
Applying Patterns to Develop a Pluggable
Protocols Framework for ORB Middleware

Douglas C. Schmidt, Carlos O’Ryan, and Ossama Othman Fred Kuhns and Jeff Parsons
fschmidt,coryan,ossamag@uci.edu ffredk,parsonsg@cs.wustl.edu

Electrical & Computer Department of Computer Science
Engineering Department Washington University

University of California, Irvine, USA St. Louis, MO, USA�

This paper appeared as a chapter in the bookDesign Pat-
terns in Communications, (Linda Rising, ed.), Cambridge
University Press, 2001. An earlier version appeard in the
IFIP/ACM Middleware 2000 Conference, Pallisades, New
York, April 3-7, 2000.

Abstract

To be an effective platform for performance-sensitive ap-
plications, off-the-shelf CORBA middleware must preserve
the communication-layer quality of service (QoS) properties
of applications end-to-end. However, the standard CORBA
GIOP/IIOP interoperability protocols are not well-suited for
applications with stringent message footprint size, latency,
and jitter requirements. It is essential, therefore, to develop
standard pluggable protocols frameworks that allow custom
messaging and transport protocols to be configured flexibly
and used transparently by applications.

This paper provides three contributions to the study of
pluggable protocols frameworks for performance-sensitive
CORBA middleware. First, we outline the key design chal-
lenges faced by pluggable protocols developers. Second, we
describe how we resolved these challenges by developing a
pluggable protocols framework for TAO, which is our high-
performance, real-time CORBA-compliant ORB. Third, we
present the results of benchmarks that pinpoint the impact of
TAO’s pluggable protocols framework on its end-to-end effi-
ciency and predictability.

Our results demonstrate how the application of optimiza-
tions and patterns to CORBA middleware can yield both highly
flexible/reusable designs and highly efficient/predictable im-
plementations. These results illustrate that (1) CORBA mid-
dleware performance is largely an implementation detail and
(2) the next-generation of optimized, standards-based CORBA

�This work was supported in part by AFOSR grant F49620-00-1-0330,
ATD, BBN, Boeing, Cisco, DARPA contract 9701516, Motorola Commercial
Government and Industrial Solutions Sector, Motorola Laboratories, Siemens,
and Sprint.

middleware can replace many ad hoc and proprietary solu-
tions.

1 Introduction

Standard CORBA middleware now available off-the-shelf al-
lows clients to invoke operations on distributed components
without concern for component location, programming lan-
guage, OS platform, communication protocols and intercon-
nects, or hardware [1]. However, conventional off-the-shelf
CORBA middleware generally lacks (1) support for QoS spec-
ification and enforcement, (2) integration with high-speed net-
working technology, and (3) efficiency, predictability, and
scalability optimizations [2]. These omissions have limited
the rate at which performance-sensitive applications, such
as video-on-demand, teleconferencing, and avionics mission
computing, have been developed to leverage advances in
CORBA middleware.

To address the shortcomings of CORBA middleware men-
tioned above, we have developedThe ACE ORB(TAO) [2],
which is an open-source,1 standards-based, high-performance,
real-time ORB endsystem CORBA middleware that supports
applications with deterministic and statistical QoS require-
ments, as well as “best-effort” requirements. This paper fo-
cuses on the design and implementation of apluggable proto-
cols frameworkthat can efficiently and flexibly support high-
speed protocols and networks, real-time embedded system in-
terconnects, and standard TCP/IP protocols over the Internet.

At the heart of TAO’s pluggable protocols framework is its
patterns-oriented OO design [3, 4], which decouples TAO’s
ORB messaging and transport interfaces from its transport-
specific protocol components. This design allows custom
ORB messaging and transport protocols to be configured flex-
ibly and used transparently by CORBA applications. For ex-
ample, if ORBs communicate over a high-speed networking

1TAO is available atwww.cs.wustl.edu/ �schmidt/TAO.html .

1

infrastructure, such as ATM AAL5 or specialized protocols
like HPPI, then simpler ORB messaging and transport proto-
cols can be configured to optimize unnecessary features and
overhead of the standard CORBA General Inter-ORB Proto-
col (GIOP) and Internet Inter-ORB Protocol (IIOP). Likewise,
TAO’s pluggable protocols framework makes it straightfor-
ward to support customized embedded system interconnects,
such as CompactPCI or VME, under the standard CORBA
General Inter-ORB Protocol (GIOP).

For OO researchers and practitioners, the results in this pa-
per provide two important contributions:

1. We demonstrate empirically that the ability of
standards-based CORBA middleware to support high-
performance, real-time systems is largely animplementation
detail, rather than an inherent liability,e.g.:

� TAO’s end-to-end one-way latency overhead is only
�110 �secs using commercial off-the-self 200 MHz
PowerPCs, a 320 Mbps VMEbus, and VxWorks.

� The overall roundtrip latency of a TAO two-way method
invocation using the standard inter-ORB protocol and us-
ing a commercial, off-the-self Pentium II Xeon 400 MHz
workstation running in loopback mode is�189 �secs.
The ORB middleware accounts for approximately 48%
or�90�secs of the total roundtrip latency.

� Using the specialized POSIX local IPC protocol reduces
roundtrip latency to�125�secs.

These results are as fast, or faster, than manyad hoc, pro-
prietary solutions, thereby motivating the use of well-tuned,
standards-based CORBA middleware, even for real-time em-
bedded applications with stringent QoS requirements.

