale problems the CLP technique was simple have to do is further constrain the problem so that we
not feasible,e.g., solutions might take years to find. Focan guarantee the items @ptitems are truly the optimal
larger problems, we developed a technique that randomalection of items. Lef/azV; be the item with the highest
generated MMKP co-design problems with a few carefullyalue in thei,, set. We further constrain the problem as
crafted constraints so we knew the exact optimal answegjiows:

Others [2] have used this general approach, though with aror each itemM/azV;, we reset the values of the items (if
different problem generation technique. needed) to ensure that the sum of the differences between the

Ideally, we would prefer to generate completely randomyax valued items in each set and the optimal item are less
problems to test ASCENT. We are confident in the validithan v,

of this technique, however, for two reasons: (1) the trends w i
observed from smaller problems with truly random data were Z(Maxvi —Vopt;) < Vy
identical to those we saw in the data obtained from solvieg th 0

generated problems and (2) the generated problems randoRlyis ajization of this constraint is shown in Figure 8.
placed the optimal items and randomly assigned their value

and size so that the problems did not have a structure clearl " ;gpest
amenable to the heuristics used by our MMKP approximatior  Valued
algorithm. We did not use Akbar’s technique [2] because the s
problems it generated were susc_eptible to a greedy s_trategyoptimal tem ]—v Tiﬂ

Our problem generation technique worked by creating twc =~ value ¢ f
MMKP problems for which we knew the exact optimal answer. _ / <V,
First, we will discuss how we generated the individual MMKP "\*: Highest r/i
problems. LetS be the set of MMKP sets for the problerR, Optimal Item ["' %
be aK -dimensional vector describing the size of the knapsack
Iij be thejth item of the i, set, SZZB(IW,]{I) be the ky, ) ] ] )
component ofl;,'s size vectorSz;;, andsize(S, k) be thek,, Fig- 8. A Visualization of V;
component of the knapsack size vector, the problem geparati
technique for each MMKP problem worked as follows: This new valuation of the items guarantees that the items in

1) Randomly populate each setc S, with a number of Optltems are the optimal items. We can prove this property
items by showing that if it does not hold, there is a contradiction.

2) Generate a random siz&, for the knapsack Assume that there is some set of itenigetter, that fit into
3) Randomly choose one iterfippt; C OptItems from the knapsack and have a higher value. /& be the value

each set to be the optimal itenfiopt; is the optimal of the better item to choose than the optimal item in the
item in thei,;, set. set. The sum of the values of the better items from each set

4) Set the sizes of the items ifiptItems, so that when Must have a higher value than the optimal items.

added together they exactly consume all of the space inThe itemsIb; C Ibetter must fit into the knapsack. We
the knapsack: designed the problem so that the optimal items exactly fit

into the knapsack and that any item with a higher value than
an optimal item is also bigger. This design implies that at
least one of the items idbetter is smaller and thus also
has a smaller valud/ small, than the optimal item in its set
5) Randomly generate a valu€ppt;, for the optimal item, (or Ibetter wouldn't fit). If there areQ sets in the MMKP
ITopt;, in each set problem, this implies that at mo& — 1 items inIbetter have
6) Randomly generate a value delta variable; < g |arger value than the optimal item in their set, and thus:
min(Vopt;), where min(Vopt;) is the optimal item
with the smallest value Q! Q!
7) Randomly set the size and values of the remaining non- Voptq + Z Vopt; <Vsmall + Z Vb;
optimal items in the sets so that either: 0 0
« The item has a greater value than the optimal iteMYe explicitly revalued the items so that:
in its set. In this case, each component of the i
!tem’s size vectqr, is greafcer th.an the gorrespond- Z(MawVi — Vopt;) < Vy
ing component in the optimal item’s size vector: o

(Vk C R), (Z size(Iopt;, k)) = size(S, k)
0



By subtracting thez(?_1 Vopt; from both sides, we get: Any other set of items must have a smaller total value and
0-1 consequently not provide sufficient resources for the ogdtim
t of consumer items. To complete the co-design problem
Voptg < Vsmall + Vb; — Vopt; S€ . o
Pra zo:( ! pti) we set the total knapsack size budget to the sum of the sizes

the inequality will still hold if we substituteV, in for O I¢ WO individual knapsacks.

