
Monitor Object

An Object Behavioral Pattern for
Concurrent Programming

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis

1 Intent

The Monitor Object pattern synchronizes method execution
to ensure only one method runs within an object at a time.
It also allows an object’s methods to cooperatively schedule
their execution sequences.

2 Also Known As

Thread-safe Passive Object

3 Example

Consider the design of the communication Gateway shown
in Figure 1. The Gateway process contains multiple supplier

GATEWAY
OUTGOING

MESSAGES

 Routing
Table

INCOMING

MESSAGES
OUTGOING

MESSAGES

3: put (msg)

SUPPLIER CONSUMER

INCOMING

MESSAGES

1: recv (msg)

4: get (msg)
5: send (msg)

 Supplier
Handler

 Supplier
Handler

 Consumer
Handler

 Consumer
Handler

2: find (msg)

CONSUMER SUPPLIER

Figure 1: Communication Gateway

handler and consumer handler objects that run in separate
threads and route messages from one or more remote sup-
pliers to one or more remote consumers, respectively. When
a supplier handler thread receives a message from a remote
supplier, it uses an address field in the message to determine

the corresponding consumer handler, whose thread then de-
livers the message to its remote consumer.

When suppliers and consumers reside on separate hosts,
the Gateway uses the connection-oriented TCP [1] proto-
col to provide reliable message delivery and end-to-end flow
control. TCP’s flow control algorithm blocks fast senders
when they produce messages more rapidly than slower re-
ceivers can process the messages. The entire Gateway should
not block, however, while waiting for flow control to abate
on outgoing TCP connections. To minimize blocking, there-
fore, each consumer handler can contain a thread-safe mes-
sage queue that buffers new routing messages it receives
from its supplier handler threads.

One way to implement a thread-safeMessage Queue
is to use the Active Object pattern [2], which decouples the
thread used to invoke a method from the thread used to exe-
cute the method. As shown in Figure 2, each message queue
active object contains a bounded buffer and its own thread of
control that maintains a queue of pending messages. Using

GATEWAY

OUTGOING MESSAGES

1: put (msg)

3: get (msg)
4: send (msg)

 Supplier
Handler

 Consumer
Handler

Message Queue

2: put (msg)

Figure 2: Implementing Message Queues as Active Objects

the Active Object pattern to implement a thread-safe mes-
sage queue decouples supplier handler threads in the Gate-
way process from consumer handler threads so all threads
can run concurrently and block independently when flow
control occurs on various TCP connections.

Although the Active Object pattern can be used to imple-
ment a functional Gateway, it has the following drawbacks:

1

Performance overhead: The Active Object pattern pro-
vides a powerful concurrency model. It not only synchro-
nizes concurrent method requests on an object, but also can
perform sophisticated scheduling decisions to determine the
order in which requests execute. These features incur non-
trivial amounts of context switching, synchronization, dy-
namic memory management, and data movement overhead,
however, when scheduling and executing method requests.

Programming overhead: The Active Object pattern re-
quires programmers to implement up to six components:
proxies, method requests, anactivation queue, ascheduler, a
servant, andfuturesfor each proxy method. Although some
components, such as activation queues and method requests,
can be reused, programmers may have to reimplement or sig-
nificantly customize these components each time they apply
the pattern.

In general, the performance and programming overhead
outlined above can be unnecessarily expensive if an applica-
tion does not require all the Active Object pattern features,
particularly its sophisticated scheduling support. Yet, pro-
grammers of concurrent applications must ensure that certain
method requests on objects are synchronized and/or sched-
uled appropriately.

4 Context

Applications where multiple threads of control access ob-
jects simultaneously.

5 Problem

Many applications contain objects that are accessed concur-
rently by multiple client threads. For concurrent applications
to execute correctly, therefore, it is often necessary to syn-
chronize and schedule access to these objects. In the pres-
ence of this problem, the following three requirements must
be satisfied:

1. Synchronization boundaries should correspond to
object methods: Object-oriented programmers are accus-
tomed to accessing an object only through its interface meth-
ods in order to protect an object’s data from uncontrolled
changes. It is relatively straightforward to extend this object-
oriented programming model to protect an object’s data from
uncontrolled concurrent changes, known asrace conditions.
Therefore, an object’s method interface should define its syn-
chronization boundaries.

2. Objects, not clients, should be responsible for their
own method synchronization: Concurrent applications
are harder to program if clients must explicitly acquire
and release low-level synchronization mechanisms, such as
semaphores, mutexes, or condition variables. Thus, objects
should be responsible for ensuring that any of their methods
requiring synchronization are serialized transparently,i.e.,
without explicit client intervention.