2. We explore how patterns can be applied to resolve key
design challenges. TAO’s pattern-oriented OO design can be
extended to other pluggable protocols frameworks, either in
standard middleware or in distributed applications using pro-
prietary middleware.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the CORBA protocol interoperability archi-
tecture; Section 3 motivates the requirements for standard
CORBA pluggable protocols and outlines TAO’s pluggable
protocols framework; Section 4 describes the patterns that
guide the architecture of TAO’s pluggable protocols frame-
work and resolve key design challenges. Section 5 illustrates
the performance characteristics of TAO’s pluggable protocols
framework; Section 6 compares TAO with related work; and
Section 7 presents concluding remarks.

2 Overview of the CORBA Protocol In-
teroperability Architecture

The CORBA specification [5] defines an architecture for ORB
interoperability. Although a complete description of the model
is beyond the scope of this paper, this section outlines the
portions of the CORBA specification that are relevant to our
present topic,i.e., object addressing and inter-ORB protocols.

CORBA Object addressing: To identify objects, CORBA
defines a generic format called the Interoperable Object Ref-
erence (IOR). An object reference identifies one instance of an
object and associates one or more paths by which that object
can be accessed. The same object may be located by different
object references,e.g., if a server is re-started on a new port or
migrated to another host. Likewise, multiple server locations
can be referenced by one IOR,e.g., if a server has multiple net-
work interfaces connecting it to distinct networks, there may
be multiple network addresses.

References to server locations are calledprofiles. A pro-
file provides an opaque, protocol-specific representation of an
object location. Profiles can be used to annotate the server lo-
cation with QoS information, such as the priority of the thread
serving each endpoint or redundant addresses to increase fault-
tolerance.

CORBA protocol model: CORBA Inter-ORB Protocols
(IOP)s support the interoperability between ORB endsystems.
IOPs define data representation formats and ORB messaging
protocol specifications that can be mapped onto standard or
customized transport protocols. Regardless of the choice of
ORB messaging or transport protocol, however, the same stan-
dard CORBA programming model is exposed to the appli-
cation developers. Figure 1 shows the relationships between
these various components and layers.

ORB MESSAGING

COMPONENT

ORB TRANSPORT

ADAPTER COMPONENT

TRANSPORT LAYER

NETWORK LAYER

GIOP

IIOP

TCP

IP

VME

DRIVER

AAL 5

ATM

GIOPLITE

VME-IOP

ESIOP

ATM -IOP
RELIABLE

SEQUENCED

PROTOCOL CONFIGURATIONS

STANDARD CORBA PROGRAMMING API

Figure 1: Relationship Between CORBA Inter-ORB Protocols
and Transport-specific Mappings

2

In the CORBA protocol interoperability architecture, the
standardGeneral Inter-ORB Protocol(GIOP) is defined by
the CORBA specification [5]. In addition, CORBA defines
a TCP/IP mapping of GIOP, which is called theInternet Inter-
ORB Protocol(IIOP). ORBs must support IIOP to be “interop-
erability compliant.” Other mappings of GIOP onto different
transport protocols are allowed by the specification, as are dif-
ferent inter-ORB protocols, which are known asEnvironment
Specific Inter-ORB Protocols(ESIOP)s.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format. For example, the
GIOP specification consists of the following:

� A Common Data Representation (CDR) definition:
CDR is a transfer syntax that maps IDL types from their native
host format to a low-levelbi-canonicalrepresentation, which
supports both little-endian and big-endian formats. CDR-
encoded messages are used to transmit CORBA requests and
server responses across a network. All IDL data types are mar-
shaled using the CDR syntax into anencapsulation, which is
an octet stream that holds marshaled data.

� GIOP message formats: The GIOP specification de-
fines seven types of messages that send requests, receive
replies, locate objects, and manage communication channels.
The following table lists the seven types of messages in GIOP
1.02 and the permissible originators of each type:

Message Type Originator Value
Request Client 0
Reply Server 1
CancelRequest Client 2
LocateRequest Client 3
LocateReply Server 4
CloseConnection Server 5
MessageError Both 6

� GIOP transport adapter: The GIOP specification de-
scribes the features of an ORB transport protocol that can
carry GIOP messages. Such protocols must be reliable and
connection-oriented. In addition, GIOP defines a connection
management protocol and a set of constraints for GIOP mes-
sage ordering.

�Object addressing: An Interoperable Object Reference
(IOR) is a sequence of opaqueprofiles, each representing a
protocol-specific representation of an object’s location. For
example, an IIOP profile includes the IP address and port num-
ber where the server accepts connections, as well as the object
key that identifies an object within a particular server. An IOR
may contain multiple profiles because there may be multiple

2Version 1.1 of GIOP added aFragment message and version 1.2 relaxes
restrictions on message originators.

ways to access a server,e.g., through different physical net-
work connections or alternate protocols.

CORBA also defines other attributes that can be associated
with a specific profile, group of profiles, or an entire IOR.
These attributes are calledtagged components. Tagged com-
ponents can contain various types of QoS information dealing
with security, server thread priorities, network connections,
CORBA policies, or other domain-specific information.

An IIOP Version 1.0 profile contains the protocol version,
hostname, and port number, as well as an object key that is
used to demultiplex an object within a server’s Object Adapter.
In IIOP version 1.1, a new field was added to the GIOP
header that defines a sequence of tagged components, which
are name/value pairs that can be used for security, QoS, or
other purposes. Tagged components may contain more infor-
mation than just the object location. For example, IIOP 1.1
defines a flexible mechanism to include QoS parameters, secu-
rity and authentication tokens, per-object policies for bridging
with non-CORBA middleware, character set representations,
and alternative addresses for a server.