Q-1 ; .
o (Vbi—Vopt;), becausd’y is larger: 5.2 Comparison of ASCENT, a Genetic Algorithm,

Voptg < Vsmall + V4 and PSO
Experiment 1. Comparing ASCENT’s Optimality Versus
a Genetic Algorithm, and PSO. For our first experiment,
which is a contradicton of the rule that we enforced for serallwe created semi-random MMKP co-design problems that
items:valueof(I;;) < Vopt; — Vy we knew the optimal answer to using the technique from
This problem generation technique creates MMKP probler&ction 5.1. We generated MMKP co-design problems that
with some important properties. First, the optimal itemagcte ranged in size from 2 to 30 sets per MMKP. Each set contained
set will have a random number of larger and smaller valud® items. These experiments yielded solution space sizes
items (or none) in its set. This property guarantees thatoh between15* and 15% (2 problems with 30 sets of 15
greedy strategy will not necessarily do well on the problemiéems). For each problem size, we generated and solved 30
Moreover, the optimal item may not have the best ratio gfoblem instances using ASCENT, a genetic algorithm, and a
value/size. For example, an item valued slightly smallenth PSO algorithm. We graphed and compared the optimality and
the optimal item may consume significantly less space becagglving time of the three algorithms.
its size was randomly generated. Many MMKP approximation Genetic/PSO Design: The Genetic and PSO algorithms
algorithms use the value/size heuristic to choose itenmeeSi Poth used a common representation of the problem and penalty
there is no guarantee on how good the value/size of th#ction. The problem was represented as an n-dimensional
optimal item is, MMKP approximation algorithms will notvector, where the positions in the vector correspondedéo th
automatically do well on these problems. item that was selected from each set. For example, a problem
To create an MMKP co-design problem where we know th&ith 3 sets per MMKP problem would produce a vector with
optimal answer, we generate a single MMKP problem with @ components. The first 3 components would represent the
known optimal answer and split it into two MMKP problemdtems selected from the consumer MMKP problem’s sets. The
to create the producer and consumer MMKP problems. $§cond 3 components would represent the items selected from
split the problem, two new MMKP problems are created. Orige producer MMKP problem’s sets.
MMKP problem receivesE of the sets from the original Each position in the vector was limited to values corre-
problem and the other problem receives the remaining setgonding to the valid 0-based indices of items in the sets. Fo
The total knapsack size for each problem is set to exactly tB¥ample, a set with 5 items would allow values of 0-4. A value
size required by the optimal items from its sets to fit. The sufif 2 would correspond to selecting t&” item in the set.
of the two knapsack sizes will equal the original knapsazk.si The penalty function scored solutions based on 1) if the
Since the overall knapsack size budget does not change, $a8Ition’s overall value and 2) whether or not the solution
original optimal items remain the overall optimal solution Was correct. If a solution was not valid, the score of the
Next, we generate a set of produced/consumed resource ¢8lution was set to 0 - (resource overconsumption). That
ues for the two MMKP problems. For the consumer problert$; solutions that did not properly adhere to the budget or
we randomly assign each item an amount of each produdBg production and consumption of resources would produce
resource: C R that the item consumes. L&vtalC(k) be the negative values. Although repair functions can sometimes
total amount of the resourdeneeded by the optimal consumeProvide better results than a penalizing function, repagiri
solution andVopt(p) be the optimal value for the producer@n arbitrary invalid MMKP co-design solution is extremely

MMKP problem. We take the consumer problem and calcula@mplex and a research endeavor in its own right. .
a resource production ratidp(k), where For the genetic and PSO algorithms, we used population

(total particle) sizes of 20, 200, and 2000 members. We

Voptg — Vg < Vsmall

Rp(k) = M conducted various experiments to tune the parameters of the
Vopt(p) algorithms. For the PSO algorithm, we used a local learning
For each item,I;;, in the producer problem, we assign itate of 2, a global learning rate of 2, and an inertial value of
a production value for the resourde of: Produced(k) = 0.5. For the Genetic algorithm, we mated the top 25% of the
Rp(k) * valueof (I;;). population using a strict cutoff. We also allowed up to 50% of

