Analyzing Mobile Application Software Power
Consumption via Model-Driven Engineering

Chris Thompson, Jules White, and Douglas C. Schmidt
Vanderbilt University, Nashville, TN USA
Email: {chris, jules, schmidt}@dre.vanderbilt.edu

Insitute for Software Integrated Systems

Smartphones are mobile devices that travel with their osvaad provide increas-
ingly powerful services. The software implementing theseises must conserve bat-
tery power since smartphones may operate for days withaog lbecharged. It is hard,
however, to design smartphone software that minimizes peaesumption. For ex-
ample, multiple layers of abstractions and middleware sftvieen an application and
the hardware, which make it hard to predict the power consiomf a potential ap-
plication design accurately. Application developers nthstefore wait until after im-
plementation (when changes are more expensive) to detetirérpower consumption
characteristics of a design.

This paper provides three contributions to the study of pglmodel-driven en-
gineering to analyze power consumption early in the liféeyd smartphone applica-
tions. First, it presents a model-driven methodology fauaately emulating the power
consumption of smartphone application architecturesoisgdt describes the System
Power Optimization Tool (SPOT), which is a model-drivenlttihat automates power
consumption emulation code generation and simplifies amalfhird, it empirically
demonstrates how SPOT can estimate power consumption hnwi3-4% of actual
power consumption for representative smartphone apitst

1 INTRODUCTION

Emerging trends and challengesSmart devices, such as smartphones and tablet com-
puters have been steadily increasing in capabilities anfdimeance. Modern devices
commonly contain multi-core CPUs running at clock speedi over 1GHz. For ex-
ample, the Galaxy Nexus from Google contains a 1.2 GHz, dowd-processor with
1GB of RAM and other Android smartphones now have quad-caregssors.

The increased performance of smart devices comes at a owstyhr. Due to their
mobility, smartphones and tablets run exclusively on bat@wer, so every increase
in performance must be balanced with an increase in battgrgaity to maximize the
time between charges. The design of applications runnirigedevice can also impact
battery life,e.g, frequently sampling the GPS or making network requestgoasume
a significant amount of power.

To balance functionality with power consumption effeclyyelevelopers must un-
derstand various trade-offs. A key trade-off is betweeriquarance and battery life, as
well as the implications of the application and infrastuetsoftware architecture on
power consumption. Functional requirements, such as mimrapplication response
time, can conflict with power consumption optimization need

For example, a traffic accident detection application [28khbe able to detect sud-
den accelerations indicative of a car accident. To deteslaration events that indicate
accidents, the application must sample device sensorsenfoim numerous calcula-
tions at a high rate. Conflicts occur betweenfilnectional requirementée.g, the min-
imum sensor sampling rate needed to accurately detecteats)danchon-functional
requirementge.g, sustaining operations on the mobile device without fredibattery
recharging).

Due to complex middleware, operating system (OS), and rm&tng layers, it is
hard to predict the effects of application software ardftitee decisions on power con-
sumptiona priori, i.e., without actuallyimplementinga design, which makes it hard
to analyze the power consumption of design until late in tnetbpment cycle, when
changes are more expensive [10]. For example, a developeeleet to use HTTPS
instead of HTTP to satisfy a security requirement by makimgniomiunication between
the application and server more confidential. It is cursehdird, however, to predict
how much additional power is consumed by the added encryjatnal decryption of
data without actually implementing the system.

It is also hard to quantify the trade-off between power comstion and security,
as well as many other design decisions. Moreover, certaigdelecisions, such as
data transmission policies.g, should an application transmit immediately or wait for
a specific medium like a Wi-Fi or 3G cellular connection) asechto analyze early in
the design cycle, due to their variability. For example rifegoplication only sends data
intermittently, it may be beneficial to transmit small amtsuaf data over cellular con-
nections due to the decreased power consumption of 3G aedahnection compared
to Wi-Fi [1]. If a large amount of data must be sent, howevss,tbtal time required to
transmit it over 3G may negate the benefit of using the lesepoansumptive connec-
tion. The cellular connection will take longer to transrhi¢ data, therefore, which may
in turn consume more total power than the Wi-Fi radio thattcansmit the data faster.

Solution approach— Power consumption emulation of mobile software archi-
tectures with model-driven testing and auto-generated coel By usingModel-driven
Engineering(MDE) [22], we allow developers to specifydgomain-specific modeling
languag€DSML) [17] to capture key software architecture elemeetated to power
consumption. Developers can then use automated code ¢enseti@ produce emula-
tion code from this model. Developers can also execute thergéed emulation code
on target hardware, collect power consumption informatérd analyze the applica-
tion’s power consumption prior to actual deployment.

This emulation code allows developers to analyze propostdare architectures
prior to investing significant time and effort in a completeplementation of the de-
sign. The auto-generation of emulation code also enableslajfgers to compare a
range of different designs quantitatively during initidigses of a development pro-
cess [9], which allows developers to select designs thafg#toth functional and non-
functional requirements while minimizing overall powemsomption. This analysis
can also occur early in the software lifecycked, at design time), thereby avoiding
costly changes to optimize power consumption later doveastr.

This paper describes ti8ystem Power Optimization Tq@POT), which uses MDE
techniques to analyze the power consumption of mobile soéwarchitectures. SPOT

allows developers to create high-level models of candisiafitevare architectures using
the System Power Optimization Modeling Langug§®OML) that capture key soft-
ware components related to power consumption. SPOT geseratulation code from
the model that can be executed on target devices.

As the SPOT-generated emulation code runs it is instrurdeateollect power con-
sumption data. This data can later be downloaded and anbbfftime. Developers can
apply this emulation and analysis cycle to understand powaesumption implications
of their designawithout expensive and time consuming manual programming using
third-generation languages, such as C#, C/C++, and Java.

SPOT's generated emulation code mimics key power-congyaspects of a pro-
posed software architecture. Key power consumptive compsnof mobile applica-
tion software architectures include GPS, acceleratioigntation, sensor data con-
sumers, and network bandwidth consumers [21]. FocusingiSiPQhese components
allows developers to model the most significant power exiperes of their applica-
tions. Moreover, as applications are constructed, thergég emulation code can be
replaced incrementally with actual application composgallowing developers to re-
fine the accuracy of the analysis continuously throughaistiftware lifecycle.

This chapter extends our prior work on model-driven appilicepower consump-
tion analysis [25] by providing the following new contrilmns: (1) surveying related
work on optimizing power consumption, domain-specific pogmimizations, software-
based power consumption estimation, and mathematical pestienation models (2)
quantitatively analyzing the accuracy of a SPOT model baseanly key power-
consuming components and showing how modeling only poweswming components
allows developers to avoid the accidental complexitiesarf-power consuming archi-
tectural aspects, (3) discussing the implications of thepéfied model on application
software architecture and design, (4) empirically evalythe effects of design deci-
sions, such as sensor sample rate, on overall applicatimerpconsumption, and (5)
describing how data produced by SPOT can be used to refinepdimtize application
power consumption.

Paper organization. The remainder of this paper is organized as follows: Sec-
tion 2 compares SPOT with related work on optimizing powerstonption; Section 3
outlines a motivating example we use to showcase and eeaBROT's functionality
throughout the paper; Section 4 summarizes the challersgesiated with predicting
power consumption of mobile application software architegs; Section 5 describes
the structure and functionality of SPOT and SPOML,; Secti@ntpirically evaluates
SPOT'’s power prediction capabilities and shows how its rfingerimitives and em-
ulation infrastructure can accurately predict power comstion for representative mo-
bile applications on the Android smartphone platform; aadt®n 7 presents conclud-
ing remarks.

2 Survey of Related Work

This section provides a survey of prior work that compare®@BRith related research
in the following categories:

— System execution modeling tooJsvhich model and evaluate performance related
information early in an application’s development progcess

— Domain-specific power optimizations which are approaches for reducing the
power consumption of specific application functions, sucheo-localization,

— Power instrumentation and mathematical estimation of power consumption,
which attempt to directly measure or predict power consionif an application,

— Hardware-based power consumption optimizationwhich involves specialized
firmware or low power physical hardware,

— Network protocol optimizations are made in the network stack to reduce the over-
all amount of data transmitted as well as contention on tlysiphl link,

— Post-implementation power consumption analysisequires developers to com-
pletely implement an application before analyzing its poessumption.