3. Objects should be able to schedule their methods coop-
eratively: If an object’s methods must block during their
execution, they should be able to voluntarily relinquish their
thread of control so that methods called from other client
threads can access the object. This property helps prevent
deadlock and makes it possible to leverage the concurrency
available on hardware/software platforms.

6 Solution

For each object accessed concurrently by client threads de-
fine it as amonitor object. Clients can access the services
defined by a monitor object only through itssynchronized
methods. To prevent race conditions involving monitor ob-
ject state, only one synchronized method at a time can run
within a monitor object. Each monitored object contains a
monitor lockthat synchronized methods use to serialize their
access to an object’s behavior and state. In addition, syn-
chronized methods can determine the circumstances under
which they suspend and resume their execution based on one
or moremonitor conditionsassociated with a monitor object.

7 Structure

There are four participants in the Monitor Object pattern:

Monitor object

� A monitor object exports one or more methods to
clients. To protect the internal state of the monitor
object from uncontrolled changes or race conditions,
all clients must access the monitor object only through
these methods. Each method executes in the thread of
the client that invokes it because a monitor object does
not have its own thread of control.1

For instance, the consumer handler’s message queue in
the Gateway application can be implemented as a mon-
itor object.

Synchronized methods

� Synchronized methods implement the thread-safe ser-
vices exported by a monitor object. To prevent race
conditions, only one synchronized method can execute
within a monitor at any point in time, regardless of the
number of threads that invoke the object’s synchronized
methods concurrently or the number of synchronized
methods in the object’s class.

For instance, theput andget operations on the con-
sumer handler’s message queue should be synchronized
methods to ensure that routing messages can be inserted
and removed simultaneously by multiple threads with-
out corrupting a queue’s internal state.

1In contrast, an active object [2]doeshave its own thread of control.

2

Monitor lock

� Each monitor object contains its own monitor lock.
Synchronized methods use this monitor lock to seri-
alize method invocations on a per-object basis. Each
synchronized method must acquire/release the monitor
lock when the method enters/exits the object, respec-
tively. This protocol ensures the monitor lock is held
whenever a method performs operations that access or
modify its object’s state.

For instance, aThread Mutex [3] could be used to
implement the message queue’s monitor lock.

Monitor condition

� Multiple synchronized methods running in separate
threads can cooperatively schedule their execution se-
quences by waiting for and notifying each other via
monitor conditions associated with their monitor object.
Synchronized methods use monitor conditions to deter-
mine the circumstances under which they should sus-
pend or resume their processing.

For instance, when a consumer handler thread attempts
to dequeue a routing message from an empty message
queue, the queue’sget method must release the mon-
itor lock and suspend itself until queue is no longer
empty, i.e., when a supplier handler thread inserts a
message in it. Likewise, when a supplier handler thread
attempts to enqueue a message into a full queue, the
queue’sput method must release the monitor lock and
spend itself until the queue is no longer full,i.e., when
a consumer handler removes a message from it. A pair
of POSIX condition variables [4] can be used to imple-
ment the message queue’snot-emptyandnot-full moni-
tor conditions.

The structure of the Monitor Object pattern is illustrated
in the following UML class diagram:

Monitor Object
synchronized_method_1()
...
synchronized_method_m()
monitor_lock_
monotor_condition_1_
...
monitor_condition_n_

8 Dynamics

The following collaborations occurs between participants in
the Monitor Object pattern.

1. Synchronized method invocation and serialization:
When a client invokes a synchronized method on a moni-
tor object, the method must first acquire its monitor lock. A
monitor lock cannot be acquired as long as another synchro-
nized method is executing within the monitor object. In this
case, the client thread will block until it acquires the monitor
lock, at which point the synchronized method will acquire
the lock, enter its critical section, and perform the service
implemented by the method. Once the synchronized method
has finished executing, the monitor lock must be released so
that other synchronized methods can access the monitor ob-
ject.

2. Synchronized method thread suspension: If a syn-
chronized method must block or cannot otherwise make im-
mediate progress, it canwait on one of its monitor condi-
tions, which causes it to “leave” the monitor object temporar-
ily [5]. When a synchronized method leaves the monitor
object, the monitor lock is released automatically and the
client’s thread of control is suspended on the monitor con-
dition.

3. Method condition notification: A synchronized
method cannotify a monitor condition in order to resume a
synchronized method’s thread that had previously suspended
itself on the monitor condition. In addition, a synchronized
method can notifyall other synchronized methods that pre-
viously suspended their threads on a monitor condition.

4. Synchronized method thread resumption: Once a
previously suspended synchronized method thread is noti-
fied, its execution can resume at the point where it waited
on the monitor condition. The monitor lock is automatically
reacquired before the notified thread “reenters” the monitor
object and resumes executing the synchronized method.