ESIOP synopsis: In addition to the standard GIOP and IIOP
protocols, the CORBA specification allows ORB implemen-
tors to define Environment Specific Inter-ORB Protocols (ES-
IOP)s. ESIOPs can define unique data representation for-
mats, ORB messaging protocols, ORB transport protocols or
transport protocol adapters, and object addressing formats.
These protocols can exploit the QoS features and guaran-
tees provided in certain domains, such as telecommunications
or avionics, to satisfy performance-sensitive applications that
have stringent bandwidth, latency, and jitter requirements.

Only one ESIOP protocol is defined in the CORBA 2.x
family of specifications: the DCE Common Inter-ORB Pro-
tocol (DCE-CIOP) [5]. The OMG is attempting to standardize
other protocols for domains, such as wireless and mobile sys-
tems [6], which have unique performance characteristics and
optimization points.

3 The Design of a CORBA Pluggable
Protocols Framework

The CORBA specification provides a standard for general-
purpose CORBA middleware. Within the scope of this specifi-
cation, however, ORB implementors are free to optimize inter-
nal data structures and algorithms [7]. Moreover, ORBs may
use specialized inter-ORB protocols and ORB services and
still comply with the CORBA specification.3 For example,
ORB providers can develop additional ESIOPs for protocols
such as ATM or VME, as shown in Figure 1.

3An ORB must implement GIOP/IIOP, however, to be interoperability-
compliant.

3

This section first identifies the limitations of, and require-
ments for, protocol support in conventional CORBA ORBs. It
then describes how TAO’s pluggable protocols framework is
designed to overcome these limitations.

3.1 Protocol Limitations of Conventional ORBs

CORBA’s standard GIOP/IIOP protocols are well-suited for
conventional request/response applications with best-effort
QoS requirements [8]. They are not well-suited, however, for
high-performance real-time and/or embedded applications that
cannot tolerate the message footprint size of GIOP or the la-
tency, overhead, and jitter of the TCP/IP-based IIOP transport
protocol. For instance, TCP functionality, such as adaptive re-
transmissions, deferred transmissions, and delayed acknowl-
edgments, can cause excessive overhead and latency for real-
time applications [9]. Likewise, network protocols, such as
IPv4, lack packet admission policies and rate control capabili-
ties, which can lead to excessive congestion and missed dead-
lines in networks and endsystems.

Therefore, applications with more stringent QoS require-
ments need optimized protocol implementations, QoS-aware
interfaces, custom presentations layers, specialized memory
management (e.g., shared memory between ORB and I/O sub-
system), and alternative transport programming APIs (e.g.,
sockets vs. VIA [10]). Domains where highly optimized
ORB messaging and transport protocols are particularly im-
portant include (1) multimedia applications running over high-
speed networks, such as Gigabit Ethernet or ATM, and (2)
real-time applications running over embedded system inter-
connects, such as VME or CompactPCI.

Conventional CORBA implementations have the following
limitations that make it hard for them to support performance-
sensitive applications effectively:

1. Static protocol configurations: Conventional ORBs sup-
port a limited number of statically configured protocols, often
just GIOP/IIOP over TCP/IP.

2. Lack of protocol control interfaces: Conventional
ORBs do not allow applications to configure key protocol poli-
cies and properties, such as peak virtual circuit bandwidth or
cell pacing rate.

3. Single protocol support: Conventional ORBs do not
support simultaneous use of multiple inter-ORB messaging or
transport protocols.

4. Lack of real-time protocol support: Conventional
ORBs have limited or no support for specifying and enforcing
real-time protocol requirements across a backplane, network,
or Internet end-to-end.

3.2 Pluggable Protocols Framework Require-
ments

The limitations of conventional ORBs described in Section 3.1
make it hard for developers to leverage existing implementa-
tions, expertise, and ORB optimizations across projects or ap-
plication domains. Defining a standardpluggable protocols
frameworkfor CORBA ORBs is an effective way to address
this problem. The requirements for such a pluggable protocols
framework for CORBA include the following:

1. Define standard, unobtrusive protocol configuration in-
terfaces: To address the limitations of conventional ORBs,
a pluggable protocols framework should define a standard set
of APIs to install ESIOPs and their transport-dependent com-
ponents. Most applications need not use this interface di-
rectly. Therefore, the pluggable protocols interface should be
exposed only to application developers interested in defining
new protocols or in configuring existing protocol implementa-
tions in novel ways.

2. Use standard CORBA programming and control inter-
faces: To ensure application portability, clients should pro-
gram to standard application interfaces defined in CORBA
IDL, even if pluggable ORB messaging or transport protocols
are used. Likewise, object implementors need not be aware of
the underlying framework. Developers should be able to set
policies, however, that control the ORB’s choice of protocols
and protocol properties. Moreover, these interfaces should
transparently support certain real-time ORB features, such as
scatter/gather I/O, optimized memory management, and strate-
gized concurrency models [7].

3. Simultaneous use of multiple ORB messaging and trans-
port protocols: To address the lack of support for multi-
ple inter-ORB protocols in conventional ORBs, a pluggable
protocols framework should support different messaging and
transport protocolssimultaneouslywithin an ORB endsystem.
The framework should configure inter-ORB protocols trans-
parently, eitherstaticallyduring ORB initialization [11] ordy-
namicallyduring ORB run-time [12].

4. Support for multiple address representations: This re-
quirement addresses the lack of support for multiple Inter-
ORB protocols and dynamic protocol configurations in con-
ventional ORBs. For example, each pluggable protocol imple-
mentation can potentially have a different profile and object
addressing strategy. Therefore, a pluggable protocols frame-
work should provide a general mechanism to represent these
disparate address formats transparently, while also supporting
standard IOR address representations efficiently.

