ASCENT: An Algorithmic Technique for
Designing Hardware and Software in Tandem

Jules White, Brian Doughtery, and Douglas C. Schmidt
Vanderbilt University, EECS Department, Nashville, TN, USA
Email:{jules, briand, schmidt} @dre.vanderbilt.edu

Abstract —Search-based software engineering is an emerging
paradigm that uses automated search algorithms to help designers
iteratively find solutions to complicated design problems. For example,
when designing a climate monitoring satellite, designers may want
to use the minimal amount of computing hardware to reduce weight
and cost, while supporting the image processing algorithms running
onboard. A key problem in these situations is that the hardware
and software design are locked in a tightly-coupled cost-constrained
producer/consumer relationship that makes it hard to find a good
hardware/software design configuration. Search-based software
engineering can be used to apply algorithmic techniques to automate
the search for hardware/software designs that maximize the image
processing accuracy while respecting cost constraints.

This paper provides the following contributions to research on search-
based software engineering: (1) we show how a cost-constrained
producer/consumer problem can be modeled as a set of two multidi-
mensional multiple-choice knapsack problems (MMKPs), (2) we present
a polynomial-time search-based software engineering technique, called
the Allocation-baSed Configuration Exploration Technique (ASCENT),
for finding near optimal hardware/software co-design solutions, and (3)
we present empirical results showing that ASCENT'’s solutions average
95%-+ of the optimal solution’s value.

1 INTRODUCTION

search technique to find designs that optimize a specifiesyst
quality while adhering to design constraints. Each time a
new design is produced, designers can use the knowledge
they have gleaned from the new design solution to craft
more precise constraints to guide the next design search.
Search-based software engineering has been applied to the
design of a number of software engineering aspects, ranging
from generating test data [24] to project management and
staffing [5, 3] to software security [9].

A common theme in domains where search-based software
engineering is applied is that the design solution space is s
large and tightly constrained that the time required to find a
optimal solution grows at an exponential rate with the peabl
size. These vast and constrained solutions spaces makalit ha
for designers to derive good solutions manually. This paper
examines a common problem from the domain of distributed
real-time and embedded (DRE) systems that exhibits these
complexity characteristics. The problem we focus on is the
need to derive a design that maximizes a specific system
capability subject to constraints on cost and the produactio
and consumption of resources, such as RAM, by the hardware
and software, respectively.

Current trends and challenges. Increasing levels of program- For example, when designing a satellite to earth’s magne-
ming abstraction, middleware, and other software advandesphere [11], the goal may be to maximize the accuracy of
ments have expanded the scale and complexity of softwdne sensor data processing algorithms on the satelliteoutith
systems that we can develop. At the same time, the balloonixgeeding the development budget and hardware resources.
scale and complexity have created a problem where systelasally, to maximize the capabilities of the system for a
are becoming so large that their design and developm@nten cost, system software and hardware should be designed
can no longer be optimized manually. Current large-scale tandem to produce a design with a precise fit between
systems can contain an exponential number of potentiajdeshardware capabilities and software resource demands. The
configurations and vast numbers of constraints ranging framore precise the fit, the less budget is expended on excess
security to performance requirements. Systems of thisescalrdware resource capacity.
and complexity—coupled with the increasing importance of A key problem in these design scenarios is that they
non-functional characteristics [8] (such as end-to-esgoase create a complex cost-constrained producer/consumelgmnob
time)—are making software design processes increasinghyolving the software and hardware design. The hardware
expensive [25]. design determines the resources, such as processing power
Search-based software engineering [15, 14] is an emergangd memory, that are available to the software. Likewise, th
discipline that aims to decrease the cost of optimizingesyst hardware consumes a portion of the project budget and thus
design by using algorithmic search techniques, such agdigeneeduces resources remaining for the software (assuminga fix
algorithms or simulated annealing, to automate the designdget). The software also consumes a portion of the budget
search. In this paradigm, rather than performing the searahd the resources produced by the hardware configurati@en. Th
manually, designers iteratively produce a design by usingparceived value of system comes from the attributes of the

software desigre.g, image processing accuracy in the satellite Image Processing Algorithm Options Image Resolution Options
a N . Algorithm 1, Consumes Ram 80, CPU 400 High, Consumes Ram 20, CPU 40
example. The intricate dependencies between the hardwdre a Algorithm 2, Consumes Ram 10, CPU700 Medium, Consumes Ram 10, CPU 4
software’s production and consumption of resources, emst, At 4 Gonoummas Ram 126, CPUS | Consumes Ram 5, GRS
value makes the design solution space so large and complex
that finding an optimal and valid design configuration is hard
Solution approach — Automated Solution Space Explo-
ration. This paper presents a heuristic search-based software
engineering technique, called thdlocation-baSed Configu-
ration Exploration Techniqué ASCENT), for solving cost-
constrained hardware/software producer/consumer dgries ; :
problems. ASCENT models these co-design problems as two e e Mermory Optons
separate knapsack problems [19]. Since knapsack problems a cputzoo RS RO 100
NP-Hard [10], ASCENT uses heuristics to reduce the solution Ge 2000 R e
space size and iteratively search for near optimal designs b
adjusting the budget allocations to software and hardware.Fig. 1. Software/Hardware Design Variability in a Satellite
addition to outputting the best design found, ASCENT also
generates a data set representing the trends it discouwered i
the solution space. also consuming different quantities of RAM and CPU cycles.
A key attribute of the ASCENT technique is that, in thdhe underlying hardware has a number of points of varighbilit
process of solving, it generates a large number of optinthiat can be used to increase or decrease the RAM and CPU
design configurations that present a wide view of the trengewer to support the resource demands of different image
and patterns in a system’s design solution space. This papegcessing configurations. Each configuration option, sagh
shows how this wide view of trends in the solution spadée chosen algorithm or RAM value, has a cost associated
can be used to iteratively search for near optimal co-desigfth it that subtracts from the overall budget. A key questio
solutions. Moreover, our empirical results show that ASTENdesign question for the satellite iwhat set of hardware and
produces co-design configurations that average 95%-+ optiraaftware choices will fit a given budget and maximize the
for problems with more than 7 points of variability in each ofmage processing accuracy
the hardware and software design spaces. Many similar design problems involving the allocation
Paper organization. The remainder of this paper is orgaof resources subject to a series of design constraints have
nized as follows: Section 2 presents a motivating exampleeen modeled aslultidimensional Multiple-Choice Knapsack
of a satellite hardware/software co-design problem; 8acsi Problems(MMKPs) [18, 20, 1]. A standard knapsack prob-
discusses the challenges of solving software/-hardware ¢@m [19] is defined by a set of items with varying sizes and
design problems in the context of this motivating examvalues. The goal is to find the set of items that fits into a
ple; Section 4 describes the ASCENT heuristic algorithnfixed sized knapsack and that simultaneously maximizes the
Section 5 analyzes empirical results from experiments walue of the items in the knapsack. An MMKP problem is a
performed with ASCENT; Section 6 compares ASCENT withariation on a standard knapsack problem where the items are
related work; and Section 7 presents concluding remarks atidided into sets and at most one item from each set may be
lessons learned from our work with ASCENT. placed into the knapsack.
Figure 2 shows an example MMKP problem where two
sets contain items of different sizes and values. At most

2 MOTIVATING EXAMPLE
Values: 5 9 6 2 1 8

This section presents a satellite design example to mettha@t spes. oxoxs 15x15x10 1x3x7 15X1.5X5 1.5X1.5X5 1.5X4X7
need to expand search-based software engineering teesniqt \ "

to encompass cost-constrained hardware/software produce o |
consumer co-design problems. Designing satellites, s@ch ¢ ‘
the satellite for NASA's Magnetospheric Multiscale (MMS)

mission [11], requires carefully balancing hardwarelsafe

design subject to tight budgets. Figure 1 shows a sateliite w z
a number of possible variations in software and hardware
design. For example, the software design has a point @
variability where a designer can select the resolution ef th Available Space: 5X20X5
images that are processed. Processing higher resolutamesn

improves the accuracy but requires more RAM and CPEJ. 2. An Example MMKP Problem
cycles.