The following figure illustrates the collaborations in the
Monitor Object pattern:

: client
thread 1

SYNCHRONIZED

METHOD INVOCATION

& SERIALIZATION

: monitor
lock

: monitor
object

acquire()
 method_1()

: client
thread 2

 method_2()

SYNCHRONIZED METHOD

THREAD SUSPENSION

: monitor
condition

wait()

SYNCHRONIZED METHOD

THREAD RESUMPTION

acquire()

release()

notify()

release()method_2()
return

method_1() return

resume thread 1

acquire()

suspend thread 1

release()

METHOD CONDITION

NOTIFICATION

do_work()

do_work()

do_work()

resume method_1()

3

9 Implementation

The following steps illustrate how to implement the Monitor
Object pattern.

1. Define the monitor object’s interface methods: The
interface of a monitor object exports a set of methods to
clients. Interface methods are typicallysynchronized, i.e.,
only one of them at a time can execute in a particular moni-
tor object.

In our Gateway example, each consumer handler contains
a message queue and a TCP connection. The message queue
can be defined as a monitor object that buffer messages
it receives from supplier handler threads. Monitor objects
can help prevent the entire Gateway process from blocking
whenever consumer handler threads encounter flow control
on TCP connections to their remote consumers.

The following C++ class defines the interface for a mes-
sage queue monitor object:

class Message_Queue
{
public:

enum {
MAX_MESSAGES = /* ... */;

};

// The constructor defines the maximum number
// of messages in the queue. This determines
// when the queue is ‘full.’
Message_Queue (size_t max_messages

= MAX_MESSAGES);

// = Message queue synchronized methods.

// Put the <Message> at the tail of the queue.
// If the queue is full, block until the queue
// is not full.
void put (const Message &msg);

// Get the <Message> at the head of the queue.
// If the queue is empty, block until the queue
// is not empty.
Message get (void);

// True if the queue is full, else false.
// Does not block.
bool empty (void) const;

// True if the queue is empty, else false.
// Does not block.
bool full (void) const;

private:
// ...

};

TheMessage Queue monitor object interface exports four
synchronized methods. Theempty andfull methods are
predicates that clients can use to distinguish three internal
states: (1) empty, (2) full, and (3) neither empty nor full. The
put and get methods enqueue and dequeueMessage s
into and from the queue, respectively, and will block if the
queue is full or empty.

2. Define the method object’s implementation methods:
A monitor object often contains implementation methods
that simplify its interface methods. This separation of

concerns helps to decouple synchronization and scheduling
logic from monitor object functionality, as well as avoid
intra-object deadlock and unnecessary locking overhead.

The following conventions based on the Thread-safe In-
terface idiom [6] can be used to structure the separation of
concerns between interface and implementation methods:

� Interface methods only acquire/release monitor locks
and wait/notify certain monitor conditions, and then
forward to implementation methods that perform the
monitor object’s functionality.

� Implementation methods only perform work when
called by interface methods,i.e., they do not ac-
quire/release the monitor lock or wait/notify monitor
conditions explicitly. Moreover, to avoid intra-object
method deadlock or unnecessary synchronization over-
head, implementation methods should not call any syn-
chronized methods defined in their monitor object’s in-
terface.

In our Gateway example, theMessage Queue class
defines four implementation methods:put i , get i ,
empty i , andfull i , corresponding to the synchronized
method interface. The signatures of these methods are shown
below:

class Message_Queue
{
public:

// ... See above

private:
// = Private helper methods (non-synchronized
// and do not block).

// Put the <Message> at the tail of the queue.
void put_i (const Message &msg);

// Get the <Message> at the head of the queue.
Message get_i (void);

// True if the queue is full, else false.
// Assumes locks are held.
bool empty_i (void) const;

// True if the queue is empty, else false.
// Assumes locks are held.
bool full_i (void) const;

// ...

The implementation methods are typically not synchronized,
nor do they block, in accordance with the Thread-safe Inter-
face idiom [6] outlined above.

3. Define the method object’s internal state: A monitor
object contains data members that define its internal state. In
addition, a monitor object contains a monitor lock that se-
rializes the execution of its synchronized methods and one
or more monitor conditions used to schedule synchronized
method execution within a monitor object. There is typically
a separate monitor condition for each type of situation where
synchronized methods must suspend themselves and/or re-
sume other threads whose synchronized methods are sus-
pended.

4

A monitor lock can be implemented using amutex. A mu-
tex makes collaborating threads wait while the thread hold-
ing the mutex executes code in a critical section. Mon-
itor conditions can be implemented usingcondition vari-
ables[4]. Unlike a mutex, a condition variable is used by
a thread to makeitself wait until an arbitrarily complex con-
dition expression involving shared data attains a particular
state.