5. Support CORBA standard features and future en-
hancements: A pluggable protocols framework should sup-
port standard CORBA [13] features, such as object reference

4

forwarding, connection transparency, preservation of foreign
IORs and profiles, and the GIOP 1.2 protocol, in a manner
that does not degrade end-to-end performance and predictabil-
ity. Moreover, a pluggable protocols framework should ac-
commodate forthcoming enhancements to the CORBA spec-
ification, such as (1)fault tolerance[14, 15], which supports
group communication, (2)real-time properties[11], which in-
clude features to reserve connection and threading resources
on a per-object basis, (3)asynchronous messaging[16], which
exports QoS policies to application developers, and (4)wire-
less access and mobility[6], which defines lighterweight Inter-
ORB protocols for low-bandwidth links.

6. Optimized inter-ORB bridging: A pluggable protocols
framework should ensure that protocol implementors can cre-
ate efficient, high-performance inter-ORBin-line bridges. An
in-line bridge converts inter-ORB messages or requests from
one type of IOP to another. This makes it possible to bridge
disparate ORB domains efficiently without incurring unneces-
sary context switching, synchronization, or data movement.

7. Provide common protocol optimizations and real-time
features: A pluggable protocols framework should support
features required by real-time CORBA applications [11], such
as resource pre-allocation and reservation, end-to-end prior-
ity propagation, and mechanisms to control properties specific
to real-time protocols. These features should be implemented
without modifying the standard CORBA programming APIs
used by applications that do not possess real-time QoS require-
ments.

8. Dynamic protocol bindings: To address the limitations
with static, inflexible protocol bindings in conventional ORBs,
a pluggable protocols frameworks should support dynamic
binding of specific ORB messaging protocols with specific in-
stances of ORB transport protocols. This design permits effi-
cient and predictable configurations for both standard and cus-
tomized IOPs.

3.3 Architectural Overview of TAO’s Plug-
gable Protocols Framework

To meet the requirements outlined in Section 3.2, we iden-
tified logical communication component layers within TAO,
factored out common features, defined general framework in-
terfaces, and implemented components to support different
concrete inter-ORB protocols. Higher-level services in the
ORB, such as stubs, skeletons, and standard CORBA pseudo-
objects, are decoupled from the implementation details of par-
ticular protocols, as shown in Figure 2. This decoupling is
essential to resolve several limitations of conventional ORBs
outlined in Section 3.1, as well as to meet the requirements set
forth in Section 3.2.

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

IIO
P

REAL -TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATM
TCP

MEMORY

MANAGEMENT

OTHER

ORB CORE

SERVICES

P
LU

G
G

A
B

LE
 P

R
O

T
O

C
O

LS
 F

R
A

M
E

W
O

R
K

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL -TIME I /O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

CONCURRENCY

MODEL

POLICY

CONTROL

CONNECTION

MANAGEMENT

PROFILE

MANAGEMENT

Figure 2: TAO’s Pluggable Protocols Framework Architecture

In general, the higher-level components and services of
TAO use the Facade pattern [17] to access the mechanisms
provided by its pluggable protocols framework. Thus, ap-
plications can (re)configure custom protocols without requir-
ing global changes to the ORB. Moreover, because applica-
tions typically access only the standard CORBA APIs, TAO’s
pluggable protocols framework can be used transparently by
CORBA application developers.

The key TAO pluggable protocols framework components
illustrated in Figure 2 are described below.

3.3.1 ORB Messaging Component

This component is responsible for implementing ORB mes-
saging protocols, such as the standard CORBA GIOP ORB
messaging protocol, as well as custom ESIOPs. An ORB
messaging protocol must define a data representation, an
ORB message format, an ORB transport protocol or transport
adapter, and an object addressing format. Within this frame-
work, ORB protocol developers are free to implement opti-
mized Inter-ORB protocols and enhanced transport adaptors,
as long as they respect the ORB interfaces.

Each ORB messaging protocol implementation inherits
from a common base class that defines a uniform interface.
This interface can be extended to include new capabilities
needed by special protocol-aware policies. For example, ORB
end-to-end resource reservation or priority negotiation can
be implemented in an ORB messaging component. TAO’s
pluggable protocols framework ensures consistent operational
characteristics and enforces general IOP syntax and semantic
constraints, such as error handling.

When adding a new IOP, it may not be necessary to re-
implement all aspects of the ORB’s messaging protocol. For
example, TAO has a highly optimized CDR implementation
that can be used by new IOPs [7]. TAO’s CDR implemen-
tation contains highly optimized memory allocation strategies

5

and data type translations. Thus, protocol developers can sim-
ply identify new memory or connection management strate-
gies that can be configured into the existing CDR components.

Message factoriesare another key part of TAO’s ORB mes-
saging component. During connection establishment, these
factories instantiate objects that implement various ORB mes-
saging protocols. These objects are associated with a specific
connection and ORB transport adapter component,i.e., the ob-
ject that implements the component, for the duration of the
connection.

3.3.2 ORB Transport Adapter Component

This component maps a specific ORB messaging protocol,
such as GIOP or DCE-CIOP, onto a specific instance of an
underlying transport protocol, such as TCP or ATM. Figure 2
shows an example in which TAO’s transport adapter maps the
GIOP messaging protocol onto TCP–this standard mapping is
called IIOP. In this case, the ORB transport adapter combined
with TCP corresponds to the transport layer in the Internet ref-
erence model. However, if ORBs are communicating over an
embedded interconnect, such as a VME bus, the bus driver and
DMA controller provide the “transport layer” in the commu-
nication infrastructure.