— Model-driven engineeringwhich uses domain-specific modeling languages and
code generation to reduce development time and cost.

As discussed below, these methods of power consumptiomizatiion are effective
at reducing overall power consumption and are complimgrtaSPOT. SPOT does
not optimize the power consumption of an application, bthigaallows developers to
analyze the power consumption of key power consuming el&wédmn architecture at
design-time.

System execution modeling toolS'heComponent Utilization Test SUfEUTS) [9]
is a system execution modeling tool [23] that allows devetsio model key architec-
tural elements of distributed systems that determine padace. CUTS allows devel-
opers to model a distributed software architecture and glemerate emulation code to
predict performance. Although CUTS and SPOT share commoradespecific mod-
eling patterns, CUTS’s modeling abstractions focus onguerénce-related aspects of
distributed systems, whereas SPOT’s modeling abstractmous on important power
consumers in mobile applications, such as GPS usage. Mardbis not possible to
capture power consumption information from CUTS emulatiode or to generate mo-
bile emulation applications for Android or iPhone.

Domain-specific power optimizations.Prior work has examined domain-specific
power optimizations that are geared towards a specific tfpeftware feature. For ex-
ample, Kjasrgaard et al. [12] have evaluated specializgdogehes for optimizing the
power consumption of location-based services using bagimtchnd server modifica-
tions. They propose lowering the accuracy of position imfation based on application-
specific information, such as the current zoom level of a per optimizations they
propose include caching position and then continuing tontghat position as long as
the device is expected to be within a specified thresholdaifedached position.

Many optimizations proposed by Kjasrgaard et al. are obththrough power pro-
filing of applications. SPOT is complementary to this workl gmovides tools for pro-
filing software applications early in their lifecycle. SP®oal is to aid developers in
discovering the types of power optimization strategiexdeed by Kjasrgaard et al.

Another area of mobile power consumption that studied byadaiajan et al. [24]
is the energy expended downloading and rendering web pages amobile browser.
They have conducted extensive instrumentation of mobilécde and webkit-based
browsers to profile exactly how much energy is consumed dwath phase of access-
ing a mobile site. For example, they measure the variadslitif energy consumption

across popular sites, such as Apple and Amazon, as well dsriexphow images,

javascript, and overall rendering consume power on thecdeviheir research high-
lights the importance of known optimizations, such as mination of javascript files

and scoping of CSS to a particular page, that are not alwaydogned as they should
be by developers.

The work by Thiagarajan et al. is synergistic with SPOT arak#oat power con-
sumption within an individual existing application on a @y SPOT also facilitates
the collection of power consumption data from applicatidng earlier in the design
cycle when the implementation is may not be complete. Baitir ppproaches aid de-
velopers in improving design decisions to reduce mobile grovonsumption but are
focused on different domaing.g, mobile website design vs. early analysis of mobile
applications).

Context-aware power optimizations have been proposeckfsas networks to en-
sure that sensors are only sampled in contexts where it nsekag. Herrmann et al. [8]
propose using optimizations, such as detecting indoor atdbor transitions to deter-
mine when an outdoor sensor should be used. They demortsiraigh modeling that
these types of context-based optimizations can have signifpower savings. SPOT
helps evaluate these types of context-aware power opfiimiaby allowing develop-
ers to model architectures that exhibit different optirtizmas and experiment with them
early in the design cycle.

Due to the high power consumption of many mobile sensorghanonportant area
of research involves optimizing sensor sampling rates andstto minimize power
consumption. For example, Wang et al. [28] use Markov motdetietermine the best
sampling approaches for sensor networks based on smaegphmese approaches are
orthogonal to SPOT and focus on a different aspect of powémarations. SPOT fo-
cuses on generating applications that behave like the ptharchitectures of specific
mobile applications to facilitate early experimentatiow aeasoning about power con-
sumption.

Power instrumentation. A challenge on mobile devices is accurately collecting de-
tailed and real-time power consumption information withexternal hardware. Yoon et
al. [32] have proposed a more accurate and real-time framkef@pmonitoring power
consumption on Android devices. Their approach, called2qmpe, intercepts key sys-
tem calls to the underlying operating system, such as aalise Android Binder, and
then use information about the types and frequency of callsgomade to infer power
usage.

AppScope could be used to further improve the power consompiredictions
made by SPOT. In particular, SPOT focuses on synthesizingjlenapplication code
to run experiments that mimic how a particular mobile agglan architecture will
behave. These synthetic applications can then be used fiteggiee app and collect
power consumption information. Yoon et al.'s framework Icble used in place of the
Android APIs leveraged by SPOT to improve the fidelity of th@ver consumption
data obtained from running the synthetic applications.

Mathematical estimation of power consumption Mathematical models of power
consumption have been developed to help estimate the cosiraf smartphone sen-
sors, such as GPS, and processing capabilities. Kim etldlhflve developed a math-

ematical model for estimating the power consumption of $pmames with multicore
CPUs. These types of mathematical analyses share a similao SPOT and attempt
to provide early prediction of power consumption beforeithplementation of an ap-
plication may be completely ready. SPOT, however, assuimagsréal-world power
consumption may vary substantially between devices anddepgnd on application-
specific design details.

Hardware-based power optimizations Conventional techniques for reducing mo-
bile device power consumption have focused on hardwarerowfire-level modifica-
tions to achieve the target consumption [21]. These teclasigre highly effective, but
are limited to environments in which the hardware can be freatlby the end user or
developer. Moreover, these modifications tend to resultigtaly coupled architecture
which makes them hard to use outside of the context in whiely there developed.
In other words, a solution might reduce power consumptiarofe application or in
one environment, but may not have the same effect if any aitlagsumptions change.
Moreover, such modifications are typically beyond the saafpgoftware engineering
projects and require substantial understanding of lowetlsystems.

In some instances, hardware-level modifications can dgthiait power consump-
tion by increasing overhead. These techniques are alsoldgefeducing overall power
consumption but do not help in power consumption analysisifnecessary when de-
veloping power-conscious applications. SPOT is compliigrto these approachesin
that developers can use SPOT to identify the most effecteinat to minimize power
consumption without requiring extensive hardware knogéedr restricting the opti-
mizations a single hardware platform.

Network protocol and interface optimization. Due to the limited battery power
available to mobile and embedded systems, much prior wasKd@used on optimiz-
ing system power consumption. In particular, network ifaegs consume a large por-
tion of overall device power [13], so reducing the power eonption of networking
components has been a research priority. Ultimately, theuatof power consumed
is directly proportional to the amount of data transmittéfi [n some instances re-
quire 100 times the power consumed by one CPU instructiorattsinit one byte of
data [18]. The power consumption of the network interfagetbas be reduced by re-
ducing the amount of data transmitted. Moreover, utiliziihC protocols that reduce
contention can significantly reduce power consumption\Mhile MAC-layer modi-
fication is effective, it is typically beyond the scope oftsadre-engineering projects,
which is common with mobile application development.

Using a custom MAC protocol or specifically selecting a pxesting one based on
the needs of the network may be possible when designing arausgnsor network,
it is not possible when developing an application for a pasteng platform, such as
Android. Similarly, other work [19] achieved significant\yper reductions by using
middleware to optimize the data transmitted. These appescequire both the de-
vice and any access points to which it connects to impleniensame MAC protocol,
which is infeasible for mobile application developers. €&tiwork accomplished similar
goals through transport layer modifications [15], but thesdimitations apply as with
modifications to the MAC layer.

SPOT seeks to accomplish similar goals by modifying the ttatzssmitted by the
application layer, rather than attempting to modify theenhydng network stack. SPOT
helps developers analyze the data they transmit to maximieeghput of relevant data
(e.g.actual data versus markup or framing overhead) therebynegipower consump-
tion. In addition, SPOT can function in a complimentary rallowing developers to
analyze the power consumption of network protocol optitinizes to identify the most
effective configuration.