A condition variable is always used in conjunction with
a mutex, which the client thread must acquire before evalu-
ating the condition expression. If the condition expression
is false, the client atomically suspends itself on the condi-
tion variable and releases the mutex so that other threads can
change the shared data. When a cooperating thread changes
this data, it can notify the condition variable, which atomi-
cally resumes a thread that had previously suspended itself
on the condition variable and acquires its mutex again.

With its mutex held, the newly resumed thread then re-
evaluates its condition expression. If the shared data has at-
tained the desired state the thread continues. Otherwise, it
suspends itself on the condition variable again until it’s re-
sumed. This process can repeat until the condition expres-
sion becomes true.

In general, a condition variable is more appropriate than
a mutex for situations involving complex condition expres-
sions or scheduling behaviors. For instance, condition vari-
ables can be used to implement thread-safe message queues.
In this use case, a pair of condition variables can coopera-
tively block supplier threads when a message queue is full
and block consumer threads when the queue is empty.

In our Gateway example, theMessage Queue defines
its internal state as illustrated below:

class Message_Queue
{

// ... See above

private:

// Internal Queue representation.
...

// Current number of <Message>s in the queue.
size_t message_count_;

// The maximum number <Message>s that can be
// in a queue before it’s considered ‘full.’
size_t max_messages_;

// = Mechanisms required to implement the
// monitor object’s synchronization policies.

// Mutex that protect the queue’s internal state
// from race conditions during concurrent access.
mutable Thread_Mutex monitor_lock_;

// Condition variable used to make synchronized
// method threads wait until the queue is no
// longer empty.
Thread_Condition not_empty_;

// Condition variable used to make synchronized
// method threads wait until the queue is
// no longer full.
Thread_Condition not_full_;

};

A Message Queue monitor object defines three types of
internal state:

� Queue representation data members: These data
members define the internal queue representation. This rep-
resentation stores the contents of the queue in a circular array
or linked list, along with bookkeeping information needed
to determine whether the queue is empty, full, or neither.
The internal queue representation is accessed and manipu-
lated only by theget i , put i , empty i , and full i
implementation methods.

� Monitor lock data member: The monitor lock is
used by aMessage Queue’s synchronized methods to se-
rialize their access to a monitor object. The monitor lock
is implemented using theThread Mutex defined in the
Wrapper Facade pattern [3]. This class provides a platform-
independent mutex API.

� Monitor condition data members: The monitor con-
ditions that theput andget synchronized methods use to
suspend and resume themselves when aMessage Queue
transitions between its full and empty boundary conditions,
respectively. These monitor conditions are implemented us-
ing theThread Condition wrapper facade defined be-
low:

class Thread_Condition
{
public:

// Initialize the condition variable and
// associate it with the <mutex_>.
Thread_Condition (const Thread_Mutex &m)

// Implicitly destroy the condition variable.
˜Thread_Condition (void);

// Wait for the <Thread_Condition> to be,
// notified or until <timeout> has elapsed.
// If <timeout> == 0 wait indefinitely.
int wait (Time_Value *timeout = 0) const;

// Notify one thread waiting on the
// <Thread_Condition>.
int notify (void) const;

// Notify *all* threads waiting on
// the <Thread_Condition>.
int notify_all (void) const;

private:
#if defined (_POSIX_PTHREAD_SEMANTICS)

pthread_cond_t cond_;
#else

// Condition variable emulations.
#endif /* _POSIX_PTHREAD_SEMANTICS */

// Reference to mutex lock.
const Thread_Mutex &mutex_;

};

The constructor initializes the condition variable and as-
sociates it with theThread Mutex passed as a parame-
ter. The destructor destroys the condition variable, which
release any resources allocated by the constructor. Note that
themutex is not owned by theThread Condition , so
it is not destroyed in the destructor.

5

When called by a client thread, thewait method (1)
atomically releases the associatedmutex and (2) sus-
pends itself for up totimeout amount of time waiting
for the Thread Condition object to be notified by an-
other thread. Thenotify method resumes one thread
waiting on aThread Condition and thenotify all
method notifiesall threads that are currently waiting on a
Thread Condition . Themutex lock is reacquired by
the wait method before it returns to its client thread,e.g.,
either because the condition variable was notified or because
its timeout expired.

4. Implement all the monitor object’s methods and data
members: The final step involves implementing all the
monitor object methods and internal state defined above.
These steps can be further decomposed as follows:

� Initialize the data members: This substep initializes
object-specific data members, as well as the monitor lock and
any monitor conditions.

For instance, the constructor ofMessage Queue creates
an empty message queue and initializes the monitor condi-
tions,not empty andnot full , as shown below.