The optimal items have the highest feasible total valuedagdé@e population to survive and cross over from one generation
on the given budget and the sum of their values times tk@the next. Finally, we used a mutation probability of 0.05%
resource production ratios exactly equals the needed wdlueEach algorithm was run for a total of 20 generations/iteri
each resourcé: Experiment Resultswith Semi-Random Data: The results

i for the first experiment are shown in Figure 9.
TotalC(k) = TotalC(k) *ZVOPti As can be seen from the results, for up to 5 sets per
Vopt(p) 4 MMKP problem, the Genetic algorithm with 2000 population
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e solution and at least 65.8% of the value. The PSO produced
" B, solutions that were at most 43.5% of the value of ASCENT's
. Ty % f\\_\\ solutions and at least 27.5% of the value. The average gplvin
© = ——AscenT time for the Genetic 2000 was 101,453ms. The average solving
N Sn, B T eowo time for the PSO 2000 was 55,203ms. The average solving

e R N =°$S02000 time for ASCENT was 672ms.

40 sl . N -+ Genetic 20

Optimality
/

. M N ™ ~o- Genetic 200

N = R, e et 53 ASCENT Scalability and Optimality

20 = \\\ < <

b . WO W Experiment 2: Comparing ASCENT scalability to an exact
e CLP technique. When designing a satellite it is critical that
2 s NumbeI:of Sea 2 30 designers can gauge the accuracy of their design techniques
Moreover, designers of a complicated satellite system teed
know how different design techniques scale and which tech-
nigue to use for a given problem size. This set of experiments
evalutes these questions for ASCENT and a constraint logic
programming (CLP) co-design technique.

members provided the best results. The Genetic AlgorithmAlthough CLP solvers can find optimal solutions to MMKP
with 2000 population members, required 9,024ms to solveCQ-design problems they have exponential time complexity.
problem with 5 sets. ASCENT, in contrast, required 73m&or large-scale co-design problems (such as designing a com
When the problems were scaled up to 30 sets per MMK®icated climate monitoring satellite) CLP solvers thuscily
problem, ASCENT provided far superior optimality and ruffécome incapable of finding a solution in a reasonable time
time. ASCENT produced solutions that averaged roughftame. We setup an experiment to compare the scalability
99.2% optimal versus the Genetic algorithms 54.9% optim&f ASCENT to an CLP technique. We randomly generated
ity. Furthermore, ASCENT solved the problems in an averageseries of problems ranging in size from 1 to 7 sets per
of 317ms versus the Genetic algorithms average runtime f#rdware and software MMKP problem. Each set had 10
64,212ms. items. We tracked and compared the solving time for ASCENT
Experiment Results with Random Data: We also com- and the CLP technique as the number of sets grew. Figure 11
pared the algorithms on a series of problems that wepéesents the results from the experiment. As shown by the
completely randomly generated. For these problems, we did
not know the true optimal value. We generated 100 probler
with 50 sets per MMKP problem and 15 items per set. Thg 5000000
yielded a solution space size 05'%. In order to ensure that g o000
we generated tractable problem instances, we set extren g, 20000

2000000

10

Fig. 9. Solution Optimality vs Number of Sets Compared
for ASCENT, a Genetic Algorithm, and a PSO Algorithm

5659282

loose resource constraints on the problems to create a h_ 1000000 1365767

probability that a solution existed. 0 \1 .
Figure 10 shows a graph of the solution scores of tt 1 : 70/ asour

algorithms on these 100 random problems. Total3$ets 4 .

1400000

Fig. 11. Solving Time for ASCENT vs. CLP

1200000

results, ASCENT scales significantly better than an CLRetas

1000000

£ approach.

& 500000 , Experiment 3. Testing ASCENT’s solution optimality.

§ Ll Clearly, scalability alone is not the only characteristicao

E o Pt good approximation algorithm. A good approximation algo-
D ao0000 rithm must also provide very optimal results for large pesbl

sizes. We created an experiment to test the accuracy of
ASCENT's solutions. We compared the value of ASCENT's
0 answer to the optimal answer,

Problem # valueof (ASCENT Solution)

200000

Fig. 10. Solution Score for 100 Randomly Generated valueof(OptimalSolution)

Problems for 50 different MMKP co-design problem sizes with 3 items
per set. For each size co-design problem, we solved 50
As can be seen from Figure 10, ASCENT produced superidifferent problem instances and averaged the results.
solution scores across all 100 problem instances. The @enet It is often suggested, due to the Central Limit Theorem [19],
algorithm, which was the second best algorithm, producsal use a sample size of 30 or larger to produce an approx-
solutions that were at most 90.9% of the value of ASCENTIgately normal data distribution [15]. We chose a sample
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size of 50 to remain well above this recommended minimuproduced with an CLP technique. The X-axis shows the
sample size. The largest problems, with 50 sets per MMKP
problem, would be the equivalent of a satellite with 50 p®int

of software variability and an additional 50 points of hastes / %
variability. — |
For problems with less than 7 sets per MMKP problem, we | — ASCNT

