A Portable, Extensible and Efficient Implementation of Proactor Pattern

Alexander Babu Arulanthu, Irfan Pyarali and Douglas C. Schmidt
{alex, irfan, schmidt@cs.wustl.edu
http://www.cs.wustl.edy~alex, irfan, schmidt
Department of Computer Science
Washington University, St. Louis 63130

Abstract ing of their corresponding event handlers.

The Proactor pattern [1] describes how to structure applica-
tions and systems that effectively utilize asynchronous megtp Motivation
anisms supported by operating systems. When an application
invokes an asynchronous operation, the OS performs the ofiére Proactor pattern should be applied when applications re-
ation on behalf of the application. This allows the applicatioguire the performance benefits of executing operations concur-
to have multiple operations running simultaneously withotgntly, without the constraints of synchronous multi-threaded
requiring the application to have a corresponding number of reactive programming. To illustrate these benefits, consider
threads. Therefore, the Proactor pattern simplifies concurremnhetworking application that needs to perform multiple oper-
programming and improves performance by requiring fewations concurrently. For example, a high-performance Web
threads and leveraging OS support for asynchronous opesgrver must concurrently process HTTP requests sent from
tions. multiple clients. Figure 1 shows a typical interaction between
The Adaptive Communications Environment (ACE) [2] hadeb browsers and a Web server. When a user instructs a
implemented a Proactor framework that encapsulates 1/O
Completion Ports of Windows NT operating system. Ti
ACE Proactor abstraction provides an OO interface to tt
standard C APIs supported by Windows NT. We ported t _ 2: parse request
. 1: HTTP
Proactor framework to Unix platforms that support POSIX Web
asynchronous I/O calls and real-time signals. This p request Server
per describes the design and implementation of this n
Portable Proactor framework and explains how the de
sign and the implementation have been made so that
framework can be extensible, scalable and efficient.
explain how our design took care of keeping the old i
terfaces of the framework intact, still making the desic
highly extensible and efficient. The source code for tt
implementation can be acquired from the ACE website
www.cs.wustl.edu/ ~schmidt/ACE.html

>

Web 3: read file

Browser

B!

4: send file

L

Figure 1: Typical Web Server Communication Software Ar-
1.1 Intent chitecture

The Proactor pattern presented in [1] supports the demultiplex-

ing and dispatching of multiple event handlers, which are trigrowser to open a URL, the browser sends an HGET re-
gered by theompletionof asynchronous events. This patterguest to the Web server. Upon receipt, the server parses and
simplifies asynchronous application development by integraddidates the request and sends the specified file(s) back to the
ing the demultiplexing of completion events and the dispatdirowser.

1 The Proactor Pattern

Developing high-performance Web servers requires the res-
olution of the following forces:

e Concurrency- The server must perform multiple client

requests simultaneously;

Efficiency- The server must minimize latency, maximiz
throughput, and avoid utilizing the CPU(s) unnecessari

Programming simplicity— The design of the serve
should simplify the use of efficient concurrency strate-
gies;

Adaptability— Integrating new or improved transport pro-

tocols (suchas HTTP 1.1 [3]) should incur minimal main-
tenance costs.

6: 2:accept 8:read (Handler,
Web accept (Acceptor, Dispatcher)
Browser complet Dispatcher j;
Completion ¢ Operating
Dispatcher 4 System
3: handle 5: accept
events complete

Web Server

1: accept

connection

4: connect

J

Figure 2: Client connects to a Proactor-based Web Server

A Web server can be implemented using several concur-

rency strategies, such as multiple synchronous threads and re-

active synchronous event dispatching. But such conventional

approaches have drawbacks as discussed in [1]. The Proactorg reference to th€Completion Dispatcher

pattern provides a powerful technique that supports an effi-
cient and flexible asynchronous event dispatching strategy for
high-performance concurrent applications. 3

1.3 Concurrency Through Proactive Opera-

tions

5.
When the OS platform supports asynchronous operations, an

efficient and convenient way to implement a high-performance
Web server is to usproactive event dispatchinyVeb servers
designed using a proactive event dispatching model handfé
the completionof asynchronous operations with one or more
threads of control. Thus, the Proactor patteimplifies asyn- 7.
chronous Web servers by integrating completion event demué—
tiplexing and event handler dispatching :
An asynchronous Web server would utilize the Proac-

tor pattern by first having the Web server issue an asyn-
chronous operation to the OS and registering a callback with a
Completion Dispatcher that will notify the Web server
when the operation completes. The OS performs the operation
on behalf of the Web server and subsequently queues the result
in a well-known location. Th€ompletion Dispatcher

The Acceptor initiates an asynchronous accept with the
OS and passes itself asCampletion Handler and
that
will be used to notify theAcceptor upon completion

of the asynchronous accept;

The Web Server invokes the event loop of the
Completion Dispatcher ;

4. The client connects to the Web Server;

When the asynchronous accept operation completes,
the Operating System notifies the Completion

Dispatcher

The Completion Dispatcher notifies the Accep-
tor;

TheAcceptor creates amdTTP Handler ;

TheHTTP Handler initiates an asynchronous opera-
tion to read the request data from the client and passes it-
self as &Completion Handler and areference to the
Completion Dispatcher that will be used to no-
tify the HTTP Handler upon completion of the asyn-
chronous read.

Figure 3 shows the sequence of steps that the proactive Web

is responsible for de-queuing completion notifications a§(§srver takes to service an HTGETrequest. These steps are

executing the appropriate callback that contains applicati
specific Web server code. i

Figures 2 and 3 show how a Web server designed usinrg
proactive event dispatching handles multiple clients concur="
rently within one or more threads. Figure 2 shows the se-
guence of steps taken when a client connects to the Web.
Server.

1

1. The Web Server instructs theceptor to initiate an

asynchronous accept;

Sxplained below:

The client sends an HTTBETrequest;

The read operation completes and tBgerating
System notifies theCompletion Dispatcher ;

The Completion Dispatcher notifies theHTTP
Handler (steps 2 and 3 will repeat until the entire re-
guest has been received);

. TheHTTP Handler parses the request;

1: GET
Jetc/passwi Web Server

HTTP
Handler
6: write (File, Conn.,

8: write * Handler, Dispatcher)

~N
J

to debug since asynchronous operations often have a non-
predictable and non-repeatable execution sequence, which
complicates analysis and debugging. But Patterns such as the
Asynchronous Completion Token [4] can be applied to sim-
plify the asynchronous application programming model [1].