Another point of variability in the software design is theone of the items A,B, and C can be put into the knapsack.
image processing algorithms that can be used to identify- chhikewies, only one of the items D, E, and F can be put
acteristics of the images captured by the satellite’'s camerinto the knapsack. The goal is to find the combination of
The algorithms each provide a distinct level of accuracylevh two items, where one item is chosen from each set, that fits

~ <

Knapsack

into the knapsack and maximizes the overall value. A numbe
of resource related problems have been modeled as MMKI
problems where the sets are the points of variability in the
design, the items are the options for each point of varigbili lgcgftpwarem/lﬁggfﬂ Ingt\ganggXlKP Set2
and the knapsack/item sizes are the resources consumed Algeitn 1, Cones Ram 80, CPU 400 High, Conauries Ram 20, GFU 40
different design options [23, 20, 29, 7, 2]. Aoorihm 4 Goneumes Ram 120, GPUB0, 1 Co1eUmes Ram . GPU1
The software and hardware design problems are hard t
solve individually. Each design problem consists of a numbe 5
of design variability points that can be implemented by ex-&
actly one design option, such as a specific image processir§
algorithm. Each design option has an associated resounze cot
sumption, such as cost, and value associated with it. Mereov T
the design options cannot be arbitrarily chosen because the a5 gt =4 Ram 312
is a limited amount of each resource available to consume. GPU 2000 Ram 2048
It is apparent that the description of the software desigr oo
problem directly parallels the definition of an MMKP problem
An MMKP set can be created for each point of variability
(e.g., Image Resolution and Algorithm). Each set can ther
be populated with the options for its corresponding point of
variability (e.g., High, Medium, Low for Image Resolution).
The items each have a size (cost) associated with them &ig. 3. Modeling the Satellite Design as Two MMKP
there is a limited size knapsack (budget) that the items cBnoblems
fit into. Clearly, just selecting the optimal set of software
features subject to a maximum budget is an instance of the
NP-Hard [10] MMKP problem. IS

For the overall satellite design problem, we must contendIn .th's S'”.‘p'e gatelllte exa".‘p'e’ there are 192 .possmle
with not one but two individual knapsack problems On%atelhte configurations to consider. For real industricdle
: xamples, there are a significantly larger number of pdssibi

problem models the software design and the second probll {Qs For example, a system with design choices that can be
models the hardware design. We can model the satellite co-"" pe. a sy 9

design problem using two MMKP problems. The first of th ”’;Sde'ed. using 6.4 MM.KP sets, each with 2 tems, will have
two MMKP problems for the satellite design is its softwar possible configurations. For systems of this scale, manual

MMKP problem. The hardware design options are modeled %rg)lvmg methods are clearly not feasible, which motives the

a separate MMKP problem with each set containing the pgt_eed for a search-based software engineering technique.
tential hardware options. An example mapping of the sofwar) .
and hardware design problems to MMKP problems is shovm! MMKP Co-design Complexity
in Figure 3. Below, we show that MMKP co-design problems are NP-Hard
We call this combined two problem MMKP modeMMKP and in need of a search-based software engineering te@niqu
co-design problemWwith this MMKP co-design model of the We are not aware of any approximation techniques for solving
satellite, a design is reached by choosing one item from eddMKP co-design problems in polynomial time. This lack of
set €.g., an Image Resolution, Algorithm, RAM value, andpproximation algorithms—coupled with the poor scalapili
CPU) for each problem. The correctness of the design cahexact solving techniques—hinders DRE system desigsers
be validated by ensuring that exactly one item is chos@hilities to optimize software and hardware in tandem.
from each set and that the items fit into their respective To show that MMKP co-design problems are NP-Hard, we
software and hardware knapsacks. This definition, howevBtust build a formal definition of them. We can define an
is still not sufficient to model the cost-constrained harseia MMKP co-design problem{oP, as an 8-tuple:
software producer/consumer co-design problem since we hav
not accounted for the constraint on the total size of the two ~ p _ Pr,Co, 51, 82,5, R, Uc(x, k), Up(z, k) >
knapsacks or the production and consumption of resources by
hardware and software. where:
A correct solution must also uphold the constraint that thee Pr is the producer MMKP probleme(g., the hardware
items chosen for the solution to the software MMKP problem choices).
do not consume more resources, such as RAM, than are Co is the consumer MMKP probleneg., the software
produced by the items selected for the solution to the harelwa choices).
MMKP problem. Moreover, the cost of the entire selection of « S; is the size of the produceRr, knapsack.
items must be less than the total development budget. We know S5 is the size of the consumet,o, knapsack.
that solving the individual MMKP problems for the optimal « R is the set of resource types.., RAM, CPU, etc.)
hardware and software design is NP-Hard but we must also that can be produced and consumed By and Co,
determine how hard solving the combined co-design problem respectively.

Software Knapsack

ution Must

Provide Sufficient Resources

for Software Solution\l/

Hardware MMKP Set 1 Hardware MMKP Set 2

Hardware Knapsack

« S is the total allowed combined size of the two knapsaclsto the producer solution’s resources as shown in Rulen(1) i
for Pr andCo (e.g., total budget). Figure 4.

o Uc(z, k) is a function which calculates the amount of The second constraint anandp is an interesting twist on
the resourcé C R consumed by an item C Co (e.g., traditional MMKP problems. For a MMKP co-design problem,
RAM consumed). we do not know the exact sizeS;, S», of each knapsack. Part

« Up(z,j) is a function which calculates the amount of thef the problem is determining the sizes as well as the items fo
the resourcé C R produced by an itemx C Pr (e.g., each knapsack. Since we are bound by a total overall budget,

RAM provided). we must ensure that the sizes of the knapsacks do not exceed
Let a solution to the MMKP co-design problem be definetis budget:
as a 2-tuple< p,c >, wherep C Pr is the set of items S+ 85 <8

chosen from the producer MMKP problem andC Co is . .
the set of items chosen from the consumer MMKP probler;ﬁlh;zsigct?rgsga'm on the overall budget corresponds to Rule (3

A visualization of a solution tuple is shown in Figure 4. We .
To show that solving for an exact answer to the MMKP

1 Fits Provided problem is NP-Hard, we will show that we can reduce any
Resources instance of the NP-completenapsack decision problerto
Producer an instance of the MMKP co-design problem. The knapsack
Solution decision problem asks if there is a combination of items
(Hardware) with value at least that can fit into the knapsack without
exceeding a cost constraint.

A knapsack problem can easily be converted to a MMKP
problem as described by Akbar et al. [1]. For each item, asset i
created containing the item and thétem. Thef) item has no
value and does not take up any space. Using this approach, a
knapsack decision problerf,;,, can be converted to a MMKP
decision problemMg,, where we ask if there is a selection
of items from the sets that has value at lekst

To reduce the decision problem to an MMKP co-design
Fig. 4. Structure of an MMKP Co-design Problem problem, we can use the MMKP decision problem as the

consumer knapsaclCp = My,,), set the producer knapsack to
define the value of the solution as the sum of the values afi MMKP problem with a single item with zero weight and

ConsLmer
Solution
(Software)

Sack /_.3. Fits Budget=d g:s;‘;’:

3. Fits Budget

/N

the elements in the consumer solution: value (0), and let our set of produced and consumed resources,
j R, be empty,R = (). Next, we can let the total knapsack
V= Zvalueof(c») size budget be the size of the decision problem’s knapsack,
o ! S = sizeof(Map).

