
Creating a Framework for Developing
High-performance Web Servers over ATM

James C. Hu and Douglas C. Schmidt

jxh@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, MO 63130, USA

1 Introduction

During the past two years, the volume of traffic on the World
Wide Web (Web) has grown dramatically. Traffic increases are
due largely to the proliferation of inexpensive and ubiquitous
Web browsers (such as NCSA Mosaic, Netscape Navigator,
and Internet Explorer). Likewise, Web protocols and browsers
are increasingly being applied to specialized computationally
expensive tasks, such as imaging servers (e.g., Siemens MED
and Kodak Picture Net) and database search engines (e.g., Al-
taVista and Lexus Nexus).

To keep pace with increasing demand, it is essential to de-
velop high-performanceWeb servers. The central thesis of this
proposal is that to achieve optimal performance, Web servers
must be able to dynamically adapt to various conditions, such
as machine load and network congestion, the type of incom-
ing requests, and the rate of requests. Therefore, we propose
to develop an adaptive Web server framework and use it to
empirically determine (1) the performance impact of different
server design and implementation strategies, (2) the scalabil-
ity of servers under high-load conditions, and (3) the pros and
cons of different design alternatives.

1.1 Motivation

Web servers are synonymous with HTTP servers and the
HTTP 1.0 and 1.1 protocols are relatively straightforward.
HTTP requests typically name a file and the server locates
the file and returns it to the client requesting it. On the sur-
face, therefore, Web servers appear to have few opportunities
for optimization. This may lead to the conclusion that opti-
mization efforts should be directed elsewhere (such as trans-
port protocol optimizations [11], specialized hardware [5], and
client-side caching [21, 12]).

Empirical analysis reveals that the problem is more com-
plex and the solution space is much richer. For instance, our

experimental results show that a heavily accessed Apache Web
server (the most popular server on the Web today [20]) is
unable to maintain satisfactory performance on a dual-CPU
180 Mhz UltraSPARC 2 over a 155 Mbps ATM network, due
largely to its choice of process-level concurrency [7]. Other
studies [8] have shown that the relative performance of differ-
ent server designs depends heavily on server load characteris-
tics (such as hit rate and file size).

The explosive growth of the Web, coupled with the larger
role servers play on the Web, places increasingly larger de-
mands on servers [3]. In particular, the severe loads servers
already encounter handling millions of requests per day will
be confounded with the deployment of high speed networks,
such as ATM. Therefore, it is critical to understand how to
improve server performance and predictability.

Server performance is already a critical issue for the In-
ternet [1] and is becoming more important as Web protocols
are applied to performance-sensitive intranet applications. For
instance, electronic imaging systems based on HTTP (such
as Siemens MED or Kodak Picture Net) require servers to
perform computationally-intensive image filtering operations
(e.g., smoothing, dithering, and gamma correction). Likewise,
database applications based on Web protocols (such as Al-
taVista Search by Digital or the Lexus Nexus) support com-
plex queries that may generate a higher number of disk ac-
cesses than a typical Web server.

This proposal is motivated by our empirical results [8, 7]
that illustrate why no single Web server configuration is opti-
mal for all circumstances. Based on these results, we hypothe-
size that optimal Web server performance requires bothstatic
anddynamicadaptive behavior.

Staticadaptivity allows a Web server to bind common oper-
ations to high performance mechanisms provided by the native
OS (e.g., Windows NT 4.0 support for asynchronous I/O and
network/file transfer). Programming the server to use generic

1



OS interfaces and APIs is insufficient to provide maximal per-
formance across OS platforms. Therefore, asynchronous I/O
mechanisms in Windows NT and POSIX must be studied,
compared, and tested against traditional concurrent server pro-
gramming paradigms that utilize synchronous event demulti-
plexing and threading.

Dynamicadaptivity allows a Web server to alter its run-time
behavior “on-the-fly.” This is useful when external conditions
have changed to a point where the configured behavior no
longer provides optimal performance. Such situations have
been observed in [8] and [9].

Research on adaptive software has not been pursued deeply
in the context of Web systems. Current research on Webserver
performance has emphasized caching [12, 21], concurrency,
and I/O [13]. While our results indicate that caching is vital
to high performance, non-adaptive caching strategies do not
provide optimal performance in Web servers [9]. Moreover,
current server implementations and experiments rely onstat-
ically configured concurrency and I/O strategies. As a result
of our empirical studies, we conclude that servers relying on
static, fixed strategies cannot behave optimally in many high
load circumstances.