Web |— | . 4: parse request
<

Browser

/
5: read (File) | 3: read

complete 1.4 Applicabilit
complet 7: write) PP y
File Completion complet * Operating The Proactor pattern is used when one or more of the following
System Dispatcher System conditions hold:

2:r mpl i~ati
L ead complete /e An application needs to perform one or more asyn-

. . chronous operations without blocking the calling thread,;
Figure 3: Client Sends requests to a Proactor-based Web o N
Server e The application must be notified when asynchronous op-

erationscomplete

The application needs to vary its concurrency strategy in-

[]
5. TheHTTP Handler synchronously reads the requested dependent of its /O model:

file;
e The application will benefit by decoupling the
application-dependent logic from the application-
independent infrastructure;

6. TheHTTP Handler initiates an asynchronous opera-
tion to write the file data to the client connection and
passes itself as @ompletion Handler and a ref-
erence to th€ompletion Dispatcher thatwill be ® Anapplication will perform poorly or fail to meet its per-

used to notify theHTTP Handler upon completion of formance requirements when utilizing either the multi-
the asynchronous write; threaded approach or the reactive dispatching approach.

7. When the write operation completes, the Operating Sys- o
tem notifies theCompletion Dispatcher ; 1.5 Structure and Participants

8. The Completion Dispatcher then notifies the The structure of the Proactor pattern is illustrated in Figure 4
Completion Handler (steps 6-8 continue until theusing UML notation.
file has been delivered completely).

Proactive Completion << parameter>> Asynchronous

Initiator > Handler (<———————- Result

The primary advantage of using the Proactor pattern is t

multiple concurrent operations can be started and can run in i —< < e ﬁ
parallel without necessarily requiring the application to have « a:a..» <:/p;ﬁ6ecer» e parametec>x— << chll>
multiple threads. The operations are started asynchronously \;(‘V/:;,;/_;:’f:,,—’/"' = | i
by the application and they run to completion within the I/{” Asynchronous |~ __ .. T . Completion
subsystem of the OS. The thread that initiated the operatioj—22e2ter ===~ Z|—Processor <"~ S
now available to service additional requests.

In the example above, for instance, t@®mpletion Figure 4: Participants in the Proactor Pattern
Dispatcher could be single-threaded. When HTTP re-
guests arrive, the singféompletion Dispatcher thread The key participants in the Proactor pattern include the fol-

parses the request, reads the file, and sends the responkmving:

the client. Since the response is sent asynchronously, mllliuriéactive Initiator (Web server application’s

ple responses could potentially be sent simultaneously. M%in thread):

over, the synchronousfile read could be replaced with an asyn-

chronous file read to further increase the potential for concury A proactive Initiator is any entity in
rency. If the file read is performed asynchronously, the only he application that initiates amAsynchronous
synchronous operation performed by M TP Handler is Operation . The Proactive Initiator regis-
the HTTP protocol request parsing. ters aCompletion Handler ~ and aCompletion

The primary drawback with the Proactive model is that the Dispatcher with an Asynchronous Operation

programming logic is at least as complicated as the Reac- processor , which notifies it when the operation
tive model. Moreover, the Proactor pattern can be difficult completes.

Completion Handler (the Acceptor and HTTP Completion Dispatcher (theNotification Queue)
Handler):

_ ' e The Completion Dispatcher is responsible
e The Proactor pattern us€ompletion Handler in- for calling back to the application’sCompletion
terfaces that are implemented by the application for Handlers when Asynchronous Operations
Asynchronous Operation completion notification. complete. When theAsynchronous Operation
, Processor completes an asynchronously initiated op-
Asynchronous Operation (the methodsAsynchronous eration, theCompletion Dispatcher performs an
Read, Asynchronous Write , ~ Asynchronous application callback on behalf of thesynchronous
Accept andAsynchronous Transmit File): Operation Processor . The Completion
« Asynchronous Operations are used to exe- Dispatcher fills the result of the asynchronous

operation in theAsynchronous Result object and

r h I nd timer ration n .
cute requests (such as I/O and timer operations) o passes that to theéompletion Handler

behalf of applications. When applications invoke
Asynchronous Operations , the operations are
performedwithout borrowing the application’s thread : _
of control! Therefore, from the application’s per- WIN32 Implementatlon of the Proac

spective, the operations are performasynchronously tor Pattern

When Asynchronous Operations complete, the

Asynchronous Operation Processor del- In this section, we will discuss the design of the Proactor
egates application notifications to @ompletion framework that was built only for the WIN32 1/0 Comple-
Dispatcher . tion Ports. We will discuss how each of the participant of the

_ . pattern discussed in the previous section was implemented.
Asynchronous Operation Processor (the Operating

System): .

2.1 Asynchronous Operation Processor

e Asynchronous Operations are run to completion
by the Asynchronous Operation Processor .
This component is typically implemented by the OS.

The WIN32 I/O subsystem is thasynchronous Operation
Processor

It definesOVERLAPPEDBtructure which contains informa-
tion used in asynchronous input and output (I/O). This struc-
Asynchronous Result (the object passed to theureis passed to the asynchronous APIs to specify the address

Completion Handler on completion of an ofthe data, such a&3ffset etc, in afile.
Asynchronous Operation) The WIN32 I/O subsystem provides the following APls to
) execute asynchronous I/O calls.
e For each Asynchronous Operation class,
there is oneAsynchronous Result class. The o ReadFile: To issue asynchronous read on a stream or a
Asynchronous Operation classes use the file handle.
Asynchronous Result classes to specify all PR,
the parameters needed to carry out the Asynchronou§ erteFlle. To issue asynchronous accept on a stream or a
Operations. Thésynchronous Result objects are file handle.
created by theAsynchronous Operation classes e AcceptEx:To issue asynchronous accept from a socket
and are passed to th&synchronous Operation handle.
Processor on issuing the qsynchronous caII_s. The , TransmitFile: To initiate transmitting a file asyn-
Asynchronous Result objects also contain the

| chronously.
results of the asynchronous operations and are used to

pass the results to th@ompletion Handler s. In ¢ CancellO:To cancel all pending input and output (I/O)
addition, theAsynchronous Result objects have operations that were issued by the calling thread for the
information such asAsynchronous Completion specified file handle.

Tokens ACTs [4] which can be used by the applica- « GetCompletionStatusfo query the OS for completions
tions to uniquely associate the asynchronous method of asynchronous I/O.

completions with their invocations. P dqc letionStatig leti
1In contrast, the reactive event dispatching model [5] steals the applica—. ostQueuedCompletionStatu® post a completion to a

tion's thread of control to perform the operation synchronously. Completion Port

2.2 Asynchronous Operation e message block: Buffer where the data has to be

read.
Asynchronous Read Stream Asynchronous .
Asynchronous Write File , Asynchronous could be read from the socket.
Accept and Asynchronous Transmit File are the o ACT (Asynchronous Completion Token):

different asynchronous operations that are currently supported Magic cookie to identify the asynchronous read invoca-
in the framework. The UML diagram 5 shows the family tion when it completes.
of classes which implement the variodsynchronous

Operation s. The following steps take place whesad API is called.
W‘ e read creates anAsynchronous Read Stream
OperationiClasses Result object with all the information that are needed
Asynchronous to carry out the asynchronous operation such/@s
i handle andbytes to read and also the informa-
/V V\ tion needed to call back the application suckasdler
Asynchronous Asynchronous Asynchronous Asynchronous an d ACT
Read Stream Accept Transmit File ‘Write Stream X .
e read passes this result object to a worker method called
/</ shared _read . This worker method is shared by the
Asynchronous LD Asynchronous Read File operation class.

e shared _read calls theReadFile WIN32 API to is-
sue the asynchronous readReadFile takes pointer
to the OVERLAPPEDstructure. Since we want to pre-
serve more information such A€TandHandler along
with OVERLAPPEDstructure, we pass the pointer to

Figure 5: Asynchronous Operation Classes

) Asynchronous Read Stream Result object to
2.2.1 Asynchronous Operation Base the ReadFile call. To achieve this, all the Asyn-
The classAsynchronous Operation Base abstracts chronous Result classes derive from M¥ERLAPPED

out all the common code found in the individual asynchronous ~ Structure (refer to Figure 6).
operation classes. This class provides the following APIs.