The co-design solution, which is the maximization of the
consumer knapsack solution value, will also be the optimal
Mhnswer for the decision problem,,. We have thus setup the
))) co-design problem so that it is solving for a maximal answer
We require thap andc are valid solutions ta>r andCo, 4 37, without any additional producer/consumer constraints

respectively. Fop andc to be valid, exactly one item from o ynapsack size considerations. Since any instance of the

each set inPr and Co must have been chosen. Moreovelp_complete knapsack decision problem can be reduced to
the items must fit into the knapsacks fBr and Co. 1This

i et an MMKP co-design problem, the MMKP co-design problem
constraint corresponds to Rule (2) in Figure 4 that eagh st be NP-Hard.

solution must fit into the budget for its respective knapsack
The MMKP co-design problem adds two additional con-
straints on the solutionsande. First, we require that the items3 CHALLENGES OF MMKP CO-DESIGN
in ¢ do not consume more of any resource than is producBtROBLEMS
by the items inp:

where is the total number of items in, ¢; is the j;, item
in ¢, andvalueof() is a function that returns the value of a
item in the consumer soution.

This section describes two key challenges to building an
J l approximation algorithm to solve MMKP co-design prob-
(Vk C R),ZUc(cj,k) < ZUp(pl,k) lems. The first challenge is that determining how to set
0 0 the budget allocations of the software and hardware is not
straightforward since it involves figuring out the preciszes
of the software and hardware knapsacks where the hardware
hpapsack produces sufficient resources to support the aptim
software knapsack solution (which itself is unknown). The
1. A more formal definition of MMKP solution correctness isadable second challenge is that the tight-coupling between preduc
from [1]. and consumer MMKP problems makes them hard to solve

wherej is the total number of items ia, ¢; is theji, item in
¢, | is the total number of items ip, andp; is the jy, item
in p. Visually, this means that the consumer solution can

individually, thus motivating the need for a heuristic to-de3.2 Challenge 2: Tight-coupling Between the
couple them. Producer/Consumer

Another key issue to contend with is how to rank the solutions
to the producer MMKP problem. Per the definition of an
MMKP co-design problem from Section 2.1, the producer
solution does not directly impart any value to the overall
One challenge of the MMKP co-design problem is that théolution. The producer’s benefit to a solution is its ability
individual knapsack size budget for each of the MMKRo make a good consumer solution viable. MMKP solvers
problems is not predeterminede., we do not know how must have a way of ranking solutions and items. The problem,
much of the budget should be allocated to software vershéwever, is that the value of a producer solution or item oann
hardware, as shown in Figure 5. The only constraint is thigé¢ calculated in isolation.
A consumer solution must already exist to calculate the
V. C;’;Z‘;':te’ value of a particular producer solution. For example, waeth
/ Y (Software) or not 1,024 kilobytes of memory are beneficial to the overall
solution can only be ascertained by seeing if 1,024 kilobgfe
memory are needed by the consumer solution. If the consumer
o solution does not need this much memory, then the memory
(Hardware) produced by the item is not helpful. If the consumer soluison
RAM starved, the item is desperately needed. A visualinatio
of the problem is shown in Figure 6.

3.1 Challenge 1: Undefined Producer/Consumer
Knapsack Sizes

Provides Resources to
——Make Designs Feasible

Overall

Budget / Ty />
/e . Software 'Hardware
Y \\\ \\\
Fig. 5. Undefined Knapsack Sizes e S
\\ —_Provides a Context to1
the sum of the budgets must be less than or equal to the an " Rank Designs

overall total budget. Every pair of budget values for handwa

and software results in two new uniqgue MMKP problems:ig. 6. Producer/Consumer MMKP Tight-coupling

Even minor transfers of capital from one problem budget to

the other can therefore completely alter the solution of the The inability to rank producer solutions in isolation of

problem, resulting in a new maximum value. Existing MMKRonsumer solutions is problematic because it creates &erhic

technigues assume that the exact desired size of the kikapsad the egg problem. A valid consumer solution cannot be

is known. chosen if we do not know what resources are available
There is currently no information to aid designers in detefor it to consume. At the same time, we cannot rank the

mining the allocation of the budgets. As a result, many desigvalue of producer solutions without a consumer solution as

ers may choose the allocation arbitrarily without realigthe @ context. This tight-coupling between the producer/coresu

profound impact it may have. For example, a budget allopatiés @ challenging problem. We discuss the heuristic ASCENT

of 75% software and 25% software may result in a solutidises to solve this problem in Section 4.2.

that, while valid, provides far less value and costs comaiolg

more than a solution with a budget allocation of 74% and 26% THE ASCENT ALGORITHM

pe_:_(;]ent. h ds in th luti imali hThis section presents our polynomial-time approximatigoa
ere are, nowever, tren_ S In the solution optimality t ,'tthm, called theAllocation-baSed Configuration ExploratioN
can be determined by solving instances of the problem wi chnique(ASCENT), for solving MMKP co-design prob-

uniqut_e sequentia_l divisions_ of the total budget. T_h_e;edgenl ms. The pseudo-code for the ASCENT algorithm is shown
can give the designer an idea of what budget divisions wj Figure 7 and explained throughout this section.
result in favorable system designs. This data can also show

which budget allocations to avoid. A key challenge is figgrin o

out how to shed light on these nuances in the solution spgté Producer/Consumer Knapsack Sizing

and present them to designers. In Section 4.3 we discid®e first issue to contend with when solving an MMKP
ASCENT’s solution to this problem and in Section 5 weo-design problem is Challenge 2 from Section 3.1, which
present empirical data showing how ASCENT allows desigimvolves determining how to allocate sizes to the individua
ers to uncover these trends in a number of MMKP co-designapsacks. ASCENT addresses this problem by dividing the
problems. overall knapsack size budget into increments of dizeThe

MVKPPr obl em Consumer MVKP . .
MVKPPr obl em Pr oducer MWP 4.2 Ranking Producer Solutions
int StepSize

It Producer budaet = 100 At each allocation iteration, ASCENT has a fixed set of sizes
int Total Budget

Sol uti on Best Sol ut on for the two knapsacks. In each iteration, ASCENT must solve
sotutions AL Solutiens the coupling problem presented in Section 3.2, which is: how
do we rank producer solutions without a consumer solution.

whi | e(Consuner Budget <= Tot al Budget)
I deal i zedSol ution = sol veMWKPCost Onl y(Consuner MVKP,

Consuner Budget)

LeE

doubl e[] Ratios = cal cul at eResour ceRat i os(| deal i zedSol ution) (3) After the coupling is loosened, ASCENT can solve for a highly
for each Itemin Producer MAP (4) valued solution that fits the given knapsack size restnstio
1O Lo Vil ue 4o Rt oal 1] 1¢em ProducedResour ceval el] To break the tight-coupling between producer and consumer
Producer Budget = Total Budget - Consurer Budget ordering, ASCENT employs a special heuristic. Once the
e e veMEGost Gl y(Pr oducer MG, © knapsack size allocations are fixed, ASCENT solves for a
Producer Budeet) maximal consumer solution that only considers the current
e var 6561 ut on. P oducedResour ceval ues. Sum size constraint of its knapsack and not produced/consumed
e veMR(P oducer MAG, @ resources. This step is shown in code listing (2) of Figure 7.
Consti Bodget) The methodsol veMVKPCost Onl y uses an arbitrary
consunerBudget += Stepsize ® MMKP approximation algorithm to find a solution that only
o e e 501 ut | an considers the consumer’s budget. This approach is similar
(S0l ' om Vol e > Bast ol ut i on. Val ue) © to asking “what would the best possible solution look like

Best Sol ution = Sol ution

if there were unlimited produced/consumed resources.’eOnc
ASCENT has this idealized consumer solution, it calculates
Fig. 7. The ASCENT Algorithm metric for assigning a value to producer solutions.