Q
2 50 7 /J B -~ LP Sol
compared against the optimal answer produced with an CLP S o /—‘/_ ‘_\
|
\

100

solver. We chose a low number of items per set to decrease  ~|

the time required by the CLP solver and make the experiment w0 /J

feasible. For problems with more than 7 sets, which could T IR
not be solved in a timely manner with the CLP technique, we Percentage of Budget Allocated to Software
.USEd our co-design problem generation technlque prese”ﬁg& 13. Solution Value vs. Budget Allocation
in Section 5.1. The problem generation technique allowe

us to create random MMKP co-design problems that we

: .per
knew the’exact optimal answer for and could compare aganﬁﬁ KP problem. The Y-axis shows the total value of the
ASCENT’s answer.

Figure 12 shows the results of the experiment to teMMKP co-design problem solution. The ASCENT solution

ASCENT's solution value verusus the optimal value over SBoace graph closely matches_ the actual solution space graph
MMKP co-design problem sizes. produced with the CLP technique.

centage of the budget allocated to the software (condume

: 5.4 Solution Space Snapshot Resolution

Experiment 5: Demonstrating the importance of solution
space snapshot resolution. A complicated challenge of apply-
"L ing search-based software engineering to hardware/s@ftwa
/ co-design problems is that design decisions are rarely as
straightforward as identifying the design configuratiomtth
maximizes a specific property. For example, if one satellite
e A configuration provides 98% of the accuracy of the most
Number of Sets optimal configuration for 50% less cost, designers areylike!
choose it. If designers have extensive experience in haslwa
Fig. 12. Solution Optimality vs Number of Sets development, they may favor a solution that is marginallyeno
expensive but allocates more of the development to hardware
With 5 sets, ASCENT produces answers that average 9Qhich they know well. Search-based software engineering
optimal. With 7 sets, the answers averag®5% optimal. techniques should therefore allow designers to iteratiiadse
Beyond 20 sets, the average optimality-i88% and continues these desired designs out of the solution space.
to improve. These results are similar to MMKP approximation ASCENT has a number of capabilities beyond simply
algorithms, such as M-HEU, that also improve with incregsirfinding the optimal solution for a problem to help designers
numbers of sets [2]. We also found that increasing the numbigrd desirable solutions. First, as we describe below, ASTEN
of items per set also increased the optimality, which palsll can be adjusted to produce different resolution images of
the results for our solver M-HEU [2]. the solution space by adjusting the granularity of the bud-
Experiment 4: Measuring ASCENT’s solution space get allocation stepse(g., make smaller and more allocation
snapshot accuracy. As part of the solving process, ASCENTchanges). ASCENT's other solution space analysis cagpiabili
not only returns the optimal valued solution for a co-desigare presented in Section 5.5.
problem but it also produces a data set to graph the optimalThe granularity of the step size greatly impacts the res-
answer at each budget allocation. For the satellite exampdéution or detail that can be seen in the solution space. To
the graph would show designers the design with the highesitain the most accurate and informative solution spacgémna
image processing accuracy for each ratio of budget allocatia small step size should be used. Figure 14(a) shows a golutio
to software and hardware. We created an experiment to tephace graph generated through ASCENT using 10 allocation
how optimal each data point in this graph was. steps. The X-axis is the percentage of budget allocated to
For this experiment, we generated 100 co-design problestftware, the Y-axis is the total value of the solution. It
with less than 7 sets per MMKP problem and compareappears that any allocation of 30% or more of the budget to
ASCENT's answer at each budget allocation to the optimabftware will produce a satellite with optimal image pragieg
answer derived using an CLP technique (more sets improwauracy.
ASCENT's accuracy). For problems with 7 sets divided into The importance of a small step size is demonstrated in
98 different budget allocations, ASCENT finds the samé&jgure 14(b), which was produced with 100 allocation steps.
optimal solution as the CLP solver more than 85% of theigure 14(a) suggests that any allocation of greater than
time. Figure 13 shows an example that compares the solut®Ps6 for software would result in an optimal satellite design
space graph produced by ASCENT to a solution space graphure 14(b) shows that there are many pitfalls in the 70%