TAO’s ORB transport component accepts a byte stream
from the ORB messaging component, provides any additional
processing required, and passes the resulting data unit to the
underlying communication infrastructure. Additional process-
ing that can be implemented by protocol developers includes
(1) concurrency strategies, (2) endsystem/network resource
reservation protocols, (3) high-performance techniques, such
as zero-copy I/O, shared memory pools, periodic I/O, and in-
terface pooling, (4) enhancement of underlying communica-
tions protocols,e.g., provision of a reliable byte stream proto-
col over ATM, and (5) tight coupling between the ORB and ef-
ficient user-space protocol implementations, such as Fast Mes-
sages [18].

3.3.3 ORB Policy Control Component

It is not possible to determinea priori all attributes defined
by all protocols. Therefore, TAO’s pluggable protocols frame-
work provides an extensiblepolicy controlcomponent, which
implements the QoS framework defined in the CORBA Mes-
saging [16] and Real-time CORBA [11] specifications. This
component allows applications to control the QoS attributes
of configured ORB transport protocols.

In general, the CORBA QoS framework allows applica-
tions to specify variouspoliciesto control the QoS attributes
in the ORB. The CORBA specification uses policies to de-
fine semantic properties of ORB features precisely without (1)

over-constraining ORB implementations or (2) increasing in-
terface complexity for common use-cases. Example policies
relevant for pluggable protocols include buffer pre-allocations,
fragmentation, bandwidth reservation, and maximum trans-
port queue sizes.

Policies in CORBA can be set at the ORB, thread, or ob-
ject level. Thus, application developers can set global poli-
cies that take effect for any request issued in a particular ORB.
Moreover, these global settings can be overridden on a per-
thread basis, a per-object basis, or even before a particular re-
quest. In general, CORBA’s Policy framework provides very
fine-grained control over the ORB behavior, while providing
simplicity for the common case.

Certain policies, such as timeouts, can be shared between
multiple protocols. Other policies, such as ATM virtual circuit
bandwidth allocation, may apply to a single protocol. Each
configured protocol can query TAO’s policy control compo-
nent to determine its policies and use them to configure itself
for user needs. Moreover, protocol implementations can sim-
ply ignore policies that do not apply to it.

TAO’s policy control component enables applications to
select their protocol(s). This choice can be controlled by
the ClientProtocolPolicy defined in the Real-time
CORBA specification [11]. Using this policy, an application
can indicate its preferred protocol(s) and TAO’s policy control
component then attempts to match that preference with its set
of available protocols. TAO provides other policies that con-
trol the behavior of the ORB if an application’s preferences
cannot be satisfied. For example, an exception can be raised
or another available protocol can be selected transparently.

3.3.4 Connection Management Services

Connection management services are a fundamental compo-
nent of TAO’s pluggable protocols framework. These ser-
vices are responsible for creating ORB protocol objects dy-
namically and associating them with specific connections.
They also interpret profiles and create object references on
the server. By employing patterns and leveraging TAO’s real-
time features [19], protocol implementors can design high-
performance IOPs that enforce stringent QoS properties.

The connection management services are implemented with
connectors, acceptors, reactorsandregistriesthat keep track
of available protocols, create protocol objects, and interpret
profiles and object addresses. Acceptors and connectors im-
plement theAcceptor-Connectorpattern [3], which decouples
the task of connection establishment and connection handler
initialization from subsequent IOP message processing. The
connectors and acceptors register themselves with their corre-
sponding registries. The registries in turn keep track of avail-
able ORB message and transport protocols and are responsible
for interpreting object references.

6

TAO’s connection management services behave differently
depending on whether the ORB plays the role of a client or a
server, as outlined below.

Client ORB components: In the client ORB, the
Connector Registry and Connector establish
connections to server objects and link the constituent objects
together statically or dynamically. When a client application
invokes an operation, it uses the list of profiles derived from
the object’s IOR.

For each inter-ORB and transport protocol combination
available in the ORB, there is a correspondingConnector
object responsible for performing the connection. The registry
will cycle through the list of profiles for an object, requesting
the appropriate connector to attempt a connection. If a connect
succeeds, then the search is concluded and the successful pro-
file is returned to the client. If no connect succeeds, the ORB
throws atransient exception to the client.

Server ORB components: In the server ORB, an
Acceptor waits passively for a connection event using
a Reactor in accordance with the Reactor pattern [3].
Different concurrency architectures may be used, such
as single-threaded, thread-per-connection or thread-per-
priority [20]. The actual concurrency strategy used is
provided as a service by TAO’s ORB Core and the plug-
gable protocols framework. Regardless of the threading and
connection concurrency strategy, the basic steps are the same:

1. AnAcceptor listens to endpoints and waits for connec-
tion requests.

2. When a connection is accepted, a connection handler ob-
ject and IOP object are created.

The Acceptor Registry creates object references for
registered server objects. When an object is advertised, the
registry will request each registeredAcceptor to create a
profile for this object. TheAcceptor will place in this pro-
file the host address, the corresponding transport service ac-
cess point (for example, port number for TCP/IP), and object
key. All profiles are then bundled by theAcceptor into an
IOR, which clients can use to access the object.

3.3.5 Multiple Profiles and Location Forwarding

As explained in Section 2, clients obtain interoperable ob-
ject references (IORs), which are used to locate the objects
upon which invocations are performed. An object reference in-
cludes at least one profile, which contains information for ac-
cessing an object through different network interfaces, shared
memory, security restrictions, or QoS parameters. Multiple
profiles could be used in a situation where an object resides on
a server with multiple interfaces,e.g., ATM and Ethernet. A
profile will then be created for each of the two interfaces.