The metric that ASCENT uses to assign value to producer
items is:how valuable are the resources of a producer item
to the idealized consumer solutiofhis metric is calculated

size increment is a parameter provided by the user. ASCENY thecal cul at eResour ceRat i os method call in code
then iteratively increases the consumer's budget allogatilisting (3) of Figure 7. We calculate the value of a resource
(knapsack size) from 0% of the total budget to 100% of tts the amount of the resource consumed by the idealized
total budget in steps of siz&®. The incremental expansionconsumer solution divided by the sum of the total resources
of the producer’s budget can be seen in thiei | e loop consumed by the overall solution:
in code listing (1) .of Figurg 7 and the incrementation of Zé Uc(c;, k)
Consuner Budget in code listing (8). Vi = Zk Zj U '(0
c(cy,

For example, if there is a total size budget of 100 and . —0 0 ! .
: . : . In code listing (4) of Figure 7, the resource rati®% yalues)
increments of size 10, ASCENT firsts assign 0 to the consumer . . .
and 100 to the producer, 10 and 90, 80 and 20, and so fo?trﬁ_known and each 'te"? m_the producgr MMK.P problem is
until 100% of the budgét is assignéd to the co'nsumer. Tﬁ(seS'gned a value by multiplying each of its provided reseurc

allocation process is shown in Figure 8. ASCENT includevsalues by the corresponding ratio and summing these values:

Return Best Sol uti on and Sol utions (10)

k
valueof (p) = g (Up(pi, k) * Vi)
Consumer 0
Budget Producer . . .
(Software) (Lt The overall solving workflow at each budget allocation ratio
~ Hardware, . . .
~ is shown in Figure 9.
/ B y 7 .
V4 | . y Input:
e Y
” g, \ P | \Knapsack Size
"oy / \ \
Yoy . // N
Overall e Solve for the Best Identify the Rank the Hardware
Budget / Possible Software Resources the Options to Favor Solve for the Final
N4 Solution within the Solution Needs Solutions that Provide Hardware Solution
Va4 Software Budget and in What Ratio the Needed Resources
/ \

Fig. 8. lteratively Allocating Budget to the Consumer Consirain the Sofiwars 10 u N
Knapsack il Solve for the Final

the Final Hardware
Solution

| Software Solution

both the 0%,100% and 100%,0% budget allocations to handfig. 9. ASCENT Solving Workflow at Each Budget Allo-
cases where the optimal configuration includes producer @ation Step
consumer items with zero cost.

4.3 Solving the Individual MMKP Problems This breakdown yields an algorithmic complexity of ¢ +

Once sizes have been set for each knapsack and the valu K P)), where MMKP is the algorithmic complexity of

heuristic has been applied to the producer MMKP proble 1€ chosen MMKP algor.ithm_. With M'.HEU (one of the mpst
existing MMKP solving approaches can be applied. Firsgceurate MMKP approximation algorithms [1]) the algorith-
hic complexity is Ofn?(l — 1)2), wherem is the number

the producer MMKP problem, with its new item values, ig}' is th ber of g :
solved for an optimal solution, as shown in code listing (resource types; is the number of sets, arids maximum

of Figure 7. We use theol veMVKPCost Onl y method to items per s_et. Ou_r experiments in Section_5 used 100 ".md
f@md that it provided excellent results. With our expenirad
t

solve the producer problem since it does not consume a h d M-HEU. th I alaorithmi lexi
resources other than budget. In code listing (6), the coesunictuP that use . 5 the O\Qera agorlt_ mic comp ?X'ty
(mn?(l — 1)* + n)). This algorithmic

MMKP problem is then updated with constraints reflecting thyas tlherefqre CT(OO ial and th hould be abl
maximum available amount of each resource produced by frmplexity is polynomial and thus ASCENT should be able

solution from the producer MMKP problem. The consumep scale_ up to very large problems, such as the co-design of

MMKP problem is then solved for an optimal solution ierrOdUCt'On satellite hardware and software.

code listing (7). The producer and consumer solutions ae th

combined into the 2-tuples p, ¢ > and saved in code listing ® ANALYSIS OF EMPIRICAL RESULTS

9). This section presents empirical data we obtained from exper
In each iteration, ASCENT assigns sizes to the produdetents using ASCENT to solve MMKP co-design problems.

and consumer knapsacks and the solving process is repedalé@. empirical results demonstrate that ASCENT provides

A collection of the 2-tuple solutions is compiled during théear optimal results. The results also show that ASCENT

process. The output of ASCENT, returned in code listing (1@an not only provide near optimal designs for the co-design

of Figure 7, is both the 2-tuple with the greatest value ard tproblems, such as the satellite example, but also scaleeto th

collection of 2-tuples. The overall solving approach iswho large problem sizes of a production satellite design. Meeeo

in Figure 10. we show that the data sets generated by ASCENT—which
contain high valued solutions at each budget allocation—
MMKP Solver Runs at Each Budget Allocation Increment . can be used to perform a number of important search-based
AlDataPointsand SOftware engineering studies on the co-design solutionespa
3 /J\ i Each experiment used a total of 100 budget iterations
= (T'" = 100). We also used the M-HEU MMKP approxima-
E) tion algorithm as our MMKP solver. All experiments were
3 conducted on an Apple Powerbook with a 2.4 GHz Intel Core
100% Hardware X-Axis: Parcentags 100% Software 2 Duo processor, 2 gigabyes of RAM, running OS X version
°fB:':ngfx'a°r§ated 10.4.11, and a 1.5 Java Virtual Machine (JVM) run in client
mode. The JVM was launched with a maximum heap size of
Fig. 10. ASCENT Solving Approach 64mb (-Xmx=64m).

The reason that the 2-tuples are saved and returned as part MMKP Co-design Problem Generation

trends in the solution space of the co-design problem. Eachygndomly generate MMKP co-design problems for test data.
tuple contains a high-valued solution to the co-design ierob For each problem, we also needed to calculate how good AS-

at a particular ratio of knapsack sizes. This data can betase¢cENT’s solution was as a percentage of the optimal solution:

graph and visualize how the overall solution value changes avalucof(ASCENT Solution) Eqr small problems with less than
alueo f(OptimalSolution)

function of the ratio of knapsack sizes. As shown in Sectipn ',5”56»[3 per MMKP problem, we were able to use a branch-and-
this |_nformat|on can be L_Jsgd to ascertain a nu_mber of usefiyund linear programming (LP) [27] technigue built on top of
solution space characteristics, such as determining hoehmyne java Choco constraint solvethpco- sol ver . net) to

it costs to increase the value of a specific system property{@rive the optimal solution.

a given level or finding the design with the highest value per g, larger scale problems the LP technique was simply
unit of cost. not feasible,e.g., solutions might take years to find. For
larger problems, we developed a technique that randomly
generated MMKP co-design problems with a few carefully

o) crafted constraints so we knew the exact optimal answer.

4.4 Algorithmic Complexity

down as follows: different problem generation technique.
1) there ar€el iterations of ASCENT Ideally, we would prefer to generate completely random
2) in each iteration there are 3 invocations to an MMKPBroblems to test ASCENT. We our confident in the validity
approximation algorithm of this technique, however, for two reasons: (1) the trends w

3) in each iteration, values of at most producer items observed from smaller problems with truly random data were
must be updated. identical to those we saw in the data obtained from solvieg th

generated problems and (2) the generated problems randoflyisualization of this constraint is shown in Figure 11.
placed the optimal items and randomly assigned their value

and size so that the problems did not have a structure clearl Highest

amenable to the heuristics used by our MMKP approximatior ﬁeun’id

algorithm. We did not use Akbar’s technique [1] because the
problems it generated were susceptible to a greedy strategyoptimal item]—vd a
// / <

Our problem generation technique worked by creating twc ~ Vau®
MMKP problems for which we knew the exact optimal answer. yext Highest
First, we will discuss how we generated the individual MMKP Value After ﬂ
problems. LetS be the set of MMKP sets for the probledd, ~ °Ptima'item
be aK -dimensional vector describing the size of the knapsack,
Iij be thejth item of the iy, _»SEt, SZ.ZB(Iij, k) be the k;, F|g 11. A Visualization of V;
component off;;’s size vectorSz;;, andsize(S, k) be thek,,

component of the knapsack size vector, the problem geoerati Thjs new valuation of the items guarantees that the items in

Vg

technique for each MMKP problem worked as follows: OptItems are the optimal items. We can prove this property
1) Randomly populate each setC S, with a number of by showing that if it does not hold, there is a contradiction.
items . Assume that there is some set of iteniggtter, that fit into
2) Generate a random siz®&, for the knapsack the knapsack and have a higher value. /&t be the value

3) Randomly choose one itendppt; C Optitems from of the better item to choose than the optimal item in ihe
each set to be the optimal itenfiopt; is the optimal set. The sum of the values of the better items from each set
item in thei,, set. must have a higher value than the optimal items.