1.2 Preliminary Results

To understand the advantages and disadvantages of different
server optimization strategies in the context of Web servers
the following research questions must be addressed:

� What types of server load conditions (e.g., machine load,
disk I/O, context switching and memory paging) affect
server performance?

� What techniques can be employed to improve Web server
performance, and what are the impact on performance
and predictability?

� How are optimization techniques affected by changing
server load conditions and what combinations of tech-
niques yield better performance under various server load
conditions?

� How can optimal Web server performance be achieved in
the face of changing server load conditions?

To address these research questions, we have developed
a prototype high-performance Web server called JAWS.1

We have compared JAWS’ performance with existing Web
servers. Thus far, our research has provided the following con-
tributions:

� The identification ofconcurrencyandevent dispatching
strategies as key determinants of performance, and which
strategies are most effective for common use cases.

1JAWS is available atwww.cs.wustl.edu/ �schmidt/ACE.html.

� Empirical data showing the extent to which the perfor-
mance of concurrency, event dispatching, and I/O strat-
egy combinations depend heavily onnetwork and server
load conditions.

� A methodology ofmeasurement driven refinementthat
allows high performance prototypes to be developed
quickly.

� Design principles and concurrency patternsfor building
high-performance Web servers.

� An adaptive concurrent server design, which can adjust
its run-time concurrency behavior to provide optimal per-
formance for particular traffic characteristics and work-
loads.

The experimental JAWS Web server software platform per-
forms as well as (and in many cases outperforms) existing Web
server implementations. These results are discussed in more
detail in [7] and [8].

1.3 Research Proposal Synopsis

Our preliminary results were obtained by developing a high-
performance Web server prototype. However, the ultimate
goal of our research is to determine how to construct and con-
figure Web systems that can dynamically adapt to changing
workloads to provide the best possible performance over high-
speed networks. Naturally, it is always possible to improve
performance with more expensive hardware (e.g.,additional
memory and faster CPUs) and a more efficient OS. However,
our research aims to produce the fastest server possiblefor a
given hardware/OS platform configuration.

Moreover, a web system is representative of large class of
server applications. These range from simple protocols (such
as ftp) to complex distributed applications (such as electronic
medical imaging systems [14], video-on-demand servers [5],
or databases). Therefore, the results we obtain in our work will
generalize to many other high-performance server use-cases.

We propose to apply and measure a broad range of opti-
mization techniques. Empirical analysis will determine the
impact of each technique under different end-system and net-
work loads. From the analysis, we will developprofilesthat
indicate which strategies are most effective for various con-
ditions, including workload, memory availability, bandwidth,
and CPU utilization.

The goal of our research is to demonstrate that optimal per-
formance can be achieved by developing Web servers that can
adapt their concurrency strategies, I/O, caching, and protocol
handling to changing conditions. To validate our hypotheses,
we will enhance the prototype JAWS server to support adap-
tive strategies and conduct benchmarks that compare its per-
formance to other high-performance Web servers.

2



To facilitate technology transfer, we will develop an appli-
cation framework that enables server developers to build high-
performance servers by implementing only the protocol def-
inition. This framework will provide the appropriate I/O and
concurrency mechanisms and adapt statically and dynamically
to offer optimal performance on the given architecture, by uti-
lizing the empirically determined performance profiles.

The remainder of this proposal is organized as follows: Sec-
tion 2 outlines the object-oriented design of JAWS, our high-
performance Web server prototype; Section 3 lists the objec-
tives to be accomplished for fulfillment of the doctoral degree,
and a timetable by which to guide progress made towards the
degree; and Section 4 presents concluding remarks.

2 Strategies for Developing High-
performance Web Servers

As shown in [7], JAWS consistently outperforms the other
servers in our test suite. These servers included Apache,
PHTTPD, Roxen, Netscape Enterprise Server, Zeus, W3C Jig-
saw, and JavaServer. During the study, we analyzed the results
of our experiments to discover key Web server bottlenecks. We
identified the following two key determinants of Web server
performance:
� Concurrency and event dispatching strategies: Since
dispatching occupies a large portion of non-I/O related Web
server overhead, choosing the right strategies is a major deter-
minant of performance.
� Avoiding the filesystem: We discovered that Web servers
(such as as PHTTPD and JAWS) that implemented sophisti-
cated caching strategies performed much better than those that
did not (such as Apache and Jigsaw).