Post-implementation power consumption analysisPrevious work [5] not only
identified software as a key player in mobile device poweiscomption €.g, Symbian
devices), but also sought to allow developers to analyzeoher consumption of ap-
plications during execution. Moreover, other work [16]limgd a similar approach to
analyze the power consumption of sensor nodes in a wiredesosnetwork.

While post-implementation power consumption analysis mavide highly accu-
rate results, it suffers from the pitfalls of post-implertaion testing, including in-
creased cost of refactoring if problems are discoveredr@egmt costly post-implementation
surprises, SPOT allows developers to analyze designsebaigrcode is written. It also
allows them to perform continuous integration testing tigio the use of custom code
components to further refine the accuracy of the model adafmvent progresses.

Model-driven engineering.Modeling and code generation have been combined in
a number of model-driven engineering [22] approaches taaethe number of devel-
opment errors and required manual code creation. Prior vasknvestigated environ-
ments, such as GME [17] and GEMS [31], for rapidly creatinghdm-specific model-
ing language tools and code generation infrastructure révag GME and GEMS are
generic modeling platforms for creating domain-specifiglaages and tooling, SPOT
provides a specific domain-specific language targeted tddh®in of early analysis of
mobile architecture power consumption. SPOT builds upermtior work and provides
a specific instantiation of the concepts and new and noviehtgaes targeted at mobile
power consumption.

3 Motivating Example: the WreckWatch Case Study

This section describe#/reckWatcH29], which is an open-souréenobile application
we built on the Android smartphone platform to detect autbilecaccidents. We use
WreckWatch as a case study throughout this paper to denatadtey complexities
of predicting the power consumption of mobile software @egftures. As shown in
Figure 1, WreckWatch operates by (1) monitoring smartpts@msors (such as GPS re-
ceivers and accelerometers) for sudden acceleratiornétatien events that are indica-
tive of an accident. Data about the event are then (2) uptbtala remote server over
HTTP where first-responders and/or other motorists cansadte information via a
web browser or Android client. WreckWatch allows bystaisd8) to upload images of
the accident to the same web server, thereby increasingftreniation first-responders
possess before arriving at the scene.

Information, such as images of the accident and force of angaovides first-
responders with immediate knowledge of an accident. It aészks to provide them

1 WreckWatch is available fromuphone. googl ecode. com

« B QH® 3:46pm

i
® Wreck Image Options

View Images

Upload Image

Cancel

(3) Users can upload or view
images of the wreck

Fig. 1: WreckWatch Operation

with richer situational awareness to better prepare foditams at the accident scene.
Moreover, accident location information helps alleviatégmtial congestion due to an
accident by providing motorists a means to immediatelytifiepotential areas of con-
gestion and avoid the area altogetherg(this accident location information can be
combined with a navigation package, such as the Google M&jsté alter routing
information dynamically so motorists can avoid the acctdecation). When an acci-
dent occurs, both first-responders and emergency contestsisd by accident victims
can be notified via integrated VoIP infrastructure, as welbg SMS messages and/or
email.

To detect traffic accidents accurately, WreckWatch rungicoausly as a back-
ground service and continuously consumes a great deal efemometer and GPS data.
The application must therefore be conservative in its pavegrsumption. If not de-
signed properly, WreckWatch can significantly decreaseatpinane battery life.

4 Challenges of Designing Power Conscious Mobile Applicatns

This section describes the challenges associated witHajerg power-aware mobile
software, such as the WreckWatch application describeddti& 3. High-level mobile
application development SDKs, such as Google Android orlédpphone, simplify
mobile application development, but do not simplify powensumption prediction
during application design. In fact, the abstractions presethese SDKs make it hard
for developers to understand the power implications ofvgafé architecture decisions
until their designs have been implemented [20], as destiib8ection 4.1. Interaction
with sensors, such as accelerometers or GPS receivers @vmatkateraction, can also
result in a significant amount of power consumption, as dlesdrin Sections 4.2 and
4.3.

4.1 Challenge 1: Accurately Predicting Power Consumption bFramework API
Calls

Each line of code executed results in a specific amount of poaresumed by the hard-
ware. In the simplest case, this power consumption results & small series of CPU
operations, such as reading from memory or adding numbesarhe cases, however,

a single line of code can result in a chain of hardware inteyas, such as activation
of the GPS receiver and increasing the rate at which the séseedrawn. Moreover,
although the higher levels of abstraction provided by modenartphone SDKs make
it easier for developers to implement mobile applicatioitveare, they also complicate
predictions of the effects on the hardware.

For example, WreckWatch heavily utilizes the Google Maps &l the “MyLoca-
tion” map overlay, which provides end users with a markeidatihg their current GPS
location. The use of the “MyLocation” is typically acconmgiied with fewer than 10
lines of code, but results in substantial power consumpfibis is because the overlay
is redrawn at a high rate to achieve a “flashing” effect, armhbee the overlay enables
and heavily utilizes the GPS receiver on the device, whicthér increases power ex-
penditure. It is hard to predict how using arbitrary API sauch as this overlay, will
affect application power consumption without implemegtan particular design and
testing it on a particular target device.

This abstraction in code makes power-consumption anabyserbitrary segments
of code hard. Predicting power usage from high-level desigstractions, such as a
UML diagram, is even harder. Section 5.3 describes the MDOesnulation approach
we use to address this challenge.

4.2 Challenge 2: Accurately Predicting Power Consumption ©bSensor Usage
Architectures

In applications utilizing sensor data, the most accurats@edata is obtained by sam-
pling as often as possible. Sampling at high rates, how@venys high power con-
sumption [14] by not allowing sensors to enter low power nsoded by increasing
the amount of data processed by applications. Reducingatingle rate can decrease
application power consumption considerably, but also cedaccuracy. The trade-offs
between power consumption and accuracy at a given sampltecare hard to deter-
mine without empirical tests on a target device due to thé&-diggree of layering in
modern smartphone APIs and system architectures.

For example, WreckWatch was originally designed to col@etS data every 500
milliseconds and consume accelerometer data at AndroiddgfinedNORMAL rate
setting. During the development of WreckWatch, it was cliat reducing Wreck-
Watch's GPS sampling rate would reduce overall power copsiom, but it was un-
clear to what degree. Moreover, it was hard to predict whaipda rate would provide
sufficient accuracy and still allow the phone to operate forstbetween charges. Sec-
tion 5.2 describes how we use automatic code generatioretiecemulated applica-
tions that accurately analyze the power consumption of didate sensor utilization
architecture without incurring the substantial time arfdrtfo manually implement the
architecture.

4.3 Challenge 3: Accurately Assessing the Effects of Diffent Communication
Protocols on Power Consumption Prior to Implementation

Each application and network communication protocol hapexific overhead asso-
ciated with it and can result in significant power consumpfig]. Certain protocols

require more development overhead to implement, but havedatime overheade(g.
bandwidth consumption, message processing time, eta.pxammple, communicating
with UDP packets requires implementing flow control, erretettion, etc., whereas
TCP communication requires setup and teardown time for comication channels, as
well as the processing and data associated with these mpexan the form of addi-
tional protocol message overhead and processing logic.

More advanced and robust protocols, such as HTTP, are @¢adise as commu-
nication protocols and are more attractive to developespitke the increased over-
head [2]. For example, communicating over HTTP simplifieslashing a commu-
nication channel between client and server. There are aisty fibraries available to
extract data from an HTTP message. HTTP supports a greabtigaictionality that
may not be necessary for a particular application, howewetusing this functionality
incurs extra overhead that consumes more power.

For a small number of messages the overhead of HTTP willlikele little im-
pact on application power consumption. With large numbérsperations, however,
the overhead of HTTP can have a significant impact on poweswaption. It is hard
to determine earlyd.g, at design time) in an applications lifecycle, however, tbis
overhead will affect power consumption and whether the remobmessages transmit-
ted will be substantial enough to impact power consumptignificantly. This chal-
lenge is exacerbated if certain network operations consume power than others,
e.g, receiving data often consumes more power than transonitia [27].