4) Set the sizes of the items @ptitems, so that when The itemsIb; C Ibetter must fit into the knapsack. We
added together they exactly consume all of the spacedssigned the problem so that the optimal items exactly fit

the knapsack: into the knapsack and that any item with a higher value than
; an optimal item is also bigger. This design implies that at
(Vk C R) (Z size(Topt;, k)) = size(S, k) least one of the items idbetter is smaller and thus also

has a smaller valud/small, than the optimal item in its set
)) (or Ibetter wouldn't fit). If there are@ sets in the MMKP
5) Randomly generate a valuégpt;, for the optimal item, 5-opjem, this implies that at mo§t — 1 items inIbetter have

lopt;, in each set _ a larger value than the optimal item in their set, and thus:
6) Randomly generate a value delta variablg, <

0

min(Vopt;), where min(Vopt;) is the optimal item Q! e
With(thepslrzlallest value (Vort) P Voptq + Z Vopti <Vsmall + Z Vb
7) Randomly set the size and values of the remaining non- 0 0
optimal items in the sets so that either: We explicitly revalued the items so that:
« The item has a greater value than the optimal item i
in its set. In this case, each component of the Z(MaxVi —Vopt;) < Vg
item’s size vector, is greater than the correspond- 0

ing component in the optimal item’s size vectorg
(Vk C R), size(Iopt;, k) < size(l;j, k)
« The item has a smaller value than the optimal item’s Q-1

value minusVy, valueof (I;;) < Vopt; — Vy. This Vopto < Vismall + Y (Vb — Vopt;)

constraint will be important in the next step. In this 0

case, each component of the item’s size vector iBe inequality will still hold if we substituteV; in for
Q-1 i :

randomly generated. > (Vb —Vopt;), becausé/ is larger:

At this point, we have a very random MMKP problem. What
we have to do is further constrain the problem so that we
can guarantee the items @ptitems are truly the optimal Voptg — Vg < Vsmall
selection of items. LeMazV; be the item with the highest which is a contradicton of the rule that we enforced for serall

value in thei;;, set. We further constrain the problem as
follows: ith P items:valueof(I;;) < Vopt; — Vg

For each itemMazV;, we reset the values of the items (if This problem generation technique creates MMKP problems

needed) to ensure that the sum of the differences betweenvt\ﬂt?h some Important properties. First, the optimal item acfe
. . : . set will have a random number of larger and smaller valued
max valued items in each set and the optimal item are IeI

than Vy:

y subtracting thez(?_1 Vopt; from both sides, we get:

Voptg < Vsmall + V4

8ms (or none) in its set. This property guarantees that a
i greedy strategy will not necessarily do well on the problems

Z(MaxVi — Vopt;) < Vy Morepver, the optimal item may not havg the best ratio of
o value/size. For example, an item valued slightly smallanth

the optimal item may consume significantly less space becal®r large-scale co-design problems (such as designing a com
its size was randomly generated. Many MMKP approximatigulicated climate monitoring satellite) LP solvers thusally
algorithms use the value/size heuristic to choose itemmeSi become incapable of finding a solution in a reasonable time
there is no guarantee on how good the value/size of tframe. We setup an experiment to compare the scalability of
optimal item is, MMKP approximation algorithms will not ASCENT to an LP technique. We randomly generated a series
automatically do well on these problems. of problems ranging in size from 1 to 7 sets per hardware
To create an MMKP co-design problem where we know thend software MMKP problem. Each set had 10 items. We
optimal answer, we generate a single MMKP problem with taacked and compared the solving time for ASCENT and
known optimal answer and split it into two MMKP problemghe LP technique as the number of sets grew. Figure 12
to create the producer and consumer MMKP problems. Ppoesents the results from the experiment. As shown by the
split the problem, two new MMKP problems are created. One
MMKP problem receivest of the sets from the original
problem and the other problem receives the remaining sets.
The total knapsack size for each problem is set to exactly the
size required by the optimal items from its sets to fit. The sum 7000000
of the two knapsack sizes will equal the original knapsark.si 1000000 T
Since the overall knapsack size budget does not change, the ° . \m a
original optimal items remain the overall optimal solution 2 3 . Asent
Next, we generate a set of produced/consumed resource val- Total Sets s
ues for the two M_MKP problems. For the consumer problerﬁig_ 12. Solving Time for ASCENT vs. LP
we randomly assign each item an amount of each produce

resourcet C R that the item consumes. L@bta{C(k) be the results, ASCENT scales significantly better than an LP-thase
total amount of the resourdeneeded by the optimal Consumerapproach.

solution andVopt(p) be the optimal value for the producer Experiment 2: Testing ASCENT's solution optimality
MMKP problem. We take the consumer problem and CaICUIaéfflearly, scalability alone is not the only characteristicao

a resource production ratidip(k), where good approximation algorithm. A good approximation algo-
TotalC(k) rithm must also provides very optimal results. We created
Rp(k) = Vopt(p) an experiment to test the accuracy of ASCENT’s solutions.

We compared the value of ASCENT's answer to the optimal
For each item,I;;, in the producer problem, we assign ianswer,
a production value for the resourde of: Produced(k) = valueof(ASCENT Solution)
Rp(k) * valueof (I;;). valueo f(Optimal Solution)
The optimal items have the highest feasible total valuedas
on the given budget and the sum of their values times t 50 different MMKP co-design problem sizes with 3 items

resource production ratios exactly equals the needed dlud’®' set. For eac_h size co-design problem, we solved 50
each resource: different problem instances and averaged the results.

It is often suggested, due to the Central Limit Theorem [17],
to use a sample size of 30 or larger to produce an approx-
imately normal data distribution [13]. We chose a sample
size of 50 to remain well above this recommended minimum
Any other set of items must have a smaller total value ars&mple size. The largest problems, with 50 sets per MMKP
consequently not provide sufficient resources for the agtimproblem, would be the equivalent of a satellite with 50 p®int
set of consumer items. To complete the co-design probleaf,software variability and an additional 50 points of hasafes
we set the total knapsack size budget to the sum of the sixesiability.
of the two individual knapsacks. For problems with less than 7 sets per MMKP problem, we
compared against the optimal answer produced with an LP
. L solver. We chose a low number of items per set to decrease
5.2 ASCENT Scalability and Optimality the time required by the LP solver and make the experiment
Experiment 1. Comparing ASCENT scalability to an feasible. For problems with more than 7 sets, which could
exact technigue. When designing a satellite it is critical thatnot be solved in a timely manner with the LP technique, we
designers can gauge the accuracy of their design techniquesed our co-design problem generation technique presented
Moreover, designers of a complicated satellite system neiedSection 5.1. The problem generation technique allowed
to know how different design techniques scale and whials to create random MMKP co-design problems that we
technigue to use for a given problem size. This first set of eknew the exact optimal answer for and could compare against
periments evalutes these questions for ASCENT and a branBlSCENT’s answer.
and-bound linear programming (LP) co-design technique. Figure 13 shows the results of the experiment to test