We then performed additional experiments to characterize
the relative impacts of different I/O models coupled with dif-
ferent concurrency strategies under various loads on Windows
NT 4.0 over a 155 Mbps ATM network [8]. These experiments
revealed the following results:
� Throughput is highly sensitive to I/O strategy and file
size: Synchronous I/O mechanisms achieved higher through-
put than asynchronous I/O for smaller files. For larger files, the
Windows NT system callTransmitFile outperformed the
other I/O models by a factor of two. However, synchronous
I/O coupled with the thread pool strategy consistently outper-
formed asynchronous I/O coupled with the thread pool strat-
egy. For larger files, the performance between synchronous
I/O with thread-per-request and synchronous I/O with thread
pool converged.
� Latency is highly sensitive to hit rate: For smaller files,
the synchronous thread pool gives consistently better perfor-
mance. For larger files,TransmitFile provides better la-

tency under light loads.TransmitFile has significantly
higher latency under heavier loads.

These results demonstrate the performance variance that oc-
curs as a Web server experiences changing load conditions.
Thus, performance can be improved by dynamically adapting
the server behavior to these changing conditions. This section
explores techniques that can achieve this.

Our technical overview of our proposal begins with an out-
line of the object-oriented (OO) design of JAWS. JAWS is our
prototype adaptive Web server that was implemented to study
the performance impact of different server design strategies.
We then describe various strategies that we plan to implement,
test, and evaluate to improve Web server performance under
different situations.

2.1 The Object-Oriented Architecture of JAWS

Protocol

Filter

Handler

Protocol

Framework
Strategy
Concurrency

Protocol Pipeline
Framework

Framework
I/O Strategy

Filesystem
Cached Virtual

Expander
Tilde ~

/home/...
Event Dispatcher

A
cceptor

A
ct

iv
e 

O
bj

ec
t

Asynchronous Completion Token

Reactor/Proactor Singleton

Adapter

Streams

Strategy

Service Configurator

State

St
ra

te
gy

Figure 1: The Object-Oriented Software Architecture of JAWS

Figure 1 illustrates the OO software architecture of the
JAWS Web server. As discussed above, concurrency strate-
gies, event dispatching, and caching are key determinants of
Web server performance. Therefore, JAWS is designed to
allow Web server concurrency and event dispatching strate-
gies to be customized in accordance with key environmen-
tal factors. These factors include traffic patterns, workload
characteristics, support for kernel-level threading and/or asyn-
chronous I/O in the OS, and the number of available CPUs.

JAWS is structured as a framework [18] that contains the
following components: anEvent Dispatcher, Concurrency
Strategy, I/O Strategy, Protocol Pipeline, Protocol Handlers,
andCached Virtual Filesystem. Each component is structured
as a set of collaborating objects implemented with the ACE

3



C++ communication framework [16]. Each component plays
the following role in JAWS:
� Event Dispatcher: This component is responsible for coor-
dinating theConcurrency Strategywith the I/O Strategy. As
events are processed, they are dispensed to theProtocol Han-
dler, which is parametized by a concurrency strategy and an
I/O strategy, as discussed below.
� Concurrency Strategy: This implements concurrency
mechanisms (such as single-threaded, thread-per-request, or
thread pool) that can be selected adaptively at run-time or
pre-determined at initialization-time. These strategies are dis-
cussed in Section 2.2.1.
� I/O Strategy: This implements the I/O mechanisms (such as
asynchronous, synchronous and reactive). Multiple I/O mech-
anisms can be used simultaneously. These strategies are dis-
cussed in Section 2.2.2.
� Protocol Handler: This object allows system developers to
apply the JAWS framework to a variety of Web system appli-
cations. AProtocol Handlerobject is parameterized by a con-
currency strategy and an I/O strategy, but these remain opaque
to the protocol handler. In JAWS, this object implements the
parsing and handling of HTTP request methods. The abstrac-
tion allows for other protocols (e.g., HTTP/1.1 and DICOM)
to be incorporated easily into JAWS. To add a new protocol,
developers simply write a newProtocol Handlerimplementa-
tion, which is then configured into the JAWS framework.
� Protocol Pipeline: This component provides a framework
to allow a set of filter operations to be incorporated easily into
the data being processed by theProtocol Handler.
�Cached Virtual Filesystem:The component improves Web
server performance by reducing the overhead of filesystem ac-
cesses. The caching policy is strategized (e.g., LRU, LFU,
Hinted, and Structured). This allows different caching policies
to be profiled for effectiveness and enables optimal strategies
to be configured statically or dynamically. These strategies are
discussed in Section 2.2.3.
� Tilde Expander: This mechanism is another cache com-
ponent that uses a perfect hash table [15] that maps abbrevi-
ated user login names (e.g.�schmidt to user home directories
(e.g., /home/cs/faculty/schmidt). When personal Web pages
are stored in user home directories, and user directories do not
reside in one common root, this component substantially re-
duces the disk I/O overhead required to access a system user
information file, such as/etc/passwd .