For example, to provide the most accurate situational avess®to first responders—
and provide the most accurate congestion information tonsis—the WreckWatch
application must periodically request wreck informatioonh the central web server.
These updates must be done periodically and were origimaignded to run over
HTTP. Using HTTP results in a significantly less developéorébut results in a con-
siderable amount of communication overhead from the uyitheylTCP and HTTP pro-
tocols, which ultimately transmits substantial amountdath that have no relevance to
the application. It is hard to determine at design time if¢tibis additional data trans-
mission will significantly impact power consumption. Seatb.2 shows how we used
MDE code generation to implement and analyze potential conication protocols
rapidly.

5 The System Power Optimization Tool (SPOT)

This section describes the structure and functionalitheBystem Power Optimization
Tool (SPOT), which is an MDE tool that allows developers to modseptial mobile
application software architectures to predict their poe@rsumption, generate code to
emulate that architecture, and then systematically aralgzpower consumption prop-
erties. SPOT addresses the challenges described in Sédiipallowing developers to
understand the implications of their software architeetlgcisions at design time.
SPOT's development process enables developers to genistzé high-level mod-
els rapidly, as shown in Figure 2. These models can then liktasmalyze the power
consumption of mobile application software architectustep 1 of Figure 2). SPOT
thus helps overcome key challenges of predicting powerwuopsion by generating

(1}iDsveloper, (2) Instrumented code
creates visual model

of application is generated from
architecture model

‘ Power Consumption
" Report is Generated to

(3) Code is run on
physical device
@m [Refine Architecture
™ [E— Wt

(Optional)
Developer replaces
model elements
with specific code

Fig. 2: SPOT Modeling and Analysis Process

device logic that can be used to gather power consumptiarnrdtion on physical
hardware during early phases of an application’s softwiggeyicle, which helps mini-
mize expensive redesign/refactoring costs in later phases

SPOT uses models shown in Figure 2 to generate instrumemteldion code for
the given platform or device (step 2 of Figure 2). When exedwn actual hardware
(step 3 of Figure 2), this generated code collects powerwopsgon and system state
information. This power consumption data can then be dosg#d and analyzed offline
to provide developers with application power utilizatidrkay points throughout the
lifecycle and execution path (step 4 of Figure 2).

SPOT also supports the use of custom code modules. Thesdsnatider devel-
opers to replace automatically generated code with acphmication logic while still
providing the same analytical capabilities available whsimg generated code. SPOT
therefore not only allows developers to perform analysilyéathe development cycle,
but also to perform continuous integration testing thraugldevelopment.

SPOT is implemented as a plugin for the Eclipse IDE. Its metpower consump-
tion emulation and capture infrastructure is built usingdafined, user-configurable
classes that emulate specific power consuming componerts,as GPS data con-
sumers. This infrastructure captures power consumptif@mrimation during executing
by using the device’s power API. For example, power dateectibn on the Android
platform is performed by interfacing with the OS applicatigower APl,i.e., the An-
droid power consumption API as implemented by the “Fuel@iagplication.

The remainder of this section describes how SPOT’s DSML |atianm code gener-
ation, and performance measurement infrastructure helication developers address
the challenges presented in Section 4. Section 5.1 des@POT’s modeling language,
SPOML, Section 5.2 describes how SPOT generates emulaiiie end Section 5.3
describes how SPOT analyzes and evaluates emulation coidg dxecution.

5.1 Mobile Application Architecture Modeling and Power Consumption
Estimation

SPOT describes key power-consuming aspects of a mobileapph via a DSML with
specific language elements. This DSML allows developerpégify their software ar-
chitecture visually with respect to power consuming congmis, as shown in Figure 2.

Prior work [25, 29, 26] showed how the following components aften significant
power consumers in mobile applications:

e CPU consumersare used to represent CPU-intensive code segments such as ca
culations on sensor data. Developers can specify the anod @RU time that should
be consumed by specifying the number of loop iterations afleee root calculation
that should be run. For example, WreckWatch developers adehthe mathematical
calculation time to determine the current G-forces on thangh

e Memory consumersgenerate dynamically allocated memory. These consumers
allow developers to analyze not only the power consumed hyaboperations, but
also their impact (such as the frequency and duration ofaggalzollector sweeps) on
garbage collection. Developers can specify the amount afiongto consume as bytes.
For example, WreckWatch developers can model the effectaaifing accidentimages
of varying sizes.

e Accelerometer consumerswhich interact with system accelerometers and con-
sume accelerometer data. These consumers can be configurtiize the full range
of system-supported sample rates. For example, WreckWlatagtopers can model the
sensor interaction needed to accurately detect car adsiden

e GPS consumerdnteract with the device’s GPS receiver. These consumers ca
be configured with custom sample rates as well as a minimutardis between points,
i.e., the sensor will only return a data point if the distance lsemthe current point
and the last point is greater than a specified value. GPS nwersuallow developers
to analyze the impact of using a location service configaradin power consumption.
For example, WreckWatch developers use this capability adehhow polling for a
vehicle’s location at different rates impacts power congtiom.

e Network consumersemulate application network interaction by periodicalfns-
mitting and receiving data. Network consumers allow usessipply SPOT with sample
data that is then transmitted at the interval specified. kample, WreckWatch devel-
opers can provide a URI along with server and port infornmetidconfigure SPOT to
make a specific request. These consumers can also be codfiguneecute at varying
times to emulate periodic updates.

e Screen drawing agentautilize graphics libraries, such as OpenGL, to emulate a
graphics-intensive application, such as a game or strepwiieo to a first responder’s
WreckWatch client. Users can configure these consumersdwifgimg the types and
size of objects to draw on the screen, along with any transditions that should be
performed on the object. For example, WreckWatch devetopan use the drawing
agents to show how the use of images and video for situatiawaleness impacts
battery life.

e Custom code modulesllow developers to specify their own code to run against
the profiling package. This capability allows developermitend SPOT's functionality
to meet their needs, as well as incrementally replace théagimu code with actual ap-
plication logic as it becomes available. Replacing the e logic allows developers
to perform testing as development progresses and incrbasgcturacy of the evalu-
ation and analysis. For example, WreckWatch developersisarthese consumers to
include a service for uploading multimedia content abouaecident to a central web
server.

The metamodel for SPOT’s DSML, called tBgstem Power Optimization Model-
ing LanguaggSPOML), allows application developers to build softwarehitectural
specifications that determine power consumption from keygeaonsuming compo-
nents. SPOML was created using the metamodeling featurdseaBeneric Eclipse
Modeling System (GEMS) [30], which is a tool for rapidly geagng visual modeling
tools atop the Eclipse Modeling Framework (EMF). GEMS idthatop Ecore, which
provides metamodeling and modeling facilities for Eclif$e

Figure 3 shows SPOML's metamodel.

NetworkConsumer
UseWiFiOnly - Boolean
__ UseCellNetworkOnly - Boolean

" TransmissionScheme - Integer

__Service| Data - String

Opsy

SpotSesvice [GallbackDataPath [)/
v

ServiceToActivityDataPath
. f o
Spotactivity |EL <>

-
~.

“’*«,cgknudck ™

Fig. 3: SPOT’s Metamodel

The primary application serves as the root element of theain®&bwer consump-
tion modules can exist within eithexctivities (which are basic building block com-
ponents for Android applications and represent a “screerfview” that provides a
single, focused thing a user can do)sarvices(which are background processes that
run without user intervention and do not terminate when aliegtion is closed).

Each activity or service can contain one or more power coesurodeling ele-
ments described above. Developers can therefore emultgstiad decisions that they
make when designing a mobile device application, whichwadithem to emulate a wide
range of application software architectures. For exanfggire 4 shows a SPOML
model of the WreckWatch application’s sensor usage design.

AccelerationSevice [Service]

i

Fig. 4: WreckWatch Model

Acceleration and GPS consumers run in independent servitete the network
consumer runs in the application’s activity. This modelttsin an application that
monitors GPS and accelerometer values at all times regardfevhat the user is doing.
It only utilizes the network connection, however, when tiserthas the WreckWatch
application open and running.

5.2 Generating Software Architecture Emulation Code

Predicting the power consumption of an arbitrary desigrisitat is hard, as described
in Section 4.1. SPOT addresses this challenge by geneegipigation emulation code
automatically to execute on the underlying device hardwaROT’s automatic gener-
ation of emulation code allows application developers ttuoe the time required to
write enough code to analyze system power consumption aiedyr This emulation
code is instrumented so the architecture’s power expemrdittan be examined after a
test run.

In addition to instrumenting the code, SPOT has the potetttiapply the same
model for multiple target platforms, such as Android andoid, as long as config-
urable code is available for the power-consuming elemdihtis. emulation and analy-
sis cycle allows developers to observe the power consumpfitheir design very early
in the development cycle, as well as evaluate their softwlastgns across multiple
hardware configurations to assess how changes in hardwiact application power
consumption. For example, even though the Motorola Droitl @oogle Nexus One
both run the Android platform, each possesses key hardwtieeethces, such as the
type and size of the display, that impact power consumption.

The generated emulation code allows developers to addnessemaining chal-
lenges of selecting an optimal communication protocol gptihtizing sensor polling
rates, as described in Section 4. Generated emulation dodss @evelopers to evaluate
the power consumption of a potential design empiricallyheathan simply guessing its
power consumption or waiting until an application impleraion is complete before
running tests. Moreover, developers can quantitativelyare the power consumption
effects of choosing different networking protocols and eaaluate the power consump-
tion of different sensor sampling rates.

To accomplish this mobile software architectural emulatiSPOT uses a set of
predefined code blocks that can be configured at runtime forpepower consuming
operations. SPOT uses an XML configuration file to performmegessary configura-
tion and create an application that emulates the power copison of the desired soft-
ware architecture. To generate this XML configuration filBCF interprets the model
outlined in Section 5.1. Users of SPOT define the model andkwenfiguration pa-
rameters, and SPOT can then compile the model and paranmgteen intermediate
XML format which is utilized to configure prebuilt implemextions of each power
consuming element described in Section 5.1.

Figure 5 shows a sample of the XML configuration file generédedhe Wreck-
Watch model shown in Figure 4. The XML shown in Figure 5 reprgés a configuration
with two background services running an accelerometencoesand a GPS consumer.
The GPS consumer samples every 500 milliseconds, with amimiradius between
sample points set to 0. The accelerometer consumer is satrtpls at theNORMAL
rate, which is a constant defined by Android. There is alsot&@ar& consumer trans-
mitting sample data every 30 seconds and repeating infinitak network consumer is
configured to connect to a specific host on a specific port aliwbuthe HTTP protocol.

The predefined power consumers have configurable optiools ésthe sample rate
of the GPS and data to transmit over the network) providedhby<tML configuration
file. These power consumption elements are generic andcapjgito a wide range of

1 <?xml version="1.0" encoding="UTF-8"7?>

2 <spot>

3 <application package="org.vuphone.wwatch.android">
4 <activity>

5 <network delay="30" repeat="true"

6 host="dre.vanderbilt.edu" port="8080"

7 protocol="http">

a <! [CDATA[uri=/wreckwatch/notifications?type
9 =info&latbr=35458867&lonbr=-95189644&

10 latt1=36838778&lont1=-96683784&maxtime=0]]>
1 </network>

12| </activity>

13 <service process="main">

14 <gps sampleRate="500" precision="0" />

15 </service>

16 <service process="main">

17 <accelerometer sampleRate="NORMAL" />

18 </service>

19 <service class="org.vuphone.wwatch.android.media.
20 MediaUploadService" />

21 </application>

22| </spot>

Fig. 5: Sample WreckWatch Emulation XML

platforms, such as Android, iPhone, or BlackBerry. The pfieed power consumers
are implemented on the Android platform as follows:

e CPU consumersare implemented as a set of nested loops that perform basic
mathematical operations, such as square root calculaborrandomly generated data.
This module utilizes the CPU while minimizing utilizatioti other system resources,
such as memory that could skew power consumption informagor example, this
consumer uses primitive types to avoid allocating dynaméenory. Users can adjust
the length of the loops via a configurable parameter. Vareng device processors
result in same-length loops performing differently on diént devices, in a manner
similar to CPU-intensive algorithmic performance on esgdevices.

e Memory consumers are implemented by dynamically allocating custom ob-
jects that wrap byte arrays. To analyze the frequency ofaggtrollection, a Java
\WeakRef erence object is used to inform the garbage collector that they cameh
claimed, despite having active references within runnodgc The object’si nal i ze()
method (which is called immediately before the object idaiered by the Android
Dalvik virtual machine) is overridden to record the time aflgage collection, thereby
allowing developersto analyze the frequency of garbadedadn runs. Th&éakRef er ence
object will thus be reclaimed during every garbage coltectun.

Due to the limitations of the Android instrumentation AP&rigage collection and
memory usage must be inferred through analysis of the fregyuand duration of
garbage collection runs, rather than through direct powesgmption measurement.
Although this limitation prevents developers from inclugimemory statistics in the
data along with CPU, sensor, and network utilization, they still examine how their
design uses memory. Users can also configure the amount cdbmemd frequency of
allocation, as well as supply custom objects (such as Wretgh'6 image caches) to
use rather than the byte arrays used by default.

e GPS consumersare implemented by code that registers to receive locafmn u
dates from the GPS receiver at specific intervals. To emafaspplication’s interaction
with the GPS receiver properly, SPOT provides developetis all configuration op-
tions, such as polling frequency and minimum distance betwmoints, presented by
the Android GPS API. This configuration information—alonigfwgeneric sensor setup
and tear-down code—is then inserted into the appropriatgilon in the emulation ap-
plication.

e Accelerometer consumersare implemented using the configuration specified in
the XML file, along with generic setup code to establish a emtion to the appropri-
ate hardware. SPOT provides developers with access toedavaelerometers and all
configuration options the underlying framework presentshsas sample rates.

e Network consumersare implemented as emulation code containing a timer that
executes a given networking operation, such as an HTTP tpesd a user defined in-
terval. The purpose of the network consumer is to emulatkcgions that use network
resources to store information that the phone must perdidicetrieve. Developers
configure SPOT by providing the data to transmit along withftequency of transmis-
sion. They can also specify whether the data should alwaysahsmitted or whether
the application should wait for the availability of a spectfiansmission medium, such
as Wi-Fi or 3G.

e Screen drawing agentsallow users to specify 3D and 2D graphics to draw on
the screen. Developers will specify object contents aloitly any potential motion or
actions.

e Custom code modulesllow developers to supply their own code blocks to ex-
tend the functionality of SPOT and enhance emulation acyuaa the development
cycle progresses by substituting tla@ix emulation code with actual application logic.
SPOT allows developers to supply class files to load into thelation application dy-
namically, as well as method “hooks” to allow the emulatiede to interact with the
custom code properly.

5.3 Power Consumption Instrumentation

SPOT uses an instrumentation system to capture power cqisumstatistics as the
emulation code is executed, as shown in Figure 6. Componerite instrumenta-
tion system are eithédol | ect or s, Recor ders, or Event Handl ers. Col | ectors in-
terface directly with the specific power API on the system pasds collected data to
Recor der s, which persist the data collected Byl | ect or s by writing it to a file or
other storage mediurvent Handl er s respond to the events fired by entering or leav-
ing emulation code blocks.

These components are dynamically loaded via Java reflectimmsure extensibility
and flexibility. For instance, developers can implementsi@uCol | ect or to monitor
which components are in memory at any given time. Alteredyfidevelopers could de-
fineRecor der s to log power consumption information to another data steragdium,
such as a local or network database rather than a flat file.

To analyze an architecture effectively, SPOT records hastiate information over
time to allow developers to pinpoint specific locations igithapplication’s execution
path that demand the most power. To collect power consumistiormation accurately,

SPOT Emulation Architecture

Event Layer

Collection Layer

Recording Layer

Network

Fig. 6: SPOT Instrumentation System

On Screen

Text Field

SPOT uses an event-driven architecture that preciselyifaesthe occurrence of each
major application-state change, such as registering @gistering a GPS listener and
SPOT takes a “snapshot” of the power consumption when thécapipn performs
these operations. This event-driven architecture alloexselbpers to understand the
power consumption of the application before, during, artdrafey power-intensive
components.