Optimality
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(a) Low Resolution Solution Space Snapshot

Fig. 15. Budget Surplus vs. Budget Allocation
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‘ provide a range of satellite options for their superiors s@w

‘ n what level of image processing accuracy they can provide at a

‘ H ) number of price points. Figure 16 depicts another view of the
ASCENT data that shows how cost varies in relation to the

minimum required solution value. This graph shows that 5 cos
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(b) High Resolution Solution Space Snapshot
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Fig. 14. A Solution Space Graph at Varying Resolutions

to 99% range that must be avoided. At these precise budget
allocation points, there is not a good combination of hardwa
and software that will produce a good solution.

Minimum Value

Fig. 16. Cost of Increasing Solution Value

5.5 Solution Space Analysis with ASCENT
Although ASCENT's ability to provide variable resolutionunits can finance a design with a value up to 900, but a design
pf a value of 1,000 units will cost at least 124 cost units.sThi

solution space images is important, its greatest value sstel

from the variety of questions that can be answered from H%formqtipn grap_h demo_nstrates the incre_ased financilaie.hrur
output data. In the following results, we present represem of requiring a slightly higher valued design. Alternatyeif

solution space analyses that can be performed with ASCENT?E necessary value of the system is near the left edge of one
output data. of these plateaus, designers can make an informed decision o

Design analysis 1: Finding designs that produce budget whether the increased value justifies the significantlydased

surpluses. Designers may wish to know how the resourcE°St

slack values, such as how much RAM is unused, with different

satellite designs. Another related question is how mucthef t6 RELATED WORK

budget will be left-over for designs that provides a spedifieSearch-based software engineering has a large number of
minimal level of image processing accuracy. We can use tfazets ranging from the design of general approximation-alg
same ASCENT output data to graph the budget surplus atitams to the construction of search-based software ergine
range of allocation values. ing methods for specific problems. This section compares and

Figure 15 shows the budget surplus from choosing variousntrasts ASCENT to search-based software engineerihg tec
designs. The graph has been filtered to adhere to a requitentégues related to (1) approximation algorithms for sohsimg-
that the solution provide a value of at least 1600. Any daiar problems to the MMKP co-design problem, (2) methods
point with a value of less than 1600 has had its surplus setfty using search-based techniques to solve hardware&@tw
0. Looking at the graph, we can see that the cheapest degigintitioning problems, (3) methods for using approximatio
that provides a value of at least 1,600 is found with a budgetchniques for solving hardware/software scheduling prob
allocation of 80% software and 20% hardware. This desigems, and (4) search-based software engineering tectmique
has a value of 1,600 and produces budget savings of 37%for determining project staffing.

Design analysis 2: Evaluating design upgrade/- Hardwar e/software co-design. A number of co-design
downgrade cost. In some situations, designers may have &chniques [7, 24, 30, 1, 29, 34, 28, 13]—that can be viewed
given solution and want to know how much it will cost oras search-based software engineering technigues—extraine
save to upgrade or downgrade the solution to a different@magroblem of partitioning system functionality into hardwar
processing accuracy. For example, designers may be askednd software. These approaches use a number of search
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techniques ranging from binary constraint search to dyonangrobability for successful completion. The placement afhea
programming. In the partitioning problem, a system’s regghi individual employee can change the profile of the entirequij
operations are grouped into tasks or functions, which age thplan, resulting in an exponential number of possible configu
implemented in either hardware or software. The goal is tations [5]. Moreover, parameters of a project are dynamit a
correctly partition the tasks into hardware and software toay change several times before project completion, rimuir
meet a predefined performance goal. Some tasks may opethét multiple staffing solutions be calculated. This receas
with higher performance if the functionality is placed or threlated to MMKP co-design problems in that it deals with two
hardware rather than on software. The performance of ttightly-coupled activites—the ordering and staffing of jpod
system is thus determined by the location and placementparts subject to resource constraints. Although the work is
tasks in hardware versus software. related, it cannot be used to solve MMKP co-design problems.