Although LP solvers can find optimal solutions to MMKPASCENT’s solution value verusus the optimal value over
co-design problems they have exponential time complexi§0 MMKP co-design problem sizes. With 5 sets, ASCENT

6000000
5000000
4000000

5659282

3000000

365707

Solving Time (ms}

TotalC(k)
TotalC(k) = % * ZVopti
0

10

°
©
3

5.3 Solution Space Snapshot Resolution

°
©
&

©
2

Experiment 4: Demonstrating the importance of solution

space snapshot resolution. A complicated challenge of apply-

/ ing search-based software engineering to hardware/saftwa

co-design problems is that design decisions are rarely as

straightforward as identifying the design configuratiomtth

maximizes a specific property. For example, if one satellite
D PV configuration provides 98% of the accuracy of the most

optimal configuration for 50% less cost, designers are\likel

Fig. 13. Solution Optimality vs Number of Sets choose it. If designers have extensive experience in haslwa

development, they may favor a solution that is marginallyeno

expensive but allocates more of the development to hardware

produces answers that average 90% optimal. With 7 sets, Yaich they know well. Search-based software engineering
answers average95% optimal. Beyond 20 sets, the averag@Ch”'que$ should.therefore allow de3|gners to iteratitedse
optimality is ~98% and continues to improve. These resuli§ese desired designs out of the solution space.
are similar to MMKP approximation algorithms, such as M- ASCENT has a number of capabilities beyond simply
HEU, that also improve with increasing numbers of sets [1ffnding the optimal solution for a problem to help designers
We also found that increasing the number of items per d#d desirable solutions. First, as we describe below, ASTEN
also increased the optimality, which parallels the restdts can be adjusted to produce different resolution images of
our solver M-HEU [1]. the solution space by adjusting the granularity of the bud-
Experiment 3: Measuring ASCENT'’s solution space g€t allocation stepse(g., make smaller and more allocation
snapshot accuracy. As part of the solving process, ASCENTChanges). ASCENT's <_Jther solution space analysis cafiabili
not only returns the optimal valued solution for a co-desigff® Presented in Section 5.4.
problem but it also produces a data set to graph the optimaiThe granularity of the step size greatly impacts the res-
answer at each budget allocation. For the satellite exgmpdution or detail that can be seen in the solution space. To
the graph would show designers the design with the high@gf{ain the most accurate and informative solution spacgémna
image processing accuracy for each ratio of budget allogatia Small step size should be used. Figure 15(a) shows a solutio
to software and hardware. We created an experiment to téB&ce graph generated through ASCENT using 10 allocation
how optimal each data point in this graph was. steps. The X-axis is the percentage of budget allocated to
For this experiment, we generated 100 co-design problegfftware, the Y-axis is the total value of the solution. It
with less than 7 sets per MMKP problem and comparéPpears that any allocation of 30% or more of the budget to
ASCENT’s answer at each budget allocation to the optim@Pftware will produce a satellite with optimal image prasiag
answer derived using an LP technique (more sets improv@&uracy.
ASCENT's accuracy). For problems with 7 sets divided into 98 Figure 15(b), however, shows the graph that results from
different budget allocations, ASCENT finds the same, optim@olving the same problem with a 20 allocation steps. It is
solution as the LP solver more than 85% of the time. Figure impportant to note that while allocating 30% or more of the
shows an example that compares the solution space grépget to software still results in an optimal solution,réhes
produced by ASCENT to a solution space graph produc@gother point that was absent from the previous graph. It can

with an LP technique. The X-axis shows the percentage of th¢arly be seen that an allocation of 15% of the budget for
software will also result in a near optimal solution, whigh i

an unanticipated good solution that favors hardware.
* [The importance of a small step size is further demonstrated
[in Figure 15(c), which was produced with 100 allocation step

— Both previous graphs also suggest that any allocation aitgre
. /_J_/ L\ - P Soler than 30% for software would result in an optimal satellite

PR
8
=

@
&

Optimality
™~

®
2

Number of Sets

Value

design. Figure 15(c) shows that there are many pitfalls én th
r | 70% to 99% range that must be avoided. At these precise
5 — \ budget allocation points, there is not a good combination of
Pargenitags of Buyst/llocatet to Soltwsre hardware and software that will produce a good solution.
This result may seem counter-intuitive. At these points,
Fig. 14. Solution Value vs. Budget Allocation the previous good hardware solution is too expensive, but
a different more expensive software configuration with less
budget allocated to the software (consumer) MMKP problemesource consumption to fit on the cheaper available hasdwar
The Y-axis shows the total value of the MMKP co-designonfigurations is also not within budget. If any of these soft
problem solution. The ASCENT solution space graph closelyare allocation percentages were chosen arbitrarily witho
matches the actual solution space graph produced with the ¢rieating a high quality graph of the solution space, thegahesi
technique. could unknowingly create a system that has 25% of the value

11

3000

threshold. The resulting graph allows designers to find the
lowest cost satellite co-design solution with a given image
P a0 processing accuracy.
E 1500 250
>
dd 150
0 10 20 30 40 50 60 70 80 90 8 m\/\/\/’\/\/\ﬂ A H m
Percentage of Budget Allocated to Software Q ﬂ
(a) Low Resolution Solution Space Snapshot - V VW 'H(\
2500 Percentage of Budget Allocated to Software
o™ (a) Solution Cost vs. Budget Allocation
F]
E 1500
> 3000
N 2500 _/\/
RV A \LIRIA
. o
K 10 15 20 25 30 E 3 40 45 50 55 60 65 70 75 80 85 90 95 E 1500 ﬁ/_/_{ H H HH ‘H
©
Percentage of Budget Allocated to Software S / v H w
(b) Medium Resolution Solution Space Snapshot
3000 o
2500 /J_/“ ‘ ‘ H‘ Percentage of Budget Allocated to Software
o™ / H H H'\ (b) Solution Value vs. Budget Allocation
2 1500
m 250
> WAUITHIHL
Ty
500 - /
()
o
¥ Q 0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 \
Percentage of Budget Allocated to Software g 100 /
C
(c) High Resolution Solution Space Snapshot > w /
Fig. 15. A Solution Space Graph at Varying Resolutions 0 MMAN

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Percentage of Budget Allocated to Software

for the same cost (c) Cost Effectiveness vs. Budget Allocation

5.4 Solution Space Analysis with ASCENT *

Although ASCENT’s ability to provide variable resolution
solution space images is important, its greatest value sstem
from the variety of questions that can be answered from its
output data. In the following results, we present represtem

.) I
(S)?J[[l;)tlijczr:j thice analyses that can be performed with ASCENT'’s o /Jf \V\/(\/ \\/\/f \U(| L\V”VA\J ”’ |

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Design analysis 1: Identifying low-cost viable designs. A Percentage of Budget Allocated to Software
common software engineering scenario is that a design need
not necessarily be optimal as long as it provides a minimum
required value or capability. For example, satellite desig Fig. 16. Satellite Design Solution Space Analysis Graphs
want to find the cheapest designs that provide the required
level of image processing accuracy. Figure 16(a) showsghgra Design analysis 2: Deter mining budget allocation ratios.
that can be produced by taking the output data from ASCENYn important question to ask when designing a system is
and graphing total actual solution cost as a function of ktidgvhat budget allocations and solutions give the most value pe
allocation, rather than graphing value as a function of letidgunit of cost. In terms of the satellite example, the question
allocation. This graph allows designers to ascertain ke&y lavould be what design gives the most accuracy for the money.
cost designs in the solution space and can be further filterféidure 16(c) shows another set of ASCENT output data
to eliminate any solutions that do not meet a minimum valubat has been regraphed to shé@“c as a function of the

cost

Budget Surplus

(d) Budget Surplus vs. Budget Allocation

12

percentage of the budget allocated to software. It canlglear ¢ ASCENT Produces Answers that are 98% Optimal:

be seen that the designs with the best ratio of value to cdst seen from the results in Figure 13, ASCENT generates
assign more of the value to software. This graph can alstyeasinswers that average 98% optimal for problems with a large
be filtered to eliminate designs that do not provide a minimunumber of sets in each MMKP problem. This result implies

level of value. that ASCENT will perform well on large-scale MMKP co-

Design analysis 3: Finding designs that produce budget design problems, such as the design of a large and complex
surpluses. Designers may wish to know how the resourceatellite. Moreover, the larger the problem, the more ateur
slack values, such as how much RAM is unused, with differeASCENT’s results. Systems of this scale would be nearly
satellite designs. Another related question is how mucthef timpossible to optimize without the search-based software
budget will be left-over for designs that provides a spedifieengineering method provided by ASCENT.
minimal level of image processing accuracy. We can use thes High Resolution Solution Space Snapshots Can |den-
same ASCENT output data to graph the budget surplus atify Near-optimal Alternative Solutions: Another important
range of allocation values. result is that we demonstrated that by capturing a high wesol

Figure 16(d) shows the budget surplus from choosing vafen solution space snapshot we can identify unanticipaézot
ious designs. The graph has been filtered to adhere tmgtimal designs. These unanticipated nearly optimal desig
requirement that the solution provide a value of at leasD16Qorrespond to peaks in the solution space graph at local
Any data point with a value of less than 1600 has had iteaxima. In future work, we plan to develop algorithms that
surplus set to 0. Looking at the graph, we can see that thetomatically increase the solution space snapshot Itesolu
cheapest design that provides a value of at least 1,6001&/fowat and around these local maxima. Solving the large numbers
with a budget allocation of 80% software and 20% hardwaref problems to produce a highly detailed solution space
This design has a value of 1,600 and produces budget savisgapshot is too time-consuming and error-prone to perform
of 37%. manually.

Design analysis 4: Evaluating design upgrade/- e ASCENT Output Data Can Answer Numerous Cost-
downgrade cost. In some situations, designers may have ased Design Questions to Iteratively Improve Solution
given solution and want to know how much it will cost omDesign: Since many design criteria cannot be completely
save to upgrade or downgrade the solution to a differentémafgrmalized for a search solver, search-based software- engi
processing accuracy. For example, designers may be askegddering should allow desigeners to iteratively hone in an th
provide a range of satellite options for their superiors #i@w solutions they desire. The results demonstrated that each r
what level of image processing accuracy they can provide abBASCENT allowed designers to answer key questions related
number of price points. Figure 17 depicts another view of the the allocation of budget to hardware and software. For ex-
ASCENT data that shows how cost varies in relation to themple, designers of a satellite could answer questions asich
minimum required solution value. This graph shows that % coghat allocation of budget to hardware and software produces
the highest valued solutiofDesigners can also answer other
previously difficult questions related to how expensivesita
produce a solution with a given optimality.

250

200 /
150

@ /

=]

¢ m / 6 RELATED WORK
B | Search-based software engineering has a large number of
e e e facets ranging from the design of general approximation-alg

ooooooooooooooooooooooooooooooooo
SRASACREREIIEZBERRIRINARIINEARRANE

rithms to the construction of search-based software eegine
ing methods for specific problems. This section compares and
Fig. 17. Cost of Increasing Solution Value contrasts ASCENT to search-based software engineerihg tec

nigues related to (1) approximation algorithms for sohsimg-
units can finance a design with a value up to 900, but a desitfif Problems to the MMKP co-design problem, (2) methods
of a value of 1,000 units will cost at least 124 cost units.sThiOr Using search-based techniques to solve hardwareaftw
information graph demonstrates the increased financialesur Partitioning problems, (3) methods for using approximatio
of requiring a slightly higher valued design. Alternatiyeif techniques for solving hardware/software_ sche_duhng prob
the necessary value of the system is near the left edge of &8s, and (4) search-based software engineering tectsique
of these plateaus, designers can make an informed decisiorf@ determining project staffing.

whether the increased value justifies the significantlydgased =~ MMKP approximation. Many problems similar to the
cost. hardware/software co-design problem presented in thigmap

have been solved with MMKP techniques. In multimedia
. systems, determining the quality settings that maximize th
5.5 Summary of Empirical Results value of a series of data streams has been modeled as an
The following is a summary of the empirical results present¢MMKP problem [23, 20]. Other usages of MMKP include
above. meta-scheduling for grid applications [28], optimallyeszting

Minimum Value

13

design features for software product-lines [29], and bookrobability for successful completion. The placement afhea
ahead request scheduling [7]. A number of excellent heuriadividual employee can change the profile of the entirequioj
tic approximation algorithms, such as M-HEU [2] and Cplan, resulting in an exponential number of possible conrfigu
HEU [2], with near optimal results have been devised. rations [4]. Moreover, parameters of a project are dynamét a

These existing MMKP algorithms and techniques, howevenay change several times before project completion, reqguir
cannot be directly applied to the MMKP-codesign problerthat multiple staffing solutions be calculated. This reskas
described in this paper. First, as described in SectiontBel, related to MMKP co-design problems in that it deals with two
existing techniques assume that there are predefineddudilvi tightly-coupled activites—the ordering and staffing of jpod
knapsack sizes, which is not the case in the MMKP co-desigarts subject to resource constraints. Although the work is
scenario. Second, as described in Section 3.2, producer RIMkelated, it cannot be used to solve MMKP co-design problems.
items cannot be valued separately from a consumer MMKPR contrast, ASCENT is specifically designed for solving
problem, causing a coupling problem. Existing MMKP apMMKP co-design problems.
proaches are not designed to handle this type of coupling
prob_lem. I_n contrz_:\st, AS_CENT addresses the_:se issues aynd CONCLUDING REMARKS
provides high-quality solutions to MMKP co-design probkem

Har dwar e/softwar e partitioning. A number of co-design Designing hardware and software in tandem to maximize a
techniques [6, 22, 26]—that can be viewed as search-bas¥gtem capability can be an NP-hard activity. Search-based
software engineering techniques—examine the problem ¥ftware engineering is a promising approach that can ke use
partitioning system functionality into hardware and sefte. 0 leverage algorithmic techniques during system co-aiesig
These approaches use a number of search techniques ran§f}§ Paper presented a polynomial-time search-based aftw
from binary constraint search to dynamic programming. ngineering technique, callgdllocation-baSed Configuration
the partitioning problem, a system’s required operatiores aExploration TechniqugASCENT), for finding near optimal
grouped into tasks or functions, which are then implemeintedhardware/software co-design solutions.
either hardware or software. The goal is to correctly dartit ~We showed how ASCENT's heuristic-based solutions to
the tasks into hardware and software to meet a predefifé@idware/software co-design problems average over 9586 opt
performance goa'_ Some tasks may operate W|th h|gher perfa}al when there are more than seven pOintS of Var|ab|l|tym th
mance if the functionality is placed on the hardware rathant hardware and software design. Moreover, ASCENT's output
on software. The performance of the system is thus determirf#hich is a data set showing the optimal design configuration
by the location and p|acement of tasks in hardware Vers@%each ratiO Of budget a.”ocation to hardWare a.nd SOftWare)
software. can be used to search for and answer important software