In addition to event-triggered power snapshots, SPOT atsmgically collects
power consumption information. This information allowsvel®pers to trace overall
power consumption or power consumption within a given blddke power informa-
tion Col | ect or that collects snapshots and periodic samples can be coadigoirun
in a separate process to prevent contamination of the data.

To accomplish event-driven power profiling, SPOT fires esémimediately before
an application enters a componentthat was defined in thellmandémmediately after it
leaves a model-defined component. These events work inrctiga with the periodic
power consumption updates to provide developers with a tatmgdescription of how
their software architecture elements consume power. SP&#&nt-driven model of
collecting power consumption data also allows developeiigentify precisely what
the application was doing when key power consumption syoleesir, further helping
them optimize their designs.

SPOT's emulation infrastructure currently runs on the Andimobile platform and
uses the power consumption API utilized by the “FuelGaugwgdliaation in the core
Android installation. The power consumption API providppkcation developers with
access to the amount of time the application utilizes the (Jebsors, wake-locks, and
other system resources, in addition to the overall poweswoption.

Android’s power consumption API provides power-consumpinformation on a
per-package basis. By implementing SPOT in a different @gekdevelopers can an-
alyze power consumption without influencing it. Collectimgwer consumption infor-
mation in this manner increases accuracy. Moreover, SP@beamplemented simply
as a collector to analyze existing applications without ifyirng their source code.

5.4 Pros and Cons of SPOT’s MDE-based Approach

SPOT's focus on MDE provides a number of capabilities antlioti®ns on the breadth
and accuracy of what can be modeled. A key benefit of SPOT'’s MB¥ed approach
is that the models are easy to construct and generation ofaéngumobile applica-
tion code does not require any manual development effors. 8pproach enables early
and low-cost analysis of the impact of architectural decision power consumption.
Moreover, SPOT’s domain-specific modeling language (SPD8#lields developers
from lower-level details that are not relevant to optimgzower consumption.

The key downside of SPOT's MDE-based approach, howeveraisSPOML can-
not express every possible application behavior and thyswoizprovide perfect fidelity
to a mobile application that is eventually implemented.&le, an application that
provides alerts based on complex calculations involviregdhcelerometer and GPS
may not be expressible in SPOML; which would make it hard &som about how the
algorithm itself affects the power consumption profile of #pp. For these types of
scenarios, SPOT allows the integration of hand-coded egiflin components into an
application to provide greater fidelity. The downside oétiexibility, of course, is that
components must be manually implemented if they are noessjisle in SPOML.

6 Results

This section analyzes the results of experiments that érafyrevaluate SPOT's MDE-
based capabilities presented in Section 5. These expesmeasure SPOT’s ability
to collect power consumption information on a given modslwell as accurately
model the power consumption of a proposed application swévarchitecture. These
results show how SPOT can assess and analyze power consarmbbtirmation gath-
ered through the Android’s power consumption API and eval&POT’s accuracy in
predicting power consumption information about a softveanhitecture at design time.

6.1 Hardware/Software Testbed

All tests were performed on a Google Nexus One with a 1Ghz GRRIMB of RAM,
512MB of ROM and a 4 GB SD card running the default installatid Android 2.1
(Eclair). The SPOT application was the only third-party laggtion running at the time
of experimentation. The same power consumption informagathering logic was used
to collect information on emulation code, as well as the darapplications. The infor-
mation was analyzed in Excel based on power consumptionddtan to the device’s
SD card in the form of a CSV file.

To assess the consumption characteristics of differeggshe current SPOT ver-
sion generates an Android application package. It therogielly samples the battery
usage statistics from the OS writing these values to a CS\bfilthe SD card. SPOT
also fires events when the application’s state chareggswhen the GPS is started or a
sensor is disconnected. These events allow SPOT usersrtorexdne power consump-
tion of active hardware, in addition to the overall consumpbf the application.

SPOT uses an XML-based configuration file that is generatmud the SPOML
model described in Section 5.1. This XML file is loaded on ®dlevice’s SD card and

parsed at startup. Due to the way that the power consumptredilects information,
the data gathered reflects only power consumed by the SPOiCatjmm and does not
include any power consumed by system processes, such as/ttaigplay or garbage
collector.

6.2 Experiment 1: Empirical Evaluation of SPOT’s Emulation Code Accuracy

Overview. This experiment quantitatively compares the power consiampf two An-
droid applications and the power consumption of the emaratode derived from their
respective SPOT models. Ensuring SPOT’s accuracy is impostnce it allows devel-
opers to compare the power consumption of key power conguaamponents in their
mobile architecture.

The applications used in this experiment are the WreckWapghication presented
in Section 3 and OpenGPSTrackepén- gpst r acker . googl ecode. con), which is
an open-source Android application that uses GPS to trac&abrdinates of the phone
and display it on a Google Map on the device. The GPS pointspémer information
about the route, are stored on the device to allow the usegplay the route later.
OpenGPSTracker also determines device speed as GPS peictslacted.

Hypothesis.SPOT is intended to provide developers with an estimate wfdpro-
posed application software architecture will consume powe therefore hypothesized
that SPOT could provide power consumption information tthimi 25% of the actual
power consumption of WreckWatch and OpenGPSTracker. Basqatior work [25,
29, 26], we also hypothesized that the components we chpeesented the key factors
in mobile application power consumption and would be adegteaprovide this level
of accuracy.

WreckWatch results. Figure 7 shows the graph of the actual power consumption of
the WreckWatch application compared with the power congiompf the WreckWatch
emulation code generated by SPOT. The emulation code’sipmmsumption follows
the same trend as that of the application and provided a fovaépconsumption value
that was within 3% of the actual power consumed by WreckWakbtle SPOT model
consisted solely of GPS and accelerometer consumers andidtempt to model any
additional aspects of the WreckWatch application. The rhads accurate due to the
substantial amount of power required by the GPS receivés.rEsult confirms that the
GPS, sensor, and network modules that SPOT provides aredteynminants of mo-
bile power consumption. Although WreckWatch performs a hanof CPU-intensive
calculations on sensor data to determine if an accidentroedithese calculations are
minor power consumers compared to sensor users.

OpenGPSTracker results. Figure 8 shows the graph of the actual power con-
sumption of the OpenGPSTracker application compared \wighpbwer consumption
of the emulation code generated by SPOT. As with the WreckhVamulation code,
the OpenGPSTracker emulation code consumes power at aimater o the actual
application. Over the same time period, the emulation codéhie OpenGPSTracker
application was accurate at predicting power consumptiowithin 4%. The SPOT
model for the OpenGPSTracker application only used a GPSurner and did not at-
tempt to model any Google Maps functionality (or requisiéwork functionality) or
any processing required to determine speed or store thédondaformation. In this

12000000juA

10000000|ua <

8000000|ua 2

6000000jua .

4000000{ua =7

2000000|uvA -

Time

Fig. 7: Comparison of WreckWatch Application Logic and Eatidn Code

25000000 |ua
20000000 |ua <
15000000 [uA
10000000 |ua

5000000 uA

Time

Fig. 8: Comparison of OpenGPSTracker Application Logic Bntulation Code

instance, the GPS power consumption was sufficient to mbégbdwer consumption
of the entire application.

With both applications, SPOT modeled and predicted the poargsumption of the
actual application to within 4% of the actual power consuomtThis result confirms
our hypothesis that SPOT can provide an accurate predictipower consumption by
modeling key components of a mobile application.

6.3 Experiment 2: Evaluating the Accuracy of Simplified Architectural Models

Overview. This experiment shows that modeling the power consumptidimeolargest
power consumer can be sufficient to accurately estimate poagsumption, even
though there are significant differences in the power comslbyy the various sen-
sors, CPU operations, and networking components of ancgtigin. SPOT provides
a limited set of key power consumption elements for modetingobile software ar-
chitecture. Although there is a finite set of elements for eliogd) power consumption
in SPOT, a small number of these elements can often acoudgetrmine the power
consumption of a variety of applicatioresg, modeling the power consumption of the
GPS device is nearly as accurate as modeling the power cqtisumof both the ac-
celerometer, CPU, and GPS of an application because the &&er consumes so
much power.