The MMKP co-design problem, which ASCENT focuse$n contrast, ASCENT is specifically designed for solving
on, is complementary to this research. In particular, theMMKP co-design problems.
related approaches do not deal with maximizing a measure
of system value subject to producer/consumer resources and
cost. Similarly, ASCENT does not examine the impact of tha(ien CONCLUDING REMARKS
placement of tasks on the hardware and software. Each B&signing hardware and software in tandem to maximize a
proach fills an important, although distinct, role in thersha SyStem capability can be an NP-hard activity. Search-based
based software engineering landscape for hardware/seftwgoftware engineering is a promising approach that can be use
co-design. to leverage algorithmic techniques during system co-aesig

Another related problem in hardware/software co-design 181is paper presented a polynomial-time search-based aftw
the scheduling of hardware/software tasks subject to resouengineering technique, callgdllocation-baSed Configuration
constraints. This type of co-design problem tries to deteem EXxploration Techniqug ASCENT), for finding near optimal
the optimal ordering of a series of tasks implemented in bofigrdware/software co-design solutions.
hardware and software. Scheduling with resource conssrain We showed how ASCENT's heuristic-based solutions to
is a challenging problem that has led to the developmetirdware/software co-design problems average over 9586 opt
Of |arge number Of Co_design Search and design exp'oratiml when there are more than seven pOintS of Var|ab|l|tym th
techniques [18, 23, 14]. This co-design technique is aitt@ck hardware and software design. Moreover, ASCENT’s output
a different facet of software/-hardware co-design thatsdogvhich is a data set showing the optimal design configuration
not deal with how to select a software and hardware desigheach ratio of budget allocation to hardware and software)
that maximizes system value subject to producer/consunter £an be used to search for and answer important software
cost constraints. ASCENT, however, focuses directly os tHghgineering questions, such as how much more it will cost
maximization of system value subject to these constraints. for increasing the value of system capability.

MMKP approximation_ Many pr0b|ems similar to the From our eXperience with ASCENT, we have learned the
hardware/software co-design problem presented in thigpaffllowing lessons pertaining to search-based softward-eng
have been solved with MMKP techniques. In multimedi@€€rng:
systems, determining the quality settings that maximiz th « ASCENT is amenable to parallelization. ASCENT is
value of a series of data streams has been modeled as an highly parallelizable and amenable to multi-core archi-
MMKP problem [25, 22]. Other usages of MMKP include tectures. Any number of budget allocation iterations can
meta-scheduling for grid applications [32], optimallyesging be run in parallel, allowing ASCENT to scale nearly
design features for software product-lines [33], and book- linearly with the number of underlying computational
ahead request scheduling [8]. A number of excellent heuris- units allocated to it.
tic approximation algorithms, such as M-HEU [3] and C- « CLP techniques should be used for small problems
HEU [3], with near optimal results have been devised. and ASCENT for large problems. For smaller scale

These existing MMKP algorithms and techniques, however, problems, ASCENT produces less optimal solutions.
cannot be directly applied to the MMKP-codesign problem  Constraint logic programming (CLP) techniques, how-
described in this paper. First, as described in SectiontBel, ever, work well at these small problem scales. In our
existing techniques assume that there are predefineddidilvi experiments, roughly 7 points of variability in the hard-
knapsack sizes, which is not the case in the MMKP co-design ware and software design was the cross-over point where
scenario. Second, as described in Section 3.2, producer RIMK ~ ASCENT should be used rather than a CLP approach.
items cannot be valued separately from a consumer MMKPe. Some problems cannot be modeled with a single
problem, causing a coupling problem. Existing MMKP ap-  Producer/Consumer relationship. Some problems have
proaches are not designed to handle this type of coupling more than a single producer/consumer relationship. For
problem. In contrast, ASCENT addresses these issues and example, when trying to simultaneously determine the
provides high-quality solutions to MMKP co-design probkem configuration of an application, the underlying middle-

Project management and staff allocation. Accurate plan- ware, and the hardware there is more than one producer/-
ning of large projects are essential to estimate project, cos consumer relationship. For these situations, ASCENT
determine the formation of employee project teams, and to requires breaking the problem in two and solving in
assign these teams to tasks in a manner that gives the largest phases, which is not ideal.
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An implementation of ASCENT is available as part of thg20] T. Ibaraki, T. Hasegawa, K. Teranaka, and J. lwase. The

open-source ASCENT Design Studio project
(http://code. googl e. com p/ ascent - desi gn-
st udi o/).
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