The MMKP co-design problem, which ASCENT focuse&ngineering questions, such as how much more it will cost
on, is complementary to this research. In particular, thef increasing the value of system capability.
related approaches do not deal with maximizing a measuré-rom our experience with ASCENT, we have learned the
of system value subject to producer/consumer resources &#pWing lessons pertaining to search-based software-eng
cost. Similarly, ASCENT does not examine the impact of tH&geerng:
placement of tasks on the hardware and software. Each ape ASCENT is amenable to parallelization. Search-based

proach fills an important, although distinct, role in thersba software engineering techniques require analyzing vast

based software engineering landscape for hardware/seftwa solution spaces. Although the algorithms used have poly-

co-design. nomial time-complexity, it is desirable to be able to use
Hardwar e/software scheduling with resource con- the latest advances in multicore processors and falling

straints. Another related problem in hardware/software co- hardware prices to improve solving speec. ASCENT is
design is the scheduling of hardware/software tasks stibjec highly parallelizable and amenable to multi-core archi-
to resource constraints. This type of co-design problegs tri tectures. Any number of budget allocation iterations can
to determine the optimal ordering of a series of tasks im- be run in parallel, allowing ASCENT to scale nearly
plemented in both hardware and software. Scheduling with linearly with the number of underlying computational
resource constraints is a challenging problem that hasded t units allocated to it.
the development of large number of co-design search and Solution space snapshot resolution is critical. AS-
design exploration techniques [16, 21, 12]. This co-design CENT's step size should be carefully considered when
technique is attacking a different facet of software/-mank using the algorithm to visualize the design solution space.
co-design that does not deal with how to select a software Using too large of a step size results in poor resolution
and hardware design that maximizes system value subject to images, as shown in Figure 15(a).
producer/consumer and cost constraints. ASCENT, howmver, « LP techniques should be used for small problems
focuses directly on this maximization of system value scibje and ASCENT for large problems. For smaller scale
to these constraints. problems, ASCENT produces less optimal solutions. lin-
Project management and staff allocation. Accurate plan- ear programming (LP) techniques, however, work well at
ning of large projects are essential to estimate project,cos these small problem scales. In our experiments, roughly 7
determine the formation of employee project teams, and to points of variability in the hardware and software design
assign these teams to tasks in a manner that gives the largest was the cross-over point where ASCENT should be used

14

rather than an LP approach. In future work, we plan fd5] M. Harman and B. Jones. Search-based software engigeer

further refine our understand the situations in which each _ J 59
[16] P.-A. Hsiung, P.-H. Lu, and C.-W. Liu. Energy efficient

technique should be applied.
Some problems cannot be modeled with a single
Producer/Consumer relationship. Some problems have

more than a single producer/consumer relationship. For
example, when trying to simultaneously determine the

configuration of an application, the underlying middlel17]
ware, and the hardware there is more than one produ?\T_{ré]

consumer relationship. For these situations, ASCE
requires breaking the problem in two and solving in

phases, which is not ideal. Our future work will thereforél9]

investigate how to extend ASCENT to operate dh

MMKP problems with an arbitrary number of producerllzo]

consumer relationships.

An implementation of ASCENT is available as part

of the open-source GEMS Model
sf. net/projects/gens.

REFERENCES

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]

M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-Dimension Knamsa

Problem. International Conference on Computational Science[zz]

pages 659-668, May 2001.

M. Akbar, E. Manning, G. Shoja, and S. Khan. Heuristic
Solutions for the Multiple-Choice Multi-Dimension Knagsa
Problem. pages 659-668. Springer, May 2001.

E. Alba and J. Francisco Chicano. Software project
management with GAsinformation Sciences
177(11):2380-2401, 2007.

G. Antoniol, M. Di Penta, and M. Harman. A robust

search-based approach to project management in the peese?fs]

of abandonment, rework, error and uncertair®pftware
Metrics, 2004. Proceedings. 10th International Symposiunn
pages 172-183, 2004.

A. Barreto, M. Barros, and C. Werner. Staffing a software
project: A constraint satisfaction and optimization-lzhse
approach.Computers and Operations Research
35(10):3073-3089, 2008.

E. Barros, C. Universitaria-Recife-PE, W. Rosenst#id

X. Xiong. A Method for Partitioning UNITY Language in
Hardware and SoftwareEuro-DAC’'94 with Euro-VHDL'94:
Proceedings, September 19-23, 1994, Grenoble, Frah@84.

P. Chiu, Y. Chen, and K. Lee. A request scheduling alganit [28]

to support flexible resource reservations in advarttectrical
and Computer Engineering, 2004. Canadian Conferencedon
2004.

L. Chung. Non-Functional Requirements in Software
Engineering Springer, 2000.

J. Clark and J. Jacob. Protocols are programs too: the
meta-heuristic search for security protocdisformation and
Software Technologyt3(14):891-904, 2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivebttroduction
to Algorithms MIT, 1990.

S. Curtis. The Magnetospheric Multiscale MissionesBlving
Fundamental Processes in Space PlasiN&SA STI/Recon
Technical Report Npages 48257—+, Dec. 1999.

C. Gebotys and M. Elmasn®ptimal VLSI architectural
synthesis: area, performance and testabililuwer

Academic Publishers Norwell, MA, USA, 1992.

J. Gosling.Introductory Statistics Pascal Press, 1995.

M. Harman. The Current State and Future of Search Based
Software Engineeringlnternational Conference on Software
Engineering pages 342-357, 2007.

Intelligence project
[21]

(23]

[24]

[26]

[27]

[29]

Information and Software Technolggy3(14):833-839, 2001.

co-scheduling in dynamically reconfigurable systems. In
CODES+ISSS '07: Proceedings of the 5th IEEE/ACM
international conference on Hardware/software codesigd a
system synthesipages 87-92, New York, NY, USA, 2007.
ACM.

P. Huber, J. Wiley, and W. InterSciencBobust statistics
Wiley New York, 1981.

T. Ibaraki, T. Hasegawa, K. Teranaka, and J. lwase. The
Multiple Choice Knapsack Problend. Oper. Res. Soc. Japan
21:59-94, 1978.

O. Ibarra and C. Kim. Fast Approximation Algorithms fitre
Knapsack and Sum of Subset Problerdsurnal of the ACM
(JACM), 22(4):463-468, 1975.

M. Islam, M. Akbar, H. Hossain, and E. Manning. Admissio
control of multimedia sessions to a set of multimedia sexrver
connected by an enterprise netwoommunications,
Computers and signal Processing, 2005. PACRIM. 2005 IEEE
Pacific Rim Conference ompages 157-160, 2005.

M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian
Design space exploration of real-time multi-media mpsocs
with heterogeneous scheduling policies.GODES+ISSS '06:
Proceedings of the 4th international conference on
Hardware/software codesign and system synthexsiges
16-21, New York, NY, USA, 2006. ACM.

E. Lagnese and D. Thomas. Architectural Partitioniag f
System Level DesignDesign Automation, 1989. 26th
Conference onpages 62-67, 1989.

A. Lawabni and A. Tewfik. Resource Management and
Quality Adaptation in Distributed Multimedia Networks.
Proceedings of the 10th IEEE Symposium on Computers and
Communications (ISCC’05)-Volume ,0fages 604—-610, 2005.
P. McMinn. Search-based software test data generagion
survey. Software Testing, Verification & Reliability
14(2):105-156, 2004.

L. Northrop, P. Feiler, B. Pollak, and D. Pipitone.
Ultra-large-scale Systems: The Software Challenge of the
Future Software Engineering Institute, Carnegie Mellon
University, 2006.

F. Vahid, D. Gajski, and J. Gong. A binary-constrainarsf
algorithm for minimizing hardware during hardware/softe/a
partitioning. Proceedings of the conference on European
design automatianpages 214-219, 1994.

P. Van Hentenryck, H. Simonis, and M. Dincbas. Conatrai
satisfaction using constraint logic programming.
Constraint-Based Reasonin$994.

D. Vanderster, N. Dimopoulos, and R. Sobie. Metaschiedu
Multiple Resource Types using the MMKRsrid Computing,
7th IEEE/ACM International Conference opages 231-237,
2006.

J. White, B. Dougherty, and D. Schmidt. Filtered Caegs
Flattening. Workshop on Analysis of Software Product-Lines
at the International Conference on Software Product-ljnes
October 2008.