For experiment 2, we modeled the GPS sensor utilization afpmthat used two
sensors: the GPS and the accelerometer. The GPS was codfigwample every 500
milliseconds while the accelerometer was configured tohseasTESTANndroid sam-
ple rate constant. We compared the power consumption ofrtheagion code, which
only used GPS, to the actual app that used both the GPS reaaivéhe accelerometer.
Modeling the largest power consumers allows users to mbe#&ldesigns even earlier
by allowing them to ignore implementation details during thodeling process.

Hypothesis.We hypothesized that certain hardware components, sucRasddn-
sume so much power that emulating them with SPOT will consnewly the same
amount of power as the actual application. For example, plicapion that uses a GPS
sample frequency of one sample per 500 milliseconds wikkltaughly the same power
consumption as another application using the sampling #@ &very 500 milliseconds
and receiving accelerometer updates.

Results. Figure 9 shows the results of experiment 2. As shown in thedigihe
callouts represent the times that correspond with the ecérand exit from different
components of the software architecture. This graph shbatshe accelerometer had
little effect on the overall power consumption in relatianthe GPS. Despite running
for 2.5 minutes after the deactivation of the GPS, the powesumption increases only
a small amount in relation to the total power consumed by gipdi@ation.

Figure 10 shows the relative power consumption of the sé@wagle Nexus One
components, such as the screen, accelerometer, Bluesatith Wi-Fi module, GPS re-
ceiver and the CPU per time unit. As shown in the figure, cettardware components
consume a significantly larger amount of power than othemeldver, the usage char-
acteristics of these hardware components increase thleeetiffe in power consumption.
For example, despite consuming almost as much power as tBe@Bally the Wi-Fi
or Bluetooth is only active for short bursts of time wherdas GPS is usually left in

Fig. 9: GPS Power Consumption

Power
7000000
GPS Stopped
6000000
Accelerometer
5000000 Stopped
4000000 Accelerometer
/ Started

3000000
2000000
1000000

0

Fig. 10: Relative Power of Hardware Components

Nexus One Relative Power

180

160

140

120

100

80

60

40 I

20

0 — — —_—

Qoo C@Q’ @é@((,'&\\\Z ®00 é{c C_\\@ Q\b\e
(—)('&z oo&v a\“@ \g‘.\\v N dov ¢
& ‘?"(J

the active state for much longer periods of time. Due to thissge characteristics, the
slightly greater power consumption per time unit of the GHh&e the GPS to quickly
become the largest consumer of power on the device.

The results shown in Figures 9 and 10 support our hypothleatsmiobile appli-
cation power consumption depend largely on a handful of amapts, so SPOT can
accurately predict mobile application power consumptipmiodeling these key power-
intensive components.

6.4 Experiment 3: Qualitative Comparison of Sensor Sample Rtes

Overview. This experiment evaluates the effects of sensor sample oatan applica-
tion’s overall power consumption. The rate at which sensta @6 consumed can have
a significant impact on application power consumption, asidieed in Section 4.2. For
example, Android’s accelerometer provides four enumenatfor sample ratexOR-
MAL, Ul, GAME, andFASTEST. Although these sample rates provide varying levels of
QoS, the trade-off between a given level of QoS and powerwopson is not read-
ily apparent at design time. The enumeration names givealees a clue to potential
uses, as well as rank these sample rates according to rateasequently power con-
sumption. Alternatively, the GPS receiver allows devetsge specify a value as the
delay, in milliseconds, between samples.

SPOT allows developersto evaluate the power consumptipotehtial sensor sam-
ple rates. For experiment 3, we compared the power consametithe GPS receiver
while sampling at once every 2 seconds, once every 30 secandnce every 500
milliseconds.

Hypothesis.We hypothesized that SPOT could capture the power consameti
fects of sensor sampling rate changes. In particular, wievs sampling rate changes
of a few hundred milliseconds would produce power consummpthanges that SPOT
could detect.

Results.Figure 11 show SPOT's output for three different samplesriiethe GPS
sensor. The dashed line represents the power consumptiba application when the

GPS Power Consumption Sample Rate Comparison over 5 Minutes
60000000 |uA

A |soomsSampleRae| -7 """ °
50000000 u 500ms Sample Rate P
-
-
-

40000000 |uA

30000000 JuA ali—

20000000 [uA
30s Sample Rate
10000000 jyA

5 Minutes 0
U U

Time.

Fig. 11: GPS Sample Rate Comparison

0

sensor was sampled every 500 milliseconds, the solid lipeesents a sample taken
every 2 seconds, and the dotted line represents the powsuicqmion of the application
sampling the sensor twice per minute. The samples in thjghgreere collected over 5
minutes and support the following observations:

e Power consumption during the first several seconds is unifon regardless of
sample rate.Each graph is approximately equivalent for the first seveeabnds of
data gathered during the GPS sampling, which implies th@¢velopers need access
to GPS for a short period of time, the greatest benefit wouldectsrom using a higher
sample rate.

e The greatest improvement in power consumption due to a lowesample rate
will occur over time. Although the graphs demonstrate a noticeable differengpeer
consumption over the 5-minute sample period, the improveinebattery life from a
change in sample rate will only be realized when samplingicover an extended
period of time.

Ultimately, the amount of power consumed by the GPS rec&wairectly propor-
tional to the sampling rate of the application. Reducinggsampling rate of the GPS
receiver is an effective means to reduce the overall powsswoption of an application
if the receiver is active for longer than2 minutes.

6.5 Summary and Analysis of Results

The results of the two experiments presented above show R@VT $an accurately an-
alyze and predict an application’s power consumption basealmodel of the applica-
tion software architecture. This capability allows deyars to understand the implica-
tions of their design decisions early in the software lifdeyi.e., without implementing
the complete application. The emulation code SPOT gerseismtcurateg.g, for our
WreckWatch application it could predict power consumptigthin 3% of the actual
application’s power consumption. SPOT’s accuracy stemmih from the significant
power consumption of hardware components, such as the GRveg that consume
significantly more power than other hardware componentherdevice, such as the
CPU or even accelerometers.

7 Concluding Remarks

The System Power Optimization TQ®@POT) is an MDE tool that allows developers to
evaluate the power consumption of potential mobile appticaarchitectures early in
the software lifecycleg.g, at design time. Our experiments indicate that SPOT pravide
a high degree of accuragy.,g, it predicted the power consumption of the WreckWatch
and OpenGPSTracker applications to withiB-4%. We learned the following lessons
developing and evaluating SPOT:

e Sensor sample rates play an important role in long-term poweconsumption.
The power consumed by the device sensors is largely unifamen the first several
minutes of activation regardless of sample rate. It is orthemwthese sensors are used
for an extended period that the benefit of lower sample ratesdlized. Developers
must therefore consider the amount of time to activate timsarein addition to the
overall sample rate.

e Certain hardware components draw significantly more power han others.

In the case of utilizing the GPS receiver, the power consubyethe location (GPS)

service is so substantial that it becomes difficult to idgritie effects of enabling or

disabling other hardware components. Due to this “maskaftgct, developers may
overlook a significant consumer of power in an applicationgéneral, small changes
in GPS sample rate can have significant impacts on overditagipn power consump-

tion.

e Power consumption of an application can be accurately modet! by a few key
components.The power consumed by certain components, such as the GEiSerec
and accelerometers is so significantly greater than the poovesumed by running the
CPU, displaying images on the screen, etc. that SPOT caatieéfly model the power
consumption of an application simply by modeling those congmts. The most effec-
tive power consumption optimization can be realized, tfoges with changes to only a
small number of components.

e Certain system-related operations such as garbage colléah are not reflected
in data gathered by SPOT.Through the current method of data collection SPOT is
only able to gather power consumption information aboutrafpens that it performs
such as CPU, memory or sensor operations that it specifiea]lyests. Our future work
will therefore develop mechanisms for capturing the immdi¢chese services on power
consumption.

e Power consumption of networking hardware is dependent on da transmit-
ted which is often dependent on user interactionThe power consumption of hard-
ware, such as the Bluetooth or Wi-Fi interfaces, is depenhderthe data transmitted
and received on the device. This data is often generatechatme by user interaction
with the program. While it is effective for the developer tengrate some sample data
and provide it to SPOT, it would be more effective if develgeould simply describe
the datag.qg, via a schema file. Our future work is extending SPOT so it cacgss a
data schema file and generate data that is random, yet éitlltgghe application.

e Although GPS is a major consumer of power, not all applicatims rely on GPS.
Although GPS is a major consumer of power on today’s smartplivices, it is still
important to understand the power consumption of appticatthat do not use the GPS,
even if their power consumption is less drastic. Our futuoekwis therefore analyzing
SPOT’s accuracy with mobile applications (such as 3D ganissagceleration-based
controls, streaming video players, and audio recordinggssing applications) that do
not use GPS, such as 3D games, feed readers, and multimetiGtpns.