TAO’s multiple profiles implementation incorporates sup-
port for location forwarding, which occurs when an ORB
sends a request to a server object, and the server responds with
a location forward reply. The location forward reply will in-
clude an IOR that the client decodes to get the list of forward-
ing profiles. The forwarding profiles will then replace the for-
warded profile in the original profile list. Each new profile will
then be tried in turn until one succeeds, is itself forwarded, or
until all fail. If all forwarding profiles fail, the forwarding list
is removed and the ORB continues with the next profile after
the one that was forwarded initially.

There is no pre-defined limit on the number of location-
forward messages that an ORB may receive. For example,
if an invocation using a profile from the list of forwarding pro-
files should also be forwarded, the process will repeat recur-
sively until the operation succeeds or all profiles have been
tried. In practice, however, it is advantageous to limit the depth
of recursion in case forwarding loops occur.

Multiple profiles can be used for other purposes, such as
fault-tolerance [14, 15]. For example, consider an object that
is replicated in three locations,e.g., on different hosts, pro-
cesses, or CPU boards in an embedded system. The IOR for
this object would contain three profiles, one for for each object
location. If an invocation fails using the first profile, TAO’s
pluggable protocols framework will transparently retry the in-
vocation using the second profile that corresponds to the repli-
cated object at a different location. By using some form of
checkpointing or reliable multicast the state of these object in-
stances can be synchronized.

Location forwarding can also be used for load balancing.
For example, if one server becomes overloaded, it can migrate
some of its objects to another server. Subsequent requests on
the relocated object will then result in a location forward reply
message. The message contains the new IOR for the relocated
object. In the client ORB, TAO’s pluggable protocols frame-
work will then retry the object operation invocation using the
new IOR transparently to the application. When system loads
return to normal, the object can migrate back to the original
server, and if the client performs another operation invocation,
the forwarded server can reply with an exception indicating the
object is no longer there. The client then retries at the original
location transparently to the application.

3.4 Pluggable Protocols Scenarios

To illustrate how TAO’s pluggable protocols framework has
been applied in practice, we now describe two scenarios
that require performance-sensitive and real-time CORBA sup-
port. These scenarios are based on our experience developing
high-bandwidth, low-latency audio/video streaming applica-
tions [21] and avionics mission computing [22] systems. In
previous work [20], we addressed the network interface and

7

I/O system and how to achieve predictable, real-time perfor-
mance. In the discussion below, we focus on ORB support for
alternate protocols.

3.4.1 Low-latency, High-bandwidth Multimedia Stream-
ing

Multimedia applications running over high-speed networks re-
quire optimizations to utilize available link bandwidth, while
still meeting application deadlines. For example, consider Fig-
ure 3, where network interfaces supporting 1.2 Mbps or 2.4

WUGS HIGH- SPEED
NETWORK

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

SUPPLIER
CONSUMER

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

Figure 3: Example CORBA-based Audio/Video (A/V) Appli-
cation

Mbps link speeds are used for a CORBA-based studio quality
audio/video (A/V) application [21].

In this example, we use TAO’s pluggable protocols frame-
work to replace GIOP/IIOP with a custom ORB messaging
and transport protocol that transmits A/V frames using TAO’s
real-time I/O (RIO) subsystem [20]. At the core of RIO is
the high-speed ATM port interconnect controller (APIC) [23].
APIC is a high-performance ATM interface card that supports
standard ATM host interface features, such as AAL5 (SAR). In
addition, the APIC supports (1) shared memory pools between
user and kernel space, (2) per-VC pacing, (3) two levels of pri-
ority queues, and (4) interrupt disabling on a per-VC bases.

We have leveraged the APIC features and the underlying
ATM network to support end-to-end QoS guarantees for TAO
middleware. In particular, pluggable ORB message and trans-
port protocols can be created to provide QoS services to ap-
plications, while the ORB middleware encapsulates the actual
resource allocation and QoS enforcement mechanisms. Lever-
aging the underlying APIC hardware requires the resolution of
the following two design challenges:

Custom protocols: The first challenge is to create custom
ORB messaging and transport protocols that can exploit high-
speed ATM network interface hardware. A careful examina-
tion of the system requirements along with the hardware and
communication infrastructure is required to determine (1) the
set of optimizations required and (2) the best partitioning of
the solution into ORB messaging, transport and policy com-
ponents.

The A/V streaming application is primarily concerned with
(1) pushing data to clients via one-way method invocations and
(2) meeting a specific set of latency and jitter requirements.
Considering this, a simple frame sequencing protocol can be
used as the ORB’s ESIOP. Moreover, because multimedia data
has diminishing value over time, a reliable protocol like TCP
is not required. The overhead of full GIOP is not required,
therefore, nor are the underlying assumptions that require a
transport protocol with the semantics of TCP.

A key goal of this scenario is to simplify the ORB messag-
ing and transport protocol, while adding QoS-related informa-
tion to support timely delivery of the video frames and audio.
For example, a CORBA request could correspond to one video
frame or audio packet. To facilitate synchronization between
endpoints, a timestamp and sequence number can be sent with
each request. The Inter-ORB messaging protocol can perform
a similar function as the real-time protocol (RTP) and real-time
control protocol (RTCP) [24].

The ORB messaging protocol can be mapped onto an ORB
transport protocol using AAL5. The transport adapter is then
responsible for exploiting any local optimizations to hardware
or the endsystem. For example, conventional ORBs copy user
parameters into internal buffers used for marshaling. These
buffers may be allocated from global memory or possibly from
a memory pool maintained by the ORB. In either case, at least
one system call is required to obtain mutexes, allocate buffers,
and copy the data. Thus, not only is an additional data copy
incurred, but this scenario is rife with opportunities for prior-
ity inversion and jitter while waiting to acquire shared ORB
endsystem resources.