Message_Queue::Message_Queue (size_t max_messages)
: not_full_ (monitor_lock_),

not_empty_ (monitor_lock_),
max_messages_ (max_messages),
message_count_ (0)

{
// ...

}

In this example, now how both monitor conditions share
the samemonitor lock . This design ensures that
Message Queue state, such as themessage count , is
serialized properly to prevent race conditions when multiple
threadsput andget messages into a queue simultaneously.

� Apply the Thread-safe Interface idiom: In this sub-
step, the interface and implementation methods are imple-
menting according to the Thread-safe Interface idiom.

For instance, the followingMessage Queue methods
check if a queue isempty, i.e., contains noMessage s at
all, or full i.e., contains more thanmax messages in it.
We show the interface methods first:

bool
Message_Queue::empty (void) const
{

Guard<Thread_Mutex> guard (monitor_lock_);
return empty_i ();

}

bool
Message_Queue::full (void) const
{

Guard<Thread_Mutex> guard (monitor_lock_);
return full_i ();

}

These methods illustrate a simple example of the Thread-
safe Interface idiom outlined above. They use the Scoped
Locking idiom [6] to acquire/release the monitor lock and
then immediately forward to the corresponding implemen-
tation method. As shown next, these methods assume the

monitor lock is held and simply check for the bound-
ary conditions in the queue:

bool
Message_Queue::empty_i (void) const
{

return message_count_ <= 0;
}

bool
Message_Queue::full_i (void) const
{

return message_count_ > max_messages_;
}

Theput method inserts a newMessage at the tail of a
queue. It is a synchronized method that illustrates a more
sophisticated use of the Thread-safe Interface idiom:

void
Message_Queue::put (const Message &msg)
{

// Use the Scoped Locking idiom to
// acquire/release the <monitor_lock_> upon
// entry/exit to the synchronized method.
Guard<Thread_Mutex> guard (monitor_lock_);

// Wait while the queue is full.

while (full_i ()) {
// Release <monitor_lock_> and suspend our
// thread waiting for space to become available
// in the queue. The <monitor_lock_> is
// reacquired automatically when <wait> returns.
not_full_.wait ();

}

// Enqueue the <Message> at the tail of
// the queue and update <message_count_>.
put_i (new_item);

// Notify any thread waiting in <get> that
// the queue has at least one <Message>.
not_empty_.notify ();

// Destructor of <guard> releases <monitor_lock_>.
}

Note how this synchronized method only performs the syn-
chronization and scheduling logic needed to serialize access
to the monitor object and wait while the queue is full, re-
spectively. Once there’s room in the queue, it forwards to
theput i method, which inserts the message into the queue
and updates the bookkeeping information. Moreover, the
put i need not be synchronized because theput method
never calls it without first acquiring themonitor lock .
Likewise, theput i method need not check to see if the
queue is full because it is never called as long asfull i
returns true.

Theget method removes theMessage from the front of
a queue and returns it to the caller.

Message
Message_Queue::get (void)
{

// Use the Scoped Locking idiom to
// acquire/release the <monitor_lock_> upon
// entry/exit to the synchronized method.
Guard<Thread_Mutex> guard (monitor_lock_);

// Wait while the queue is empty.

while (empty_i ()) {
// Release <monitor_lock_> and wait for a new

6

// <Message> to be placed in the queue. The
// <monitor_lock_> is reacquired automatically
// when <wait> returns.
not_empty_.wait ();

}

// Dequeue the first <Message> in the queue
// and update the <message_count_>.
Message m = get_i ();

// Notify any thread waiting in <put> that the
// queue has room for at least one <Message>.
not_full_.notify ();

return m;
// Destructor of <guard> releases <monitor_lock_>.

}

As before, note how theget synchronized method focuses
on the synchronization and scheduling logic, while forward-
ing the actual dequeueing operation to theget i method.

10 Example Resolved

The Gateway application can use the Monitor Object pattern
to implement a thread-safe message queue that decouples
supplier handler and consumer handler threads so they run
concurrently and block independently. Embedding and au-
tomating synchronization inside message queue monitor ob-
jects protects their internal state from corruption and shields
clients from low-level synchronization concerns.

Internally, the Gateway containsSupplier Handler
and Consumer Handler objects that act as local prox-
ies [7, 8] for remote suppliers and consumers, respectively.
EachConsumer Handler contains aMessage Queue
object implemented using the Monitor Object pattern
as described in theImplementation section. The
Consumer Handler class is defined as follows:

class Consumer_Handler
{
public:

Consumer_Handler (void);

// Put the message into the queue
// monitor object, blocking until
// there’s room in the queue.
void put (const Message &msg) {

message_queue_.put (msg);
}

private:
// Message queue implemented as a
// monitor object.
Message_Queue message_queue_;

// Connection to the remote consumer.
SOCK_Stream connection_;

// Entry point into a new consumer
// handler thread.
static void *svc_run (void *arg);

};

As shown in Figure 3, eachSupplier Handler runs
in its own thread, receive messages from its remote supplier,
and routes the messages to their remote consumers. Routing
is performed by inspecting an address field in each message,

GATEWAY
OUTGOING

MESSAGES

 Routing
Table

INCOMING

MESSAGES
OUTGOING

MESSAGES

3: put (msg)

SUPPLIER CONSUMER

INCOMING

MESSAGES

1: recv (msg)

4: get (msg)
5: send (msg)

 Supplier
Handler

 Supplier
Handler

 Consumer
Handler

Message Queue

2: find (msg)

CONSUMER SUPPLIER

 Consumer
Handler

Message Queue

Figure 3: Implementing the Communication Gateway Using
the Monitor Object Pattern

which is used as a key into a routing table that maps keys
to Consumer Handler s. EachConsumer Handler is
responsible for receiving messages from suppliers via its
put method and storing each message itsMessage Queue
monitor object, as follows:

Supplier_Handler::route_message (const Message &msg)
{

// Locate the appropriate consumer based on the
// address information in the <Message>.
Consumer_Handler *ch =

routing_table_.find (msg.address ());

// Put the <Message> into the <Consumer Handler>,
// which will store it in its <Message Queue>
// monitor object.
ch->put (msg);

};

EachConsumer Handler spawns a separate thread of
control in its constructor to process the messages placed into
its message queue, as follows:

Consumer_Handler::Consumer_Handler (void)
{

// Spawn a separate thread to get messages
// from the message queue and send them to
// the remote consumer via TCP.
Thread_Manager::instance ()->spawn (svc_run,

this);
}

EachConsumer Handler thread executes thesvc run
method, which gets the messages placed into the queue by
Supplier Handler threads and sends them over its TCP
connection to the remote consumer, as follows:

void *
Consumer_Handler::svc_run (void *args)
{

Consumer_Handler *this_obj =
reinterpret_cast<Consumer_Handler *> (args);

7

for (;;) {
// This thread blocks on <get> until the
// next <Message> is available.
Message msg =

this_obj->message_queue_.get ();

// Transmit message to the consumer.
this_obj->connection_.send (msg,

msg.length ());
}

}

The Message Queue is implemented as a monitor ob-
ject. Therefore, thesend operation on theconnection
can block in aConsumer Handler without affecting
the quality of service of otherConsumer Handler s or
Supplier Handlers .

11 Variants

The following are variations of the Monitor Object pattern.

Timed synchronized method invocations: Many applica-
tions can benefit from timed synchronized method invoca-
tions. Timed invocations enable clients to bound the amount
of time they are willing to wait for a synchronized method to
enter its monitor object’s critical section.

The Message Queue monitor object interface defined
earlier can be modified to support timed synchronized
method invocations, as follows:

class Message_Queue
{
public:

// = Message queue synchronized methods.

// Put the <Message> at the tail of the queue.
// If the queue is full, block until the queue
// is not full. If <timeout> is 0 then block
// until the <Message> is inserted into the queue.
// Otherwise, if <timeout> expires before the
// <Message> is enqueued, the <Timedout> exception
// is thrown.
void put (const Message &msg,

Time_Value *timeout = 0)
throw (Timedout);

// Get the <Message> at the head of the queue.
// If the queue is empty, block until the queue
// is not empty. If <timeout> is 0 then block
// until the <Message> is inserted into the queue.
// Otherwise, if <timeout> expires before the
// <Message> is enqueued, the <Timedout> exception
// is thrown.
Message get (Time_Value *timeout = 0)

throw (Timedout);

// ...
};

If timeout is 0 then bothget andput will block indefi-
nitely until aMessage is either removed or inserted into a
Message Queue monitor object, respectively. Otherwise,
if the timeout period expires, theTimedout exception is
thrown and the client must be prepared to handle this excep-
tion.

The following illustrates how theput method can
be implemented using the timed wait feature of the
Thread Condition condition variable wrapper outlined
in the Implementationsection:

void
Message_Queue::put (const Message &msg,

Time_Value *timeout)
throw (Timedout)

{
// ... Same as before ...

// Wait while the queue is full.

while (full_i ()) {
// Release <monitor_lock_> and suspend our
// thread waiting for space to become available
// in the queue or for <timeout> to elapse.
// The <monitor_lock_> is reacquired automatically
// when <wait> returns, regardless of whether
// a timeout occurred or not.
if (not_full_.wait (timeout) == -1

&& errno = ETIMEDOUT)
throw Timedout ();

}

// ... Same as before ...
}

Strategized locking: The Strategized Locking pattern can
be applied to make a monitor object more flexible and
reusable.