SPQOT is available in open-source formsgspower . googl ecode. com

References

1. Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and Rip&. Wireless wakeups
revisited: energy management for voip over wi-fi smartplsoie ACM MobiSysvolume 7,
2007.

2. A. Anand, C. Manikopoulos, Q. Jones, and C. Borcea. A duaine analysis of power
consumption for location-aware applications on smart pgorinProceedings of the 2007
IEEE International Symposium on Industrial Electronipages 1986-1991, 2007.

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and. Tobse.Eclipse Modeling Frame-

work. Addison-Wesley, Reading, MA, 2003.

. J. Chen, K. Sivalingam, P. Agrawal, and S. Kishore. A catispa of MAC protocols for

wireless local networks based on battery power consumpiid&EE INFOCOM volume 1,
pages 150-157, 1998.

. G. Creus and M. Kuulusa. Optimizing Mobile Software withilBin Power Profiling.Mo-

bile Phone Programming and its Application to Wireless Neking, F. Fitzek and F. Re-
ichert, Eds. Springer2007.

. L. Feeney and M. Nilsson. Investigating the energy comian of a wireless network

interface in an ad hoc networking environmentlEEE INFOCOM volume 3, pages 1548—
1557. Citeseer, 2001.

. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.rdgrefficient communication

protocol for wireless microsensor networks Froceedings of the 33rd Hawaii International
Conference on System Sciencegume 8, page 8020. Citeseer, 2000.

. R. Herrmann, P. Zappi, and T. Rosing. Context aware povagagement of mobile systems

for sensing applications. I2nd International Workshop on Mobile Sensidgpril 16 2012.

. J. Hill, D. C. Schmidt, J. Slaby, and A. Porter. CiCUTS: Qoning System Execution

Modeling Tools with Continuous Integration Environments. Proceeedings of 15th An-
nual IEEE International Conference and Workshops on ther&eging of Computer Based
Systems (ECBSBelfast, Northern Ireland, March 2008.

J. Kang, C. Park, S. Seo, M. Choi, and J. Hong. User-canteidiction for battery lifetime
of mobile devices. IrProceedings of the 11th Asia-Pacific Symposium on Netwogk-Op
ations and Management: Challenges for Next Generation biétWperations and Service
Managementpages 531-534. Springer, 2008.

M. Kim, J. Kong, and S. Chung. An online power estimat@shnique for multi-core smart-
phones with advanced display components.Cbmsumer Electronics (ICCE), 2012 IEEE
International Conference qipages 666-667. IEEE, 2012.

M. Kjasrgaard. Location-based services on mobile pkiad@imizing power consumption.
Pervasive Computing, IEER1(1):67-73, 2012.

R. Krashinsky and H. Balakrishnan. Minimizing energy ¥areless web access with
bounded slowdownWireless Networksl1(1):135-148, 2005.

A. Krause, M. lhmig, E. Rankin, D. Leong, S. Gupta, D. Stek, A. Smailagic,
M. Deisher, and U. Sengupta. Trading off prediction accu@ad power consumption for
context-aware wearable computing.Rroceedings of the Ninth IEEE International Sympo-
sium on Wearable Computersages 20-26. IEEE Computer Society, 2005.

R. Kravets and P. Krishnan. Application-driven powenagement for mobile communica-
tion. Wireless Network$(4):263—-277, 2000.

O. Landsiedel, K. Wehrle, and S. Gotz. Accurate preatiodif power consumption in sensor
networks. InProceedings of The Second IEEE Workshop on Embedded Neth®ehsors
(EmNetS-I11) Citeseer, 2005.

A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. NordstipJ. Sprinkle, and G. Karsai.
Composing domain-specific design environme@emputer pages 44-51, 2001.

T. Liu, C. Sadler, P. Zhang, and M. Martonosi. Implemaptsoftware on resource-
constrained mobile sensors: experiences with impala abchzet. InProceedings of the
2nd international conference on Mobile systems, applicetj and servicepages 256—269.
ACM New York, NY, USA, 2004.

S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Véaabramanian. Integrated power
management for video streaming to mobile handheld devind2roceedings of the eleventh
ACM international conference on Multimedipages 582-591. ACM New York, NY, USA,
2003.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. StBower issues related to branch
prediction. InProceedings of the Eighth International Symposium on Higlfermance
Computer Architecturepages 233—44. Citeseer, 2002.

T. Pering, Y. Agarwal, R. Gupta, and R. Want. CoolspotdirRing the power consump-
tion of wireless mobile devices with multiple radio interés. InProceedings of the 4th
International Conference on Mobile systems, Applicatiand Servicespage 232. ACM,
2006.

D. C. Schmidt. Model-Driven EngineerindEEE Computer39(2):25-31, 2006.

C. Smith and L. WilliamsPerformance Solutions: A Practical Guide to Creating Respo
sive, Scalable Softwardddison-Wesley Professional, Boston, MA, USA, Septeni€rl.
N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, anlidgh. Who killed my battery?:
analyzing mobile browser energy consumption. Pimceedings of the 21st international
conference on World Wide Watmges 41-50. ACM, 2012.

C. Thompson, J. White, B. Dougherty, and D. Schmidt. ®izing Mobile Application
Performance with Model-Driven Engineering. Pnoceedings of the 7th IFIP Workshop on
Software Technologies for Future Embedded and Ubiquitystes1s2009.

H. Turner, J. White, C. Thompson, K. Zienkiewicz, S. Caeip and D. Schmidt. Building
Mobile Sensor Networks Using Smartphones and Web SenRasifications and Develop-
ment Challenges. In Maria Manuela Cruz-Cunha and Fernamafeikd, editorHandbook
of Research on Mobility and Computing: Evolving Techna@egand Ubiquitous Impacts
IGI Global, Hershey, PA, USA, 2009.

Q. Wang, M. Hempstead, and W. Yang. A realistic power gonion model for wireless
sensor network devices. Proceedings of the Third Annual IEEE Communications Sygciet
Conference on Sensor, Mesh and Ad Hoc Communications amibNst(SECON)2006.

Y. Wang, B. Krishnamachari, and M. Annavaram. Semi-imagtate estimation and policy
optimization for energy efficient mobile sensing.Sensor, Mesh and Ad Hoc Communica-
tions and Networks (SECON), 2012 9th Annual IEEE CommunitaiSociety Conference
on, pages 533-541. IEEE, 2012.

J. White, S. Clarke, B. Dougherty, C. Thompson, and Dn8dh R&D Challenges and So-
lutions for Mobile Cyber-Physical Applications and Suppay Internet ServicesSpringer
Journal of Internet Services and Applicatiori§l):45-56, 2010.

J. White, J. Hill, S. Tambe, J. Gray, A. Gokhale, and D. ¢hridt. Improving Domain-
specific Language Reuse through Software Product-line Qunafiion TechniquesIEEE
Software Special Issue: Domain-Specific Languages and Iviggdduly/August 2009.

J. White, D. Schmidt, and S. Mulligan. The generic e€elipodeling system. IRroceedings
of the Model-Driven Development Tool Implementors Forum@OLS 20072007.

C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope:lispfion energy metering
framework for android smartphone using kernel activity itmimg. In USENIX Annual
Technical Conferenceune 12-13 2012.