Optimized protocol implementations: The second chal-
lenge is to implement an optimized pluggable protocol that
implements the design described above. For example, mem-
ory can be shared throughout the ORB endsystem,i.e., be-
tween the application, ORB middleware, OS kernel, and net-
work interface, by allocating memory from a common buffer
pool [23, 7]. This optimization eliminates memory copies be-
tween user- and kernel-space when data is sent or received.
Moreover, the ORB endsystem can manage this memory,
thereby relieving application developers from this responsibil-
ity. In addition, the ORB endsystem can manage the APIC
interface driver, interrupt rates, and pacing parameters, as out-
lined in [20].

Figure 4 illustrates a buffering strategy where the ORB man-
ages multiple pools of buffers to be used by applications send-
ing multimedia data to remote nodes. These ORB buffers are
shared between the ORB and APIC driver in the kernel. The
transport adapter implements this shared buffer pool on a per-
connection and possibly per-thread basis to minimize or re-
duce the use of resource locks. For example, in the strategy
depicted in Figure 4, each active connection is assigned its

8

MARSHAL
FRAMES

CONSUMER

OBJECT ADAPTER

ACTIVE

OBJECT

 MAP

IDL
SKELETON

OS KERNEL

APIC
DRIVER

OS KERNEL

APIC
DRIVER

IDL
STUBS

ORB MESSAGING

ORB TRANSPORT

SUPPLIER

ORB MANAGED

DATA BUFFERS

ATM LINK

ORB MESSAGING

ORB TRANSPORT

DEMARSHAL
FRAMES

ORB
CORE

movie->ship (frame)

DEMUX

SENDFREE

APPENDGET FREE

RECV FREE

GET RECV

CDR

ADD FREE

Figure 4: Shared Buffer Strategy

own send and receive queues. Likewise, there are two free
buffer pools per connection, one for receive and one for send.

An ORB can guarantee that only one application thread will
be active within the send or receive operation of the transport
adapter. Therefore, buffer allocation and de-allocation can
be performed without locking. A similar buffer management
strategy is described in [23]

User applications can interact with the buffering strategy de-
scribed above as follows:

� Zero-copy: The application requests a set of send
buffers from the ORB that it uses for video and audio data. In
this case, application developers must not reuse a buffer after
it has been given to the ORB. When the original set of buffers
are exhausted, the application must request additional buffers.

� Single-copy: The ORB copies application data into the
ORB managed buffers. While this strategy incurs one data
copy, the application developer need not be concerned with
how or when buffers are used in the ORB.

Well-designed ORBs can be strategized to allow applica-
tions to decide whether data are copied into ORB buffers or
not. For instance, it may be more efficient to copy relatively
small request data into ORB buffers, rather than using shared
buffers within the ORB endsystem. By using TAO’s policy
control component, this decision can be configured on a per-
connection, per-thread, per-object or per-operation basis.

3.4.2 Low-latency, Low-jitter Avionics Mission Comput-
ing

Avionics mission computing applications [22] are real-time
embedded systems that manage sensors and operator displays,
navigate the aircraft’s course, and control weapon release.
CORBA middleware for avionics mission computing applica-
tions must support deterministic real-time QoS requirements

interoperating over shared memory, I/O buses, and traditional
network interfaces. Support for deterministic real-time re-
quirements is essential for mission computing tasks, such as
weapon release and navigation, that must meet all their dead-
lines. Likewise, avionics software must support tasks, such as
built-in-test and low-priority display queues, that can tolerate
minor fluctuations in scheduling and reliability guarantees, but
nonetheless require QoS support [25].

To enforce end-to-end application QoS guarantees, mission
computing middleware must reduce overall inter-ORB com-
munication latencies, maximize I/O efficiency, and increase
overall system utilization [8, 26]. A particularly important op-
timization point is the inter-ORB protocol itself, and the se-
lection of an optimal transport protocol implementation for a
particular platform.

For example, Figure 5 depicts an embedded avionics con-
figuration with three CPU boards, each with an ORB instance.
Each board is connected via a VME bus, which enables the

INTER-ORB COMMUNICATION VIA VME BUS

1553
INTERFACE

TO REMOTE

TERMINALS

Figure 5: Example Avionics Embedded ORB Platform

ORBs on each CPU board to communicate using optimized
inter-board communication, such as DMA between the indi-
vidual board address spaces. CPU board 1 has a 1553 bus
interface to communicate with so-called remote terminals,
such as aircraft sensors for determining global position and
forward- looking infrared radar [22]. This configuration al-
lows ORB A to provide a bridging service that forwards ORB
requests between ORBs B and C and remote terminals con-
nected with board 1.

The scenario in Figure 5 motivates the need for multiple
ORB messaging and transport protocols that can be added
seamlessly to an ORB without affecting the standard CORBA
programming API. For instance, ORB A could use a 1553
transport protocol adapter to communicate with remote termi-
nals. Likewise, custom ORB messaging and transport proto-
cols can be used to leverage the underlying VME bus hardware
and eliminate sources of unbounded priority inversion. Lever-
aging the underlying bus hardware requires the resolution of
the following two design challenges:

Custom protocols: With TAO’s pluggable protocols frame-
work, we can create optimized VME-based and 1553-based
inter-ORB messaging and transport protocols. Moreover, by

9

separating the IOP messaging from a transport-specific map-
ping, we can adapt TAO’s pluggable protocols framework to
different transmission technologies, such as CompactPCI or
Fibrechannel, by changing only the transport-specific mapping
of the associated inter-ORB messaging protocol.