For instance, the following template class parameterizes
the synchronization aspects of aMessage Queue:

template <class SYNCH_STRATEGY>
class Message_Queue
{

// ...

private:
typename SYNCH_STRATEGY::MUTEX monitor_lock_;
typename SYNCH_STRATEGY::CONDITION not_empty_;
typename SYNCH_STRATEGY::CONDITION not_full_;
// ...

};

Each synchronized method is then modified as shown by the
following empty method:

template <class SYNCH_STRATEGY> bool
Message_Queue<SYNCH_STRATEGY::empty (void) const
{

Guard<SYNCH_STRATEGY::MUTEX> guard (monitor_lock_);
return empty_i ();

}

To parameterize the synchronization aspects associated
with a Message Queue, we can define a pair of classes,
MTSYNCHandNULL SYNCH, that typedef the appropriate
C++ traits, as follows:

class MT_SYNCH {
public:

// Synchronization traits.
typedef Thread_Mutex MUTEX;
typedef Thread_Condition CONDITION;

};

class NULL_SYNCH {

8

// Synchronization traits.
typedef Null_Mutex MUTEX;
typedef Null_Thread_Condition CONDITION;

};

Thus, to define a thread-safeMessage Queue, we just pa-
rameterize it with theMTSYNCHstrategy, as follows:

Message_Queue<MT_SYNCH> message_queue;

Likewise, to create a non-thread-safeMessage Queue, we
can simply parameterize it with the followingNULL SYNCH
strategy.

Message_Queue<NULL_SYNCH> message_queue;

Note that when using the Strategized Locking pattern in
C++, it may not be possible for the component class to know
what type of synchronization strategy will be configured for
a particular use case. Therefore, it is important to apply
the Thread-safe Interface idiom to ensure that intra-object
method calls, such asput calling full andput i , avoid
self-deadlock and/or minimize recursive locking overhead.

12 Known Uses

The following are some known uses of the Monitor Object
pattern:

Dijkstra/Hoare monitors: Dijkstra [9] and Hoare [5] de-
fined programming language features calledmonitorsto en-
capsulate service functions and their internal variables into
thread-safe modules. To prevent race conditions, a monitor
contains a lock that allows only one function at a time to be
active within the monitor. Functions that want to temporar-
ily leave the monitor can block on a condition variable. It
is the responsibility of the programming language compiler
to generate run-time code that implements and manages the
monitor lock and condition variables.

Java Objects: The main synchronization mechanism in
Java is based on Dijkstra/Hoare-style monitors. Each Java
object is implicitly a monitor that internally contains a mon-
itor lock and a single monitor condition. Java’s monitors are
relatively simple,i.e., they allow threads to (1) implicitly se-
rialize their execution via method-call interfaces and (2) to
coordinate their activities via explicitwait , notify , and
notifyAll operations.

ACE Gateway: The example from Section 10 is based on
a communication Gateway [10] from the ACE framework.
The Message Queue s used byConsumer Handler s
in the Gateway are reusable ACE components implemented
as monitor objects. The Monitor Object pattern is used in
the ACE Gateway to simplify concurrent programming and
improve performance on multi-processors.

13 Consequences

The Monitor Object pattern provides the followingbenefits:

Simplify synchronization of methods invoked concur-
rently on an object: Clients need not be concerned with
concurrency control when invoking methods on a monitor
object. If a programming language doesn’t support monitor
objects as a language feature, developers can use idioms like
Scoped Locking [6] to simplify and automate the acquisition
and release of monitor locks that serializes access to internal
monitor object methods and state.

Synchronized methods can cooperatively schedule their
order of execution: Synchronized methods use their mon-
itor conditions to determine the circumstances under which
they should suspend or resume their execution. For instance,
methods can suspend themselves and wait to be notified
when arbitrarily complex conditions occurwithoutusing in-
efficient polling. This feature makes it possible for monitor
objects to cooperatively schedule their methods in separate
threads.

However, the Monitor Object pattern has the followinglia-
bilities:

Tightly coupling between object functionality and syn-
chronization mechanisms: It is usually straightforward to
decouple an active object’s functionality from its synchro-
nization policies because it has a separate scheduler. In
contrast, a monitor object’s synchronization and scheduling
logic is often closely coupled with its methods’ functionality.
Although this makes monitor objects more efficient than ac-
tive objects, it may be hard to change their synchronization
policies or mechanisms without directly changing the moni-
tor object’s method implementations. One way to reduce the
coupling of synchronization and functionality in monitor ob-
jects is to use Aspect-Oriented Programming, as described
in Thread-Safe Interface idiom and Strategized Locking pat-
tern [6].