L i 2.2.3 Asynchronous Write Stream
e open: Applications use thepen method to register the

I/O handle and theCompletion Handler with After the open method of the Asynchronous

the Completion Dispatcher . This API calls the Operation Base is called, applications should call
CreateloCompletionPort API of the WIN32 op- thewrite API of this class to issue an asynchronous write on
erating system to register tH€O handle with the a stream. Thdiandle to write to is already given via the
Completion Port of the I/O subsystem. open call. Thewrite API takes the following parameters

e cancel : This function cancels all the asynchronous ¢ Handler: The completion handler to be called when
calls issued on a completion port on a particular 1/0 han- the operation is completed. Thisandler defines the

dle. This is implemented using ti@ancellO . call back methodhandle _write _stream .
e message block: Buffer that contains the data to be
2.2.2 Asynchronous Read Stream sent.
Operation Base is called, applications call theead the socket.
API of this class to issue an asynchronous read on a stream. ACT: Magic cookie for this asynchronous write invoca-
The handle to be read from is given via thepen call. tion.

read API takes the following parameters
The following steps take place whemite is called.
e Handler: The completion handler to be called when

the operation is completed. Thisandler defines the e write creates amsynchronous Write Stream
call back methodhandle _read _stream . Result object with all the information that are needed

to carry out the asynchronous operation such/@s e Handler: This class defines call back hook method

handle andbytes to write and also the informa- handle _asynch _accept which gets called when the
tion needed to call back the application suclasdler accept completes.
andACT.

e message block: Buffer to accept initial data that is
e write passes this result object to a worker method read on the socket.

calledshared _write . This worker method is shared o pytes to read: Number of initial bytes to be read
by the Asynchronous Write File Operation from the socket.
class.

e ACT: Magic cookie for this asynchronous accept invoca-
e shared _write calls theWriteFile WIN32 API to is- tion.

sue the asynchronous writ®VriteFile takes pointer)]

to the OVERLAPPED structure. As discussed in! € following steps take place whaocept s called.

Asynchronous Read Stream operation, we pass . accept creates an Asynchronous Accept

the pointer toAsynchronous Write Stream Resuiffject Result object with all the information that are needed
to theWriteFile so that additional information such to carry out the asynchronous operation which I&@e
asACT, Handler can be passed around along withthe handle and number of bytes to read and
OVERLAPPELBtructure. also the information needed to call back the application
which areHandler andACT.
2.2.4 Asynchronous Read File e accept calls the AcceptEXWIN32 API to issue the

asynchronous accept. AcceptEx takes pointer to
the OVERLAPPEDGtructure. Since we want to pre-
serve the more information such AE€T andHandler
along withOVERLAPPEDBtructure, we pass the pointer
to Asynchronous Accept Result object to the
AcceptEx call.

This class extends the functionality of teynchronous
Read Stream class to do asynchronous read on a file.
This operation is very similar téAsynchronous Read
Stream except that it reads from a file handle instead of
steam handle. Thieandle to be read from is given via the
open call. TheHandler 's handle _read _file is called
on completion. Whemead is called, aAsynchronous L
Read File Result class object is created and passed fo?-/ Asynchronous Transmit File

the shared _read method of theAsynchronous Read After the open method of the Asynchronous

Stream . Operation Base is called, applications should call
the transmitfile API of this class to issue an asynchronous

2.2.5 Asynchronous Write File transmit file operation. Thetream handle is given via
the open calltransmit file API takes the following

This class extends the functionality of teynchronous parameters
Write Stream class to do asynchronous write to a file.

This operation class is very similar to tieynchronous e Handler: This class defines call back hook method

Write Stream except that it writes from a file handle in- ~ handle _asynch _transmit file ~ which gets called
stead of steam handle. The stredwandle is given via when the transmission completes.
the open call. TheHandler ’s handlewrite_file is called e header and trailer: Header and the trailer data
on completion. Whenvrite is called, aAsynchronous for the transmission.
Write File Result class object is created and_passed 10, Theoffset of the file from where the data has to be
theshared _read method of theAsynchronous Write read.
Stream .))

e bytes per send: Size of the block that is sent on

the socket.

2.2.6 Asynchronous Accept e ACT: Magic cookie for this asynchronous transmission.

After the open method of the Asynchronous

. . o The following steps take place whemansmit is called.
Operation Base is called, applications call theac- gstep P

cept API of this class to issue an asynchronous write on ae The transmit file creates anAsynchronous
stream. Thdisten handle where the connectionistobe Transmit File Result object with all the infor-
accepted is given via thepen call. Theaccept API takes mation that are needed to carry out the asynchronous op-
the following parameters: eration such a¥O handle andbytes to read

and also the information needed to call back the appli-e ACT: The magic cookie given by the application when
cation which ardHandler andACT. the asynchronous operation is issued.

e transmit file calls the TransmitFile WIN32 e complete method: This method is defined in the
APl to initiate the asynchronous transmission. base classAsynchronous Result as a pure vir-
TransmitFile takes pointer to theOVERLAPPED tual method. The individual Result classes override this
structure. Since we want to preserve additional in- method and call the correct call back methods for that
formation such asACT and Handler along with operation.

OVERLAPPEDstructure, we pass the pointer to
Asynchronous Transmit File Result object
to theTransmitFile call.

For example, theAsynch Read Stream Result

class callshandle _read _stream call back method
from thecomplete method. This is very useful because
the Completion Dispatcher when it gets back a
2.3 Asynchronous Result Asynchronous Result object from the OS, can call
the thecomplete method on it without knowing the exact

The Asynchronous Result classes derive from ,
type of the asynchronous operation that has completed.

OVERLAPPEDstructure and make more useful classes.
For each Asynchronous Operation class, there is
an Asynchronous Result class which carries around2.4 Completion Handler

the additional information besides the information in the])
OVERLAPPEDstructure. This additional information iSThe Handler class defines the call back methods which are

needed to execute that operation. The result classes also €8fied Py the Proactor framework on completions of asyn-
tain fields to hold the results of the asynchronous operatiGRronous events.

The Asynchronous Result objects are finally passed FOr achAsynchronous Operation , a call back
to the Completion Handler s when the completion ismethod is defined and default implementations are provided.
dispatched. Therefore, currently, thelandler class provides the follow-

Refer to the UML diagram 6 for the family ofing call back methods.

Asynchronous Result classes.
Yy e handle _read _stream

Asynch i
DArn o e handle _write _stream
e handle _read —file

A e handle _write file
Asynchronous e handle _accept
Result . .
/v v\ e handle _transmit _file
Asymchronous Asynchronous A TR S RO Applications define their own handlers deriving from the
d Resul A Resul it Fil i .y -
prTemied | Sep el | ettt WeSwemBewt |Handler class and fill in the application logic appropriately
/</ in the call back methods.
Asynchronous Asynchronous
Read File Result ‘Write File Result

2.5 Completion Dispatcher

The Proactor class implements the Completion
Dispatcher role of the Proactor pattern. Henceforth,
The Asynchronous Result base class derives fromVe will pe using the terms Proactor and Completion Dis-
the OVERLAPPERN also abstracts out all the commonal‘?—atCher interchangeably.)
ties found in the individual result classes. The individual re- 1heProactor executes the following steps.
sult classes der_ive from_tmisynchrqnous Result class _eThe event loop on the Proactor executes
and add more mformgtlon pertaining to those corresponding GetQueuedCompletionStatus to get the comple-
async_hronous op.erapons. The Asynchronous Result classes tions of asynchronous I/O. When there is a completion
contain the following items. of an asynchronous event, it gets backaVERLAPPED
e Handler: Thisis application handlerthat handlescom- pointer from the OS. This pointer is down cast to the
pletions. Asynchronous Result type object.

Figure 6: Asynchronous Result Classes

This Asynchronous Result object might come
from a completion event or it might have been posted
throughPostQueuedCompletionStatus

[]
e The completion status of the asynchronous oper-

ation, which includes the number of bytes
transferred, error code are obtained from the
OS and filled in theAsynchronous Result object.

e The complete method is invoked on the
Asynchronous Result object, which calls back the
application handler.

e When the call back completes, thsynchronous
Result objectis deleted by theroactor

the framework to morésynchronous Processor
implementations or platforms.

Flexibility: The framework APIs should be flex-
ible enough so that applications can easily exploit fea-
tures which may be special to some particular platforms.
For example, assigningriority to an asynchronous call

is possible on POSIX systems, which is not present on
WIN32. The framework should be flexible enough so that
applications can make use of such features portably.

3.2 POSIX Asynchronous Operation Processor
The POSIX I/0O subsystem provides the following APIs to ex-

ecute asynchronous operations.

Design of the Portable, Extensible ,
and Efficient Proactor Framework

In this section, we will explain how we designed the WIN32
specific Proactor framework to be a poratable, extensible and
efficient one. We will first explain the features that the
POSIX4 operating systems provide to do asynchronous I/O.
We will then explain how we ported each of the participant
of the Proactor pattern to the POSIX platforms. We present a
straight forward solution to show how the POSIX implementa-
tion can be integrated to the existing WIN32 implementation.
Then, we show how we architected the design to make it more
extensible, scalable and efficient.

3.1 Goals

The following are the goals that we have kept in our mind to
guide our design and implementation decisions.

e Backward Compatibility: We should keep the
existing APls of the framework intact and extend all the
functionalities to work on POSIX platforms. °

e Separation of Interface and
Implementation: Irrespective how many dif-
ferent implementations are provided for the framework, ®
the APIs of the framework should be simple and common
across all the platforms or implementations. As far ase
possible, applications should be freed from worrying
about which implementation of the framework they are .
using etc. But applications should have control over
configuring which implementation should be used by the
frame work.

e Scalability: The design of the frame work is in e
such a way that it is easier to extend the framework, for
example to have more asynchronous operations or to port

aioch: This is a structure defined by the POSIX operating
system. This is used to pass the parameters to the vari-
ousaio_ calls, to issue the asynchronous calls and also to
query for the completions of the asynchronous calls. The
structure has the following parameters.

— int file: File descriptor or stream descriptor
on which an asynchronous operation is done.

— void buf: Location of the buffer that contains

the data for the 1/0.

size _t nbytes: Length of the data transfer.

offset: Offset for the file from where the file

operation is done.

int priority:

operation.

struct signal —event: Signaling option,

signal number and signal information for the asyn-

chronous call.

struct results: Error code and return value

of the asynchronous operation.

Priority of the asynchronous

aio_read: This call issues an asynchronous read on a
stream or a file handle. Theocb structure is used to
specify the various parameters to do the read operation.

aio_write: This system call issues asynchronous write on
a stream or a file handle.

aio_cancel: This system call is used to cancel all or a
particular asynchronous operation issued on a handle.

aio_suspend:This system call is used to wait on an ar-
ray of aiocb s that were used to issw@o _read s or
aio _write s, for their corresponding asynchronous op-
erations to complete.

aio_sigtimedwaitor sigwaitinfa This call is used to wait
for a set of real-time signals. It also delivers the signal
information used when the signal was raised.

e aio_error: This system call retrieves the error status for that was specified when theo _ call was issued. If

an synchronous operation. that real-time signal is masked, that signal is queued up
which can then be received througilgtimedwait or
sigwaitinfo system calls.

In our framework implementation, we want the com-

. pletions to be dispatched only when theent loopof
3.3 Signal and Asynchronous I/O Blocks Based the Proactor is invoked. We do not want the con-

Completion Queue Strategies trol to move around arbitrarily between treignal

On POSIX systems, the asynchronous I/0 completions can handler —and the rest of the code. Therefore, we mask
be obtained from the Operating system in two different ways the real-time signals used for issuing thie - calls and

e aio_return: This retrieves the return status for an asyn-
chronous operation.

either by using the real-time signals or through the Asyn- usesigtimedwait andsigwaitinfo intheevent

chronous 1/0 Control Blocksafoch s) that are used to issue ~ 00p of the Proactor class, to receive the real-time sig-

the asynchronous calls. nals that are queued by the Operating System. In this
We have made use of both of these mechanisms and approach, there is no overhead of maintaining the list of

provided two different strategies for th€ompletion aiocb s with theProactor

Dispatcher i.e. ~ the Proactor class and the |n the following sections, we will explain how we have

Asynchronous Operation classes. made use of the POSIX4 features to port the framework to

~We call the aiocb based completion notifica-pos|x platforms. We will explain how the various compo-
tion/dispatching mechanism aAlOCB strategy ~ and npents in the Asynchronous Operation and Asynchronous Re-
the real-time signals based mechanisnS#s strategy . gyt classes were ported to POSIX platforms.

They are implemented as follows.

e AIOCB Strategy: The asynchronous 1/0 controi3-4 Asynchronous Operation Classes

blocks @iocb s), that are used to issue asynchronoge fynctionalities of the various Asynchronous Operation
/O calls (@io read oraio .write)are stored withthe ¢|555e5 shown in Figure 5, are implemented for the POSIX
Proactor class. platforms as follows.

When theaio read / aio _write are issued, the

signaling option is disabled in treocb so thatthe op- 3.4.1 Asynchronous Operation Base

erating system will not raise and queue up the real-time)

signal when that operation completes. The APIs of this class have been ported as follows.

The array of aiocb s that were stored with the © Open: POSIX subsystem does not have the concept of

Proactor ~ class are then queried for one or more com- the completion port as in WIN32. Therefore, thpen

pletions using thaio _suspend system call. method initializes the data members f® handle ,
Handler andProactor so thatthey can be used while

This approach needs ti@ompletion Dispatcher , issuing asynchronous calls.

i.e., theProactor class, to keep track of all tre@ocb s

which are used to issue tiao _calls. This implementa- e cancel: aio _cancel system call is used to imple-
tion adds more complexity on part of ti@mpletion ment this API.

Dispatcher , since they need to maintain the list of

aiocb s and query for completions on them. Also, thig.4.2 Asynchronous Read Stream

approach may not scale well, since the number of pend-

ing asynchronous operations are limited by the size of thB€ réad APl implementation looks similar to the WIN32
aiocb arraywhich should be decided at compile time. MPlementation, except trghared read method, calls the
]] » aio _read to initiate an asynchronous readio _read op-
e SIG Strategy: This completion notifica-

- -) > ~ eration takes a pointer to the structaiecb . Since we want
tion/dispatching strategy is based on the real-tigg hreserve information such aCT and Handler along
signaling feature of the POSIX4 operating systems. yith ajoch structure for each asynchronous call, we pass the
A real-time signal numbeiand signal informationis pointer to theAsynchronous Read Stream Result
specified in thaeiocb structure, when the asynchronousbiject to theaio _read call. This is possible since the result
I/O call (aio _read or aio _write) is invoked. On classes derive from theocb structure (refer to Figure 10).
completion of the operation, the operating system raisesSTheshared _read has been implemented for the two dif-
the real-time signal along with thsignal information ferent completion strategies as follows.

e AIOCB strategy: Theaiocb objects used to issue theThread per Accept: For each asynchronowxcept the
aio_readare stored with th€roactorso that the Proactorapplication makes, aAsynchronous Accept Result
can doaio_suspenan them, to query for the completionobject is created with all the information needed for that

invocation. Then, a separate thread is spawned and the

e SIG strategy: In this strategy, the parames@gnal Asynchronous Accept Result object is passed to that
number provided throughtheead API, is used to issue thread.
theaio _read operation. Thus, applications can spec- The thread will block on thaccept system call. Inotifies
ify signal numbers on a per operation basis. But the Sigre Proactor , when it comes out of the system call. The
nal numbers used to issue the asynchronous operatiggst completionAPI of the Proactor is used to notify the
should have been already specified to the Proactor clggsmpletions to th@roactor
so that it can wait for completions with that signal num- Refer to the Figure 7 for how this is implemented. But this
ber. TheAsynchronous Read Stream Result
pointer is passed as the signal information, which is r;
ceived again on completion.

1: ASYCH_ACCEPT (ARGS)

Asynch
Accept
2: SPAWN A THREAD

PER ACCEPT

3.4.3 Asynchronous Write Stream

5: DISPATCH
COMPLETION

The write APl implementation works similar to the
WIN32 implementation. Theshared _write makes the
call to aio _write passing theAsynchronous Write

Stream Result object pointer and initiates the asyn|
chronous call. In the case of signal based completion strategy,
the Asynchronous Write Stream Result pointer is

passed as the signal information. In the AIOCB strategy, the
aiocb object, that is used to issue the asynchronous oper gess==={
tion, is stored with the Proactor so that it can be used to que '
for completions.

3.4.4 Asynchronous Read File

This class extends the functionality of theynchronous

Read Stream class tq do asynchronous rgad on a file. Figure 7: Asynchronous Accept by Thread Per Accept
Asynchronous Read File Result class is passed on
totheshared _read method of théAsynchronous Read

Stream class, which invokes thaio _read call. each pending accept call.

o Reactor with an auxillary thread: Having multiple threads
3.4.5 Asynchronous Write File

This class extends the functionality of theynchronous ecute theaccept s without borrowing the thread that issued
Write Stream class to do asynchronous write on a fildn€ asynchronowsccept call,

Asynchronous Write File Result class is passed In this implementation, We have an auxillary thread running
on to theshared _write method of theAsynchronous the Reactor[6] event loop. We also mgintain the Queue of
Write Stream class, which invokes thaio _write call. ASynchronous Accept Result objects to keep track

of theasynchronous accept sissued by the application.
Refer to the Figure 8 which explains this implementation.

3.4.6 Asynchronous Accept This model consists of the following components.

Unlike the WIN32 subsystem, which h@gceptExsystem
call to queue ammcceptoperation with the Operating System,
POSIX platforms do not provide a system call to accept
asynchronously on socket

When theaccept API of this class is called it should be
carried out asynchronously. We looked at the following ap-
proaches for implementing this class.

e Auxillary Thread: When theopen method on the
Asynchronous Accept operation class is called, it

loop. But initially when there is naccept call issued
by the application, thdvandle on whichaccept is

10

approach does not scale well since it requires one thread for

is overkill for doing asynchronous accept. But we have to ex-

spawns the thread which always runs the Reactor’s event

done is disabled in the Reactor, so that it does not accept

Proactor

An Asynchronous Accept Result object de-
gueued from the Queue and the result of Hueept

is filled in the object. The order in which the
Asynchronous Accept Result objects are de-
gueued, can be decided based ongthierity of the
asynchronous operation.

TheAsynchronous Accept Result objectis then
postedo theProactor using thepost _completion

API in theProactor class. The implementation of this
APl is discussed in section 3.8.

1: OPEN (ARGS) ~ 3: ASYCH ACCEPT (ARGS)

Asynch Accept Result
Asynch Q
Accept
RESULT OBJECT

2: SPAWN A THREAD
PER ACCEPT 6: DEQUEUE
RESULT OBJECT

Accept
Completion
Handler

8: DISPATCH
COMPLETION

7: POST
COMPLETION

3.4.7 Asynchronous Transmit File

WIN32 Operating System provides an API for trans-
mitting a file asynchronously on a socket. It is not
so on POSIX platformsAsynchronous Transmit

File operation class has been implemented us-
ing an Asynchronous Read File object which
reads from the file and aAsynchronous Write

Figure 8: Asynchronous Accept using Reactor with an Auxil- ~ Stream object which writes on data read from the file
lary Thread to the socket. The Figure 9 depicts this model.

Asynch Transmit File

any connections when there are msynchronous
accept calls issued by the application.

Transmit File
Completion
Handler

1: TRANSMIT FILE
R S ———

e Event Handler for the Reactor: The
Asynchronous Accept Handler is the helper
class for implementing thAsynchronous Accept
operation. It also acts as the Event Handler for t
Reactor running in the auxillary thread. This clag
manages the Queue oAsynchronous Accept
Result objects.

DISPATCH
TRANSMIT

Read File
Completion
Handler

When an asynchronous accept is issued by the

plication, anAsynchronous Accept Result ob-
ject is created for that invocation and enqueued in Proactor
Asynchronous Accept Result Queue . Then

y P ; Q 4reap K —~—""F g:wrne
the handle on the Reactor is enabled so that conne COMPLETE COMPLETE
tions can be accepted.
When there is a connection at the handle, the POSIXT/O
Reactor which runs in the auxillary thread calls SUBSYSTEM

thehandle _input of the Asynchronous Accept
Handler class. Thehandle _input method does a
non-blockingaccept system call on the handle and
completes the accept call.

Figure 9: Asynchronous Transmit File

The Asynchronous Transmit File class has a

¢ Notifying completions to the helper class called\synchronous Transmit File Han-
Proactor: Once theaccept system gets com- dler which the does the transmission on behalf of the

pleted in the auxillary thread in thkandle _input Asynchronous Transmit File operation class.

method, the completion should be notified to the It contains anAsynchronous Read File object

11

and anAsynchronous Write Stream

i Asynchi
object. The M‘

helper class acts as tH@ompletion Handler for

both the operations.

When transmit file APl is called, an
asynchronous read operation is issued on the
file and the control returns to the caller. After th

asynchronous read completes and when the calle
executes the event loop of the Proactor, the call bg
methodhandle _read _file of the helper class gets
called. In this call back method, asynchronous

Asynchronous
Result

RN

Asynchronous
ead Stream Result|

Asynchronous
Accept Result

Asynchronous
[Transmit File Result

Asynchronous
'Write Stream Result|

/</

write is initiated to write all the data read from the filg
on to the socket. When thasynchronous write

Asynchronous
Read File Result

Asynchronous
‘Write File Result

completes, handle _write _stream method gets

called on the helper class. It is possible to have parti%
writes on the socket. The state of the writes are taken

igure 10: Porting Asynchronous Result Classes to POSIX

care of by the helper class. Finally when the write fully

completes, the helper class initiates an asynchronous 3.7 Completion Dispatcher

read to get the next block of data from the file. The

helper class keeps the state of the transmission such as The Proactor

current offset of the file, ACT etc.

Special ACT strings are used to send treader and
trailer before and after the file transmission respec-
tively. The ACTs are very useful for the call back meth-
ods to differentiate between the completions of header or
trailer transmission and the file data transmission. The
call back methochandle _write _stream , when the
header transmission completes, initiates the file read to
start transmitting the file. It initiates transmitting the
trailer, when the file transmission completes. And when
the trailer transmission also completes, it calls the dis-
patches completion of theansmit file operation.

3.5 Asynchronous Result Classes

We will explain here how the Asynchronous Result
classes in the original WIN32 solution were ported to
POSIX platforms.

Since theaio system calls takes a pointer to th@cb
structure, we derive theAsynchronous Result
classes from thaiocb structure. The rest of the inheri-
tance hierarchy is the same as in WIN32 implementation.
Refer to the UML diagram 10 for the Asynchronous Re-
sult classes.

3.6 Completion Handler
This component of the framework does not have any plat-

form specific implementations. Hence this is kept com-
mon for all the implementations of the framework.

12

class implements both the completion
strategies discussed in 3.3.

To wait for the completions and the to dispatch them, the
event loop executes the following steps.

— AIOCB Strategy: In this implementation, the
aio _suspend call is used to wait on the array
of aiocb objects that are used to issue the asyn-
chronous operationsaio _suspend call returns
when there is atleast one completion.
aio _error is used to find out the correatocb
object in the array for which the completion had
occured. This call also gets the error status of the
asynchronous operation.
we cast thaaiocb pointer to the the derived class
Asynchronous Result object, since the dis-
patching functionalities are available only in the
Asynchronous Result class.

— SIG Strategy: In this strategy,
sigwaitinfo is called with the signal set
that has been already masked for all the threads.
The sigtimedwait call is used, instead of
sigwaitinfo when the timed event loop is
called. These wait calls complete on arrival of a
signal that is present in the signal set.

The Asynchronous Result object associated
with the signal delivery is retrieved from the signal
information obtained in the call.

aio _error is called on this object to get the error
status of the asynchronous operation.

aio _return is called on thaniocb object to retrive
the return status of the asynchronous operation.

To dispatch the completion, Theomplete method

is invoked on theAsynchronous Result object,
which calls the correct call back method in the comple-
tion handler.

When the call back completes, thsynchronous
Result objectis deleted by the Proactor.

3.8 Posting Completions to Completion
Queue

WIN32 provides the API
PostQueuedCompletionStatus to post a com-
pletion (a pointer to the OVERLAPPED structure) to a
Completion Port

The APl postcompletionof the Proactor class takes
a pointer to theAsynchronous Result object. On
POSIX, we have implementgzbst _completion for
the two different completion strategies as follows.

SIG Strategy: The system calsigqueue is used to
gueue up a reserved real-time signal to the current pro-
cess. TheAsynchronous Result object is assigned

as the signal information in the@gqueue call.

The Asynchronous Result pointers are read asyn-
chronously from the notify pipe and dispatched during
Proactor’s event loop.

When a read from the pipe completdgtify Pipe
Manager 's handle _read _stream gets called. This
method receives th&synchronous Result pointer
and callcomplete onit, which dispatches the comple-
tion.

After the dispatch, a neasynchronous read isis-
sued on the pipe to handle the completions in the future.

The Figure 11 explains this implementation. The ab-
stract clasdHandler provides the default implementa-
tions for the completion call back hook methods such as
handle _read _stream etc.

Proactor HAindler

Notify Pipe
Manager

The Proactor’s event loop which waits for the reserv

Asynch Read

Pipe
Stream L

real-time signal receives the Result block and ca

complete method on it, do dispatch the completion.

AIOCB Strategy: We make use of a notify pipe to send
the Asynchronous Result objects to the Proac-

Figure 11: Posting Completions to the Proactor

tor's completion queue. The Proactor reads the pige9 A Simple Integrated Proactor Framework

at the other end for théAsynchronous Result
objects. Reading for thésynchronous Result
base class pointer helps because a pointer to
type that derives from thésynchronous Result
can be posted through the notify pipe.
ample, Asynchronous Accept Result
posted in theAsynchronous Accept

For exsonditional compilation:
object is ments all over the code to switch between the WIN32 imple-
operation im- mentation and the POSIX implementations. Class definitions,

We now integrate the POSIX implementations discussed
art])ove with the existing WIN32 implementation. A straight
?oXNard integration makes use of the following tricks.

We use#if defined state-

plementation. Also, applications can derive their owtihere we change the inheritance hierarchy depending on the

Asynchronous Result
posting to the Proactor to fake completions.

classes and use them foplatform, are guarded by pre-compiler conditional directives.
For example, the Asynchronous Result classes derive from

Reading from the pipe has to be synchronized with thVERLAPPEBtructure on WIN32, but nthey derive from the

event loop of the Proactor, so that the completions are
patched only when the even loop is running. To achieve
this, the Proactor issues amsynchronous read

on the notify pipe using thésynchronous Read

filocb structure on POSIX platforms.

The definition of each function which has platform specific
implementations also has a similar kind of condition compiler
directives to switch between the implementations based on the

Stream operation class object. A helper class callelﬂatforms'

Notify Pipe Manager
as theCompletion Handler
read operation issued on the pipe.

13

manages the pipe and actSwitch statements: With in the POSIX implementation, we
for the asynchronousneed to switch between, the two different completion strate-
gies that we are using. We need to use the run time switches

based on a variable to switch between the two different imple-
mentation code. If not run time switches, we need to use the
conditional compiler directives for this too.

3.9.1 Drawbacks with the Simple Integrated Proactor
Framework

We have achieved the portability goal. We did not make any®
change to the existing APIs in the framework. We have also

kept the APIs simple. But the integrated framework we have

discussed so far, is not flexible, extensible and scalable, be-
cause of the following reasons.

e Unstructured code: Since we have merged the POSIX
specific implementation code on the WIN32 specific im-
plementation, the source code is full of #ifdef precom-

statements for switching between the implementations
have been removed. The common code among the two
POSIX implementations have been abstracted out to
base class. Refer to figures 12, 16 and 20 how the
Asynchronous Operation, Asynchronous Result and
Proactor classes have been redesigned.

Factory Methods: TheProactor class defines the
factory methods [7] to create the correct implementa-
tion objects for theAsynchronous Operation and
Asynchronous Result classes.

Once the rightProactor implementation is decided
for the application, the switching between the different
concrete implementations is decided automatically by the
Proactor class through the factory methods.

piler directives which are there to make sure the Cor§flie next section, we explain how we re-designed each of the
code is compiled on a platform. This really makes the, icinant in the Proactor pattern to achieve our goals.

implementation unreadable unstructured.

e Scalability still remains an issue. For example porting t
implementation to a new platform will involve definin
new #ifdef pre-compiler directive. The implementation
code becomes more and more ugly and complex. E
within the POSIX implementation, we have two differen/g\S
implementations and some platforms may need a diff(a
ent implementation.

3.10 Extensible Proactor Framework Design

In this section, we will explain how we enhanced our portable
design to be highly extensible and easy to maintain. This de-
sign has totally eliminated the precompiler directives from the
source code. The code for each implementation is totally de-
coupled from the other implementations, but all the implemen-
tations are bridged by a common simple Interface. The in-
terface has not changed much from the original WIN32-only
solution. Therefore the existing applications do not have to

change drastically. We have applied the following conceptsin_(

Ve umL diagram
r_ynchronous Operation
esigned in order to fulfill our goals.

.11 Design of the Asynchronous Operation

Classes

in Figure 12 shows how the
classes have been re-

1

Asynchronous Operation
Interfaces

1

Absract
Asynchronous Operation
Implementation

7/ A
/7 N

1

order to achieve our goals.

e Applying Bridge Pattern: We have applied the

Asynchronous Operation

POSIX
Asynchronous Operation
Implementation

WIN32

Implementation

Bridge pattern to decouple the concrete implementations
from the API. This eliminates all the conditional pre-
compiler directives which switched the code between the

WIN32 and the POSIX platform implementations. We o
have applied bridging to Asynchronous Operation, ASyBéckage

chronous Result and the Proactor classes. Since the

have not changed, the new design is still compatible Wit{, cseq

the old applications.
e Inheritance instead of switching:

14

We packages
have provided separate inheritance hierarchies for fhalementation
two different POSIX implementations. So all the switc®peration Implementation

Figure 12: Bridged Asynchronous Operation Classes

Asynchronous Operation Interfaces

contains the interface classes. The im-
entation classes are bridged with the interface
through the Abstract Asynchronous
Operation Implementation package. The

WIN32 Asynchronous Operation
and POSIX Asynchronous
provide the imple-

mentation classes for the WIN32 and POSIX platforn

respectively.

The UML diagram of théAsynchronous Operation

Interfaces package looks exactly similar to the Figur
5. But, the interface classes are free from precompi

POSIX AIOCB
Asynchronous Operation
Implementation

POSIX AIOCB
Asynchronous Operation

T

directives now. They forward their methods to the impl¢ POSIX AIOCB | |POSIX AIOCB | |POSIX AIOCB | |POSIX AIOCB
X . . Asynchronous | | Asynchronous | | Asynchronous Asynchronous
mentation classes which are bridged togetheAbsgtract Read Stream Accept TransmitFile | | Write Stream
Asynchronous Operation Implementation
classes.
. POSIX AIOCB POSIX AIOCB
The UML diagram of the WIN32 Asynchronous AT A
. . . . T e
Operation Implementation package is shown in the

Figure 13.
Figure 15: POSIX AIOCB Asynchronous Operation Imple-
Asynchronous Operation mentation
Implementation
WIN32
Fp e The package POSIX SIG Asynchronous
Operation Implementation defines the Asyn-
chronous Operation classes for the SIG completion strategy.
Arpriroens || Asyadvaous Asyebronous | | Asyurbiamous The UML inheritance hierarchy for this strategy looks similar
Read Stream Aceept Transmit File Wite Stream to thePOSIX AIOCB Asynchronous Implementation package
shown in 15.
WIN32 ‘WIN32
Asynchronous Asynchronous
— wiefle 13,12 Design of the Asynchronous Result

Classes

Figure 13: WIN32 Asynchronous Operation Implementation

The architecture of the new Asynchronous Result

The UML diagram of the POSIX Asynchronous classes has been shown in the Figure 16. The
Operation Implementation package is shown in the]
Figure 14. The implementations of thesynchronous
Asynchronous
Result Interfaces
POSIX
Asynchronous Operation
Implementaion
POSIX
As hi O ti
syncahronous Operation A bstract
Asynchronous
V\ Result
Implementation
POSIX AIOCB POSIX SIG PPt ~o_
A h [o) ti |Asynchronous Operation ~o
e implementation || [—1 -
WIN32 Asynchronous POSIX Asynchronous

Figure 14: POSIX Asynchronous Operation Implementation

Result Implementation

Result Implementation

Operation

Figure 16: Bridged Asynchronous Result Classes

classes for the two different completion strate-

gies 3.3 are separated in to two packages as shown inAkgnchronous Result Interfaces
the various Asynchronous

Figure 14.

The package

Operation Implementation

chronous Operation classes for the AIOCB completimtasses in

POSIX AIOCB Asynchronous
Asyn- are bridged with the

defines the

strategy. This package is shown in Figure 15.

defines the
Result class

Implementation

15

interfaces to
implementations.
interfaces through the abstract
the Abstract Asynchronous Result

package.

The

The

package,

implementations

package8VIN32

Asynchronous Result Implementation and
POSIX Asynchronous Result Implementation
implement the Asynchronous Result Interfaces
for the WIN32 and the POSIX4 platforms respectively.

The UML architecture of thésynchronous Result
Interfaces has been shown in Figure 17. Note that the

Asynchronous Result

base class does not have to de- |Reu tmplemetaton

rive from platform specifilOVERLAPPEDr aiocb struc-

ture. Therefore, there is no need for precompiler directives t¢
switch between the implementation. All the interfaces have
the reference to the implementation objects, where they for
ward all their methods.

Asynchronous
Result Interfaces

Asynchronous
Result Base

aioch
POSIX
Asynch Result
POSIX Asynch POSIX Asynch POSIX Asynch POSIX Asynch
[Read Stream Result]| Accept Result [Cransmit File Resultf Write Stream Resul{
POSIX Asynch POSIX Asynch
Read File Result Write File Result

M~

Asynchronous h A onous A ‘onous

[Read Stream Result| Accept Result [Transmit File Result| Write Stream Result|

/</

Asynchronous
Read File Result

Asynchronous
‘Write File Result

Figure 17: Asynchronous Result Interfaces

The UML diagram of the WIN32 Asynchronous Result
classes are shown in Figure 18.

‘WIN32 Asnchronous
Result Implementation

OVERLAPPED
'WIN32 Asynch
Result
'WIN32 Asynch 'WIN32 Asynch 'WIN32 synch WIN32 Asynch
[Read Stream Result| Accept Result [Cransmit File Result Write Stream Resul
I
[
'WIN32 Asynch 'WIN32 Asynch
Read File Result ‘Write File Result

Figure 19: POSIX Asynchronous Result Classes

Figure 18: WIN32 Asynchronous Result Classes

'WIN32
Proactor

The UML diagram of the POSIX Asynchronous Result
classes are shown in Figure 19.

Note that the WIN32 and the POSIX implementation
classes do not have to have any precompiler directives now.

3.13 Design of the Proactor class

The UML diagram in Figure 20 shows how the Proactor class

has been redesigned.
The Proactor Interface
face to the different Proactor class implementations.

class acts as the inter-

16

The

Proactor
Interface

[

Proactor Abstract
Implementation

POSIX AIOCB
Proactor

POSIX
Proactor

POSIX SIG
Proactor

Figure 20: Bridged Proactor Classes

Proactor Abstract Implementation bridges the defined in the Proactor class, in order to

implementations with the Proactor interface. Rreactor obtain the correct Asynchronous Result
Interface class simply forwards all the methods to the im- Implementation s and callcomplete method
plementation classes. on them.

The two different completion notification/dispatching .
mechanisms discussed in 3.3, are implemented bp@®IX ® Separation of Interface and

AIOCB Proactor class and th€OSIX SIG Proactor Implementation: We have separated the inter-
class. ThePOSIX AIOCB Proactor implements the faces from the implementations. We have also provided
AIOCB strategy and the THROSIX SIG Proactor class separation between the various implementations.

implements the SIG Strategy. The common code betweerl
these two implementations have been abstracted out in the

Scalability: The framework now has a very clean
architecture to scale.

POSIX Proactor class.

For example, to port the framework to a new
Asynchronous Operation Processor im-

3.14 Design Analysis plementation or to a new Operating System involves

Let us now analyze this design from the view of the goals we

reusing the existing bridging hierarchy and define a new

had initially. implementation hierarchy for the new implementation.

Factory methods and call back methods have to be

e Backward Compatibility: The main interfaces defined appropriately for the new implementation/

of the framework have not been changed, except that the In the simple design discussed in 3.9, this would have
following minor changes have been done to the APIs of involved switch statements and #ifdef precompiler direc-

the framework to fit with the new design. tives all over the code to incorporate the new implemen-
tation.
— Proactor Constructor: The constructor of o
the Proctor class in the interface level, takes Ab- ¢ Flexibility: We have made use of platform spe-

stract Implementation objects, instead of platform cific features in the framework so that applications can
specific constructor parmeters. When no implemen- Use them to their advantage on those platforms with out
tation is given, it creates implementations based on loosing portability. Default values have been provided to
the predefined constants, with default options. To Such features.

override this, applications can create the implemen- For example, specifyingriority value for the asyn-
tation and then create the interface Proactor object chronous operation is provided to the APIs of the

with that implementation. Asynchronous Operation so that applications on
post _completion: This API has been taken POSIX systems can use them successfully. But it is pro-
off from the main Proactor interface and have Vided with a default value so that applications on WIN32
been moved to theProactor Abstract platforms need not be concerned with it.
Implementation class. This is necessary

since theAbstract Asynchronous Result 4 Conclusions

classes which are posted as completions have

different base classes, in POSIX and WIN3gpe \viN32 platform specific Proactor framework was ex-
platforms. tended to work on the POSIX implementations of the Asyn-
complete: This method is defined in thechronous Operation Processor. We have made our design in
Asynchronous Result Implementation such way that the framework is not only portable but also ex-
classes. This method is used by tAmactor tensible to include more features, scalable to more implemen-
Implementation classes to dispatch theations of Asynchronous Operations Processor and highly ef-
completions to the correct call back methods. ficient.

Applications sometime exploit this feature to

fake completions to their handlers. Now, sincReaferences

the Asynchronous Result Interface

classes are different from th&synchronous [1] I. Pyarali, T. Harrison, D. C. Schmidt, and T. D. Jordan, “Proac-
Result Implementation classes, application tor — An Architectural Pattern for Demultiplexing and Dispatch-
should make use of thdactory methods ing Handlers for Asynchronous Events,” iFhe 4!* Pattern

17

(2]

(3]

[4]

(5]

(6]

[7]

Languages of Programming Conference (Washington University
technical report #WUCS-97-34%eptember 1997.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6" USENIX C++ Technical Conferencg(Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

J. C. Mogul, “The Case for Persistent-connection HTTPPio-
ceedings of ACM SIGCOMM ’95 Conference in Computer Com-
munication Review(Boston, MA), pp. 299-314, ACM Press,
August 1995.

I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Asynchronous
Completion Token: an Object Behavioral Pattern for Efficient
Asynchronous Event Handling,” iRattern Languages of Pro-
gram Design(R. Martin, F. Buschmann, and D. Riehle, eds.),
Reading, MA: Addison-Wesley, 1997.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Con-
current Event Demultiplexing and Event Handler Dispatching,”
in Pattern Languages of Program Desigh O. Coplienand D. C.
Schmidt, eds.), pp. 529-545, Reading, MA: Addison-Wesley,
1995.

D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Con-
current Event Demultiplexing and Dispatching,”Pmoceedings

of the1** Annual Conference on the Pattern Languages of Pro-
grams (Monticello, lllinois), pp. 1-10, August 1994,

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Pat-
terns: Elements of Reusable Object-Oriented SoftwReading,
MA: Addison-Wesley, 1995.

18