Consider an embedded application that must periodically
process sensor data. The sensor data is collected and for-
warded aperiodically to a central, although redundant, proces-
sor. The sensor data is sent/received aperiodically. Therefore,
the resulting bus transfers, interrupts, and driver processing
can reduce the overall utilization of the system. For example,
a DMA transfer between two CPU boards requires that the
VMEBus, the source PCI bus and the destination PCI bus be
acquired and data copied.

A more efficient protocol could buffer these one-way data
transfers until a predetermined byte count or timeout value is
reached. Thus the time required to acquire the different buses
could be amortized over a larger data transfer. Additionally,
given the periodic nature of the transfers rate monotonic anal-
ysis could be used to better predict system performance.

Optimized protocol implementations: To optimize the on-
the-wire protocol message footprint we use a lightweight ver-
sion of GIOP, called GIOPlite. GIOPlite is a streamlined ver-
sion of GIOP that removes�15 extraneous bytes from the
standard GIOP message and request headers.4 These bytes
include the GIOP magic number (4 bytes), GIOP version (2
bytes), flags (1 byte), Request Service Context (at least 4
bytes), and Request Principal (at least 4 bytes). GIOPlite re-
duces the number of bytes transfered across the backplane per
operation.

Another optimization that pertains to avionics mission com-
puting involves the use of buffered one-way operations [19].
TAO’s pluggable protocols framework has been optimized to
send a series of queued one-way requests in a smaller num-
ber of ORB messages. For example, Figure 6 depicts the case
where one-way CORBA invocations are buffered in the ORB
for later delivery. In this case, a series of one-way invocations
to the same object and for the same operation are queued in the
same buffer and sent via a single ORB message. This results
in an overall increase in throughput between CPU boards by
amortizing key sources of communication overhead, such as
context switching, synchronization, and DMA initialization.

4The request header size is variable. Therefore, it is not possible to pre-
cisely pinpoint the proportional savings represented by these bytes. In many
cases, however, the reduction is as large as 25%.

MARSHAL
PARAMS

OBJECT (SERVANT)

OBJECT ADAPTER

ACTIVE

OBJECT

 MAP

IDL
SKELETON

VME BUS

OS KERNEL

VME
DRIVER

OS KERNEL

VME
DRIVER

IDL
STUBS

ORB MESSAGING

ORB TRANSPORT

CLIENT

BUFFERED

DATA COPY

DMA COPY

ORB MESSAGING

ORB TRANSPORT

DEMARSHAL
PARAMS

DATA COPY

ORB
CORE

obj->op (params)

DEMUX

Figure 6: One-way Delayed Buffering Strategy

4 Key Design Challenges and Pattern-
based Resolutions

Section 3.3 describedhowTAO’s pluggable protocols frame-
work is designed. It does not, however, motivatewhy this par-
ticular design was selected. In this section, we explore each
feature in TAO’s pluggable protocols framework and show
how they achieve the goals described in Section 3.2. To clar-
ify and generalize our approach, the discussion below focuses
on the patterns [17] we applied to resolve the key design chal-
lenges we faced during the development process.

4.1 Adding New Protocols Transparently

Context: The QoS requirements of many applications can
be supported solely by using default static protocol config-
urationns,i.e., GIOP/IIOP, described in section 3.1. How-
ever, applications with more stringent QoS requirements often
require custom protocol configurations. Implementations of
these custom protocols require several related classes, such as
Connector s,Acceptor s,Transport s, andProfile s.
To form a common framework, these classes must all be cre-
ated consistently.

In addition, many embedded and deterministic real-time
systems require protocols to be configureda priori, with no
additional protocols required once the application is config-
ured statically. These types of systems cannot afford the foot-
print overhead associated with dynamic protocol configura-
tions.

Problem: It must be possible to add new protocols to TAO’s
pluggable protocols framework without makingany changes
to the rest of the ORB. Thus, the framework must be open for
extensions, but closed to modifications,i.e., the Open-Closed
principle [27]. Ideally, creating a new protocol and configur-
ing it into the ORB is all that should be required.

10

Solution: Use aregistry to maintain a collection ofabstract
factories. In the Abstract Factory pattern [17], a single class
defines an interface for creating families of related objects,
without specifying their concrete types. Subclasses of an ab-
stract factory are responsible for creating concrete classes that
collaborate among themselves. In the context of pluggable
protocols, each abstract factory can create theConnector ,
Acceptor , Profile , andTransport classes for a par-
ticular protocol.

Applying the solution in TAO: In TAO, the role of the pro-
tocol registry is played by theConnector Registry on
the client and theAcceptor Registry on the server. This
registry is created by TAO’sResource Factory , which is
an abstract factory that creates all the ORB’s strategies and
policies [28]. Figure 7 depicts theConnector Registry
and its relation to the abstract factories.

ACCEPTOR_REGISTRY

IIOP ATM-IOPIIOP ATM-IOP

CONNECTOR_REGISTRY

CLIENT SIDE SERVER SIDE

Figure 7: TAO Connector and Acceptor Registries

Note that TAO does not use abstract factories directly, how-
ever. Instead, these factories are accessed via theFacade[17]
pattern to hide the complexity of manipulating multiple facto-
ries behind a simpler interface. The registry described above
plays the role of a facade. As shown below, these patterns pro-
vide sufficient flexibility to add new protocols transparently to
the ORB.

Establishing connections, manipulating profiles, and cre-
ating endpoints are delegated to theConnector and
Acceptor registries respectively. Clients will simply pro-
vide the Connector