Nested monitor lockout: This problem can occur when a
monitor object is nested within another monitor object. For
instance, consider the following two Java classes:

class Inner {
protected boolean cond_ = false;

public synchronized void awaitCondition () {
while (!cond)

try { wait (); }
catch (InterruptedException e) {}
// Any other code.

}

public synchronized
void notifyCondition (boolean c) {
cond_ = c;
notifyAll ();

}
}

class Outer {
protected Inner inner_ =

new Inner ();

public synchronized void process () {
inner_.awaitCondition ();

}

9

public synchronized
void set (boolean c) {
inner_.notifyCondition (c);

}
}

The code above illustrates the canonical form of the the
nested monitor lockout problem in Java. When a Java
thread blocks in the monitor’s wait queue, all its locks are
held except the lock of the object placed in the queue.
Consider what would happen if threadT1 made a call to
Outer.process and as a result blocked in thewait call
in Inner.awaitCondition . In Java, theInner and
Outer classes do not share their monitor locks. Thus, the
awaitCondition call would release theInner moni-
tor, while retaining theOuter monitor. However, another
thread,T2 cannot acquire theOuter monitor because it is
locked by the synchronizedprocess method. As a result,
theOuter.set condition cannot become true andT1 will
continue to block inwait forever. Techniques for avoiding
nested monitor lockout in Java are described in [11, 12].

14 See Also

The Monitor Object pattern has several properties in com-
mon with the Active Object pattern [2]. For instance, both
patterns can be used to synchronize and schedule methods
invoked concurrently on an object. One difference is that an
active object executes its methods in a different thread than
its client(s), whereas a monitor object executes its methods
in its client threads. As a result, active objects can perform
more sophisticated, albeit more expensive, scheduling to de-
termine the order in which their methods execute. Another
difference is that monitor objects typically couple their syn-
chronization logic more closely with their methods’ func-
tionality. In contrast, it is easier to decouple an active ob-
ject’s functionality from its synchronization policies because
it has a separate scheduler.

For example, it is instructive to compare the Monitor Ob-
ject solution in Section 10 with the solution presented in
the Active Object [2] pattern. Both solutions have sim-
ilar overall application architectures. In particular, the
Supplier Handler and Consumer Handler imple-
mentations are almost identical. The primary difference is
that theMessage Queue itself is easier to program and is
more efficient when it’s implemented using the Monitor Ob-
ject pattern rather than the Active Object pattern.

If a more sophisticated queueing strategy was necessary,
however, the Active Object pattern might be more appro-
priate. Likewise, because active objects execute in differ-
ent threads than their clients, there are use cases where ac-
tive objects can improve overall application concurrency by
executing multiple operations asynchronously. When these
operations are complete, clients can obtain their results via
futures.

Acknowledgements

References
[1] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Massachusetts:

Addison Wesley, 1993.

[2] R. G. Lavender and D. C. Schmidt, “Active Object: an Object Be-
havioral Pattern for Concurrent Programming,” inPattern Languages
of Program Design(J. O. Coplien, J. Vlissides, and N. Kerth, eds.),
Reading, MA: Addison-Wesley, 1996.

[3] D. C. Schmidt, “Wrapper Facade: A Structural Pattern for Encapsulat-
ing Functions within Classes,”C++ Report, vol. 11, February 1999.

[4] IEEE, Threads Extension for Portable Operating Systems (Draft 10),
February 1996.

[5] C. A. R. Hoare, “Monitors: An Operating System Structuring Mecha-
nism,” Communications of the ACM, vol. 17, Oct. 1974.

[6] D. C. Schmidt, “Strategized Locking, Thread-safe Decorator, and
Scoped Locking: Patterns and Idioms for Simplifying Multi-threaded
C++ Components,”C++ Report, vol. 11, Sept. 1999.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - A System of Patterns. Wiley
and Sons, 1996.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[9] E. W. Dijkstra, “Cooperating Sequential Processes,” inProgramming
Languages(F. Genuys, ed.), Reading, MA: Academic Press, 1968.

[10] D. C. Schmidt, “A Family of Design Patterns for Application-level
Gateways,”The Theory and Practice of Object Systems (Special Issue
on Patterns and Pattern Languages), vol. 2, no. 1, 1996.

[11] D. Lea,Concurrent Java: Design Principles and Patterns. Reading,
MA: Addison-Wesley, 1996.

[12] P. Jain and D. Schmidt, “Experiences Converting a C++ Communica-
tion Software Framework to Java,”C++ Report, vol. 9, January 1997.

10