In general, the OO design of JAWS decouples the strategies
of a component from its functionality. For instance, theCon-
currency Strategycan be decoupled from theProtocol Han-
dler. Thus, a wide range of strategies can be supported, tested,
and evaluated. As a result, JAWS can adapt to environments
that may require different concurrency, I/O, and caching mech-
anisms.

2.2 Adaptive Web Server Strategies

The discussion below presents the concurrency, I/O and,
caching strategies that JAWS will support and summarizes the
various alternatives. The JAWS framework allows the differ-
ent mechanisms to be changed easily, which enables different
combinations and configurations. This flexibility supports the
following research goals: (1) to empirically determine the ap-
propriate profiles for different configurations by testing each
configuration under a variety of system load conditions; and
(2) to provide a re-usable framework that achieves optimal per-
formance by allowing bothstatic adaptations to Web server
architectures anddynamicadaptations to changing Web server
load conditions.

2.2.1 Adaptive Concurrency Strategies

Our experiments in [8] demonstrate how the choice of con-
currency and event dispatching strategies significantly affect
the performance of Web servers that are subject to changing
load conditions. JAWS addresses this issue by allowing its
concurrency strategy to adapt dynamically to current server
conditions. Concurrency strategies vary in scope from single
threaded, multiple processes, multiple threads, to distributed
processes. For this research proposal, the focus is on thread-
ing strategies. This section describes various threading con-
currency strategies and discusses their relative merits.
� Thread-per-request: A common model of concurrency is
to spawn a new process to handle each new incoming request.
Thread-per-requestis similar, except that threads are used in-
stead of processes. While a child process requires a (virtual)
copy of the parent’s address space, a thread shares its address
space with other threads in the same process.

If the OS platform supports threads (and most modern
operating systems do), thread-per-request is a more effi-
cient concurrency strategy than process level concurrency.
In our testbed, the cost of creating a thread on Solaris
(with thr create ) is less than 260�s (approximately
20 times faster thanfork ), and on Windows NT (with
CreateThread ) it is approximately 400�s (approximately
10 times faster thanCreateProcess ). PHTTPD uses a
thread-per-request strategy and exhibits excellent performance
[7].
� Thread pool: In the thread pool model, a number of
threads are spawned at initialization time. All threads block
in accept waiting for connection requests to arrive from
clients. This eliminates the overhead of waiting to create a
new thread before a request is served. The drawback to this ap-
proach is that the size of the thread pool is typically fixed to a
particular number of threads. Thus, if the Web server is lightly
loaded, system resources may be occupied needlessly, degrad-
ing the performance of other applications on the endsystem. If

4



the thread pool is not large enough, latency to serving requests
grow. Further adaptation can be applied, however, by allow-
ing the thread pool size to grow and shrink as the server load
conditions change.
� Single-threaded concurrent: Multi-threaded Web servers
are popular since they scale well on many multi-processor
platforms. However, on some uni-processors, or on operat-
ing systems like Windows NT that support asynchronous I/O,
the use of threads can yield excessive context switching and
synchronization overhead. Hence, on these platforms it is of-
ten more desirable to implementsingle-threaded concurrent
servers. This type of server is different from an iterative server
(which also only uses one thread) since it handles multiple re-
quests concurrently usingReactive I/Oor Asynchronous I/O
(described in Section 2.2.2).

The drawback with a single-threaded concurrency strategy
is that it can be complicated to implement since it requires
I/O mechanisms that possess “inversion of control” [6]. The
potential payoff, however, is a faster server on certain uni-
processors and operating systems.

Each concurrent strategy outlined above has positive and
negative aspects, which are summarized in Table 1.2 Thus,
to optimize performance, Web servers should beadaptiveto
utilize the most beneficial concurrency strategy for particular
traffic characteristics, workload, and hardware/OS platforms.

2.2.2 Adaptive I/O Strategies

The results from [8] (summarized at the top of Section 2) show
that the relative performance of different I/O strategies can
change under varying server load conditions. JAWS is de-
signed to address this issue by allowing the I/O strategy to
adapt dynamically to current server conditions. There are three
general types of I/O strategies:synchronous, asynchronous
andreactive[6]. This section summarizes each of these mod-
els and describes their relative merits in the context of adaptive
Web servers.
� Synchronous I/Odescribes the model of I/O interaction be-
tween a application process and the kernel where the OS does
not return the thread of control to the application until the re-
quested I/O operation either completes, completes partially, or
fails. This model is well known to UNIX server programmers
and is arguably the easiest to use. In Web servers, [8] shows
that synchronous I/O is the best choice for small file transfers.
However, the disadvantages of this model are:

1. With a single thread of control, it is not possible to engage
in concurrent synchronous I/O operations; and

2The disadvantage of the pool approaches are related to theaccept call.
In Solaris 2.5,accept is not a system call and is not atomic. In BSD 4.4,
accept is an atomic system call. More information is available in [19].

2. Even using multiple threads (or processes), it is possible
for an I/O request to block indefinitely. This makes it
difficult for the application to shut down gracefully.

Earlier versions of UNIX provided synchronous I/O exclu-
sively. System V provided nonblocking I/O to avoid the block-
ing problem. However, this solution requires the application to
poll to discover if any I/O is available [10].
� Reactive I/O alleviates the blocking problems of syn-
chronous I/O without resorting to polling. In this model,
an application uses OS event demultiplexing system calls
(e.g. select in UNIX or WaitForMultipleObjects
in Win32) to determine which handles can perform I/O. Upon
return from the call, the application can perform I/O on the
returned handles,i.e., the applicationreactsto multiple events
occurring on separate handles.

This style of I/O is widely used and has been codified as
theReactordesign pattern [17]. However, unless Reactive I/O
is carefully encapsulated the technique is error-prone due to
the complexity of managing multiple I/O handles. Moreover,
Reactive I/O does not make effective use of multiple CPUs.
Still, reactive I/O is a reasonable alternative for low-end Web
server architectures.
� Asynchronous I/O simplifies the de-multiplexing of multi-
ple events in one or more threads of control without blocking
the application. When an application initiates an I/O opera-
tion, the kernel runs the operation asynchronously while the
application proceeds with other processing (such as issuing
other I/O operations asynchronously). When the application
is done initiating I/O requests, it waits for the the system to
complete the requests. The advantages of this approach are:

� The application need not block on I/O requests at any
time since these requests complete concurrently as the
application is doing other processing.

� Asynchronous I/O scales efficiently to multiple CPUs.

These make asynchronous I/O a good candidate for Web
systems which involve large file transfers.

Experiments conducted on Windows NT 4.0 [8] show that
synchronous I/O can achieve higher throughput and lower la-
tency when the requested file size is small, but that native OS
asynchronous I/O mechanisms can achieve better overall per-
formance for large file transfers. These results stem from the
overhead required to submit asynchronous I/O requests to the
OS. Reactive I/O (coupled with non-blocking handles) is ad-
vantageous to systems that need concurrency without using
multiple threads or processes.

This proposal aims to further benchmark the impacts of
each I/O strategy and design the JAWS framework to adapt
to the most optimal mechanism for a particular Web server
profile.

5



Strategy Advantages Disadvantages
Single-threaded No context switching overhead.

Highly portable.
Does not scale for multi-
processor systems.

Process-per-request More portable for machines
without threads.

Creation cost high. Resource
intensive.

Process pool Avoids creation cost. Requires mutual exclusion in
some operating systems.

Thread-per-request Much faster than fork. May require mutual exclusion.
Not as portable.

Thread pool Avoids creation cost. Requires mutual exclusion in
some operating systems.

Table 1: Summary of Concurrency Strategies

2.2.3 Adaptive Caching Strategies

The results reported in [7] showed accessing the filesystem
is a significant performance inhibitor. This concurs with the
current Web server performance research that has emphasized
on caching to achieve better performance [12, 21]. However,
[9] reports that fixed caching strategies do not always provide
optimal performance. Therefore, we propose to further char-
acterize the impacts of alternative caching strategies to deter-
mine which strategies are most effective during various Web
server load conditions.

The caching strategies we plan to study are described below:
� Least Recently Usedis a cache replacement strategy that
assumes most requests for cached objects havetemporallo-
cality. Thus, when the act of inserting a newly object into the
cached requires the removal of another object, the object that
wasleast recently usedis removed. This strategy is relevant to
Web systems that serve content with temporal properties (such
as daily news reports and stock quotes).
� Least Frequently Useda cache replacement strategy that
assumes objects that have been requested frequently are more
likely to be requested again. Thus, cache objects that have
beenleast frequently usedare the first to be replaced in the
cache. This strategy is relevant to Web systems with relatively
static content, such as Lexus Nexus and other databases of his-
torical fact.
�Hinted caching is proposed in [12]. This strategy stems from
analysis of Web page retrieval patterns that seem to indicate
that Web pages havespatiallocality. That is, a user browsing a
Web page is likely to browse the links within the page. Hinted
caching is related topre-fetching, though [12] suggests that
the HTTP protocol be altered to allow statistical information
about the links (or(hints) to be sent back to the requester. This
modification allows the client to decide which pages to pre-
fetch. The same statistical information can be used to allow
the server to determine which pages topre-cache.

� Structured caching refers to caches that have knowledge of
the data being cached. For HTML pages, structured caching
refers to storing the cached objects to support hierarchical
browsing of a single Web page. Thus, the cache takes advan-
tage of the structure that is present in a Web page to determine
the most relevant portions to be transmitted to the client (e.g.,
a top level view of the page). This can potentially speed up
Web access for clients with limited bandwidth and main mem-
ory, such as PDAs. Structured caching is related to the use of
B-tree structures in databases, which minimize the number of
disk accesses required to retrieve data for a query.

We propose to study each caching strategy empirically to
determine the beststaticadaptation for a particular Web server
configuration.A priori knowledge of the content provided by
a Web system may determine which strategy is best to ap-
ply. However, there are opportunities for additional adaptivity
within each type of caching strategy, as follows:

� Cache replacement strategies like LRU and LFU must de-
termine when it is suitable to remove files from the cache.
Using dynamicadaptation to determine this threshold
may provide better performance than using a fixed one
[9].

� Hinted caching requires the gathering of statistics by the
server, which may alter decisions about which pages to
pre-cache.

� Structured caching involves detecting resource limita-
tions on the client that may benefit from a page outline
rather than the entire document.

We indend to show that by studying the impacts of the strate-
gies under different conditions, and incorporating the knowl-
edge into the JAWS framework, it is possible for a Web server
to apply the best possible caching strategy for a given situa-
tion.

6



2.2.4 Summary of Adaptive Strategies for Web Servers

Many of the adaptive strategies described above have been
studied extensively in isolation. However, the research liter-
ature contains relatively little empirical analysis on the rela-
tive performance of complete Web systems implemented using
highly configurable adaptive strategies. Moreover, we believe
there is a need for comprehensive understanding ofwhento
apply various combinations of adaptive strategies.

The JAWS framework will facilitate this understanding by
holding the server framework constant and systemtically ap-
plying and testing different strategies under varying load con-
ditions on high-speed networks. Furthermore, we will develop
profiles that can predict the best combinations of strategies to
use in different Web server conditions. By incorporating these
profiles into the framework, JAWS will support the automat-
ically configuration of optimal combinations of concurrency,
I/O and, caching strategies.

3 Research Objectives

Parallelization
Delayering and

Specialized
Hardware

Distributed
Servers

Persistent
Connections

Protocols

Concurrency
Strategy

Caching file
Information

Virtual

Adaptive

Client

Adaptive

Request
Handling

Parallelization

Graphics

Delayering and

HTTP Prioritized

Filesystem

Adapter

Network

Network
Adapter

OS I/O
Subsystem

Network
Adapter

OS I/O
Subsystem

...

GUI
Requester

Request
Lifecycle

HTML
Parser

GET /~jxh HTTP/1.0

HTTP
Server

Handlers

Dispatcher

...<H1>Welcome</H1>

Communication Protocol
e.g.,HTTP

Figure 2: Web System Overview and Server Optimizations

There are many levels at which research on Web server per-
formance can be conducted. Figure 2 illustrate an architec-
tural overview of a Web system and lists potential server-side
optimizations. Low-level solutions, such as transport protocol
optimizations [11] and specialized hardware [5], are beyond
the scope of our work. While these solutions can improve the
end-to-end performance of a Web system, they do not directly
solve the problem of Web server efficiency. Therefore, our re-
search will leverage off existing work in this field [2, 4, 5] and
will focus on the following tasks:

1. Implementing a high-performance Web server.This task
is partially completed, but further work is needed. The re-
search aspects to this work involve applying further adaptive
optimization strategies and empirically verifying the impact of
each strategy. The strategies to be studied include:

� I/O Strategies– Asynchronous, Synchronous, and Reac-
tive

� Caching Strategies– LRU, LFU, Hinted, and Structured

� Concurrency Strategies– Single threaded, Thread-per-
request, Thread-per-session (persistent connections), and
Thread pool

� Request Handling Strategies– Prioritized requests, Par-
allelized protocol processing, and Content negotiation

� Adaptive Protocols– Protocol negotiation (PEP), and Dy-
namic protocol pipelines

2. Developing a Web server framework.The purpose of the
framework is to allow other Web system developers to lever-
age the results of our work easily. Development of the Web
server framework will involve the following research and en-
gineering tasks:

� Identify re-usable architectural components, aided by the
use of design patterns as guides and document newly dis-
covered patterns.

� Isolate application-specific portions of the code behind
general interfaces to allow new applications to be created
more easily.

� Provide a GUI to interactively determine optimal com-
bination of optimization strategies, and strategy parame-
ters.

� Develop a suite of profiles for adaptive optimization
strategies.

� For a particular set of hardware characteristics (e.g., net-
work bandwidth, available memory, disk space, processor
speed), and OS features (e.g., Memory Mapping, Asyn-
chronous I/O), provide optimization strategies and pa-
rameter settings, based on empirical measurements.

� Provide a facility for monitoring server conditions so that
run-time changes may be made to the server’s behavior
in order to optimize performance.

The intended delivery dates for these tasks have been sum-
marized in Figure 3.

7



Mar July Aug Sept Oct Nov Dec Feb MarJan
1997 1998

AprApr MayMay JuneJune

Framework - decouple concurrency

Single CPU benchmarks

Benchmark I/O

NT benchmarks

HTTP/1.0

Caching strategies

HTTP/1.1

Framework - protocol processing/negotiation

Parallelize HTTP

Framework - other concurrency strategies

White-box analysis

WebSTONE

SPECweb96

Additional benchmarks

Multi-processor benchmarks

Additional benchmarks

Measure jitter

Prioritized request handling

Documentation and publication

Figure 3: Objectives timeline for progress toward dissertation

4 Concluding Remarks

The research presented in this proposal was motivated by a
desire to build high-performance Web servers. Naturally, it
is always possible to improve performance with more expen-
sive hardware (e.g.,additional memory and faster CPUs) and a
more efficient operating system. However, our research objec-
tive is to produce the fastest server possiblefor a given hard-
ware/OS platform configuration.

Our research to date has focused on prototyping JAWS and
empirically measuring its performance relative to other Web
servers over high-speed ATM networks. Servers that per-
formed poorly were studied with whitebox techniques (such
as Quantify ) to discover sources of bottlenecks. Servers
that performed well were also analyzed thoroughly to deter-
mine what they did right. We found that file system operations
incur significant overhead, which JAWS alleviates by apply-
ing perfect hashing and other server-side caching techniques.
These results corroborate results from other research on Web
servers [12, 21, 9].

When network and file I/O are held constant, however, the
largest portion of the HTTP request life-cycle is spent in dis-
patching the request to the protocol handler that processes the
request. The time spent dispatching is heavily dependent on
the choice of the concurrency and event dispatching strategy.
Therefore, we subjected JAWS to varying load conditions and
compared the relative performance between combinations of
thread pool and thread-per-request concurrency strategies with
asynchronous and synchronous I/O strategies on Windows NT
4.0 [8] and Solaris 2.5 [7].

Our preliminary results demonstrate that thread pool com-
bined synchronous I/O performed the best for smaller files.
However, on Windows NT 4.0, thread pools combined with
the asynchronousTransmitFile call performed substan-
tially better for large files. However,TransmitFile ap-

peared more sensitive to changes in server hit rate with respect
to latency than the other methods.

In addition, our results demonstrate how dynamically adap-
tive Web servers can provide substantial performance im-
provements. Thus, we propose an in-depth study of the im-
pacts from applying different combinations of optimization
strategies for concurrency, I/O dispatching, and caching tech-
niques. In addition, we propose to test and analyze the con-
ditions for when particular combinations are most effective.
Once we create these performance profiles, we propose to re-
fine the JAWS framework to develop high-performance Web
systems that can adapt dynamically to changing server load
conditions to provide optimal performance.

References
[1] Jussara Almeida, Virǵilio Almeida, and David J. Yates. Measur-

ing the Behavior of a World-Wide Web Server. Technical Re-
port TR-CS-96-025, Department of Computer Science, Boston
University, October 29 1996.

[2] M. Stella Atkins, Samuel T. Chanson, and James B. Robinson.
LNTP – An Efficient Transport Protocol for Local Area Net-
works. InProceedings of the Conference on Global Communi-
cations (GLOBECOM), pages 705–710, 1988.

[3] Kenneth P. Birman and Robbert van Renesse. Software for Re-
liable Networks.Scientific American, May 1996.

[4] Ramon Caceres. Efficiency of ATM Networks in Transporting
Wide-Area Data Traffic, December 1991. Submitted to Com-
puter Networks and ISDN Systems.

[5] Zubin D. Dittia, Guru M. Parulkar, and Jr. Jerome R. Cox. The
APIC Approach to High Performance Network Interface De-
sign: Protected DMA and Other Techniques. InIEEE INFO-
COM ’97, Kobe, Japan, April 1997. IEEE Computer Society
Press.

[6] Tim Harrison, Irfan Pyrarli, Douglas C. Schmidt, and Thomas
Jordan. Proactor – An Object Behavioral Pattern for Dispatch-
ing Asynchronous Event Handlers. InThe 4

th Pattern Lan-
guages of Programming Conference, September 1997.

[7] James Hu, Sumedh Mungee, and Douglas C. Schmidt. Prin-
ciples for Developing and Measuring High-performance Web
Servers over ATM. InSubmitted for publication (Washington
University Technical Report #WUCS-97-10), February 1997.

[8] James Hu, Irfan Pyrarli, and Douglas C. Schmidt. Measuring
the Impact of Event Dispatching and Concurrency Models on
Web Server Performance Over High-speed Networks. InSub-
mitted to the 2nd Global Internet Conference. IEEE, November
1997.

[9] Evangelos P. Markatos. Main memory caching of web docu-
ments. InProceedings of the Fifth International World Wide
Web Conference, May 1996.

[10] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman.The Design and Implementation of the
4.4BSD Operating System. Addison Wesley, 1996.

8



[11] Jeffrey C. Mogul. The Case for Persistent-connection HTTP. In
Proceedings of ACM SIGCOMM ’95 Conference in Computer
Communication Review, pages 299–314, Boston, MA, USA,
August 1995. ACM Press.

[12] Jeffrey C. Mogul. Hinted caching in the Web. InProceedings
of the Seventh SIGOPS European Workshop: Systems Support
for Worldwide Applications, 1996.

[13] Nancy J. Yeager and Robert E. McGrath.Web Server Tech-
nology: The Advanced Guide for World Wide Web Information
Providers. Morgan Kaufmann, 1996.

[14] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt.
Design and Performance of an Object-Oriented Framework for
High-Performance Electronic Medical Imaging. InProceed-
ings of the2nd Conference on Object-Oriented Technologies
and Systems, Toronto, Canada, June 1996. USENIX.

[15] Douglas C. Schmidt. GPERF: A Perfect Hash Function Genera-
tor. In Proceedings of the2nd C++ Conference, pages 87–102,
San Francisco, California, April 1990. USENIX.

[16] Douglas C. Schmidt. ACE: an Object-Oriented Framework
for Developing Distributed Applications. InProceedings of
the6th USENIX C++ Technical Conference, Cambridge, Mas-
sachusetts, April 1994. USENIX Association.

[17] Douglas C. Schmidt. Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing. In James O. Coplien and Douglas C. Schmidt, editors,Pat-
tern Languages of Program Design. Addison-Wesley, Reading,
MA, 1995.

[18] Douglas C. Schmidt. Applying Design Patterns and Frame-
works to Develop Object-Oriented Communication Software.
In Peter Salus, editor,Handbook of Programming Languages.
MacMillan Computer Publishing, 1997.

[19] W. Richard Stevens.UNIX Network Programming, Second Edi-
tion. Prentice Hall, Englewood Cliffs, NJ, 1997.

[20] David Strom. Web Compare. Available from
http://webcompare.iworld.com/, 1997.

[21] Stephen Williams, Marc Abrams, Charles R. Standridge,
Ghalleb Abdulla, and Edward A. Fox. Removal Policies in Net-
work Caches for World Wide Web Documents. InProceedings
of SIGCOMM ’96, pages 293–305, Stanford, CA, August 1996.
ACM.

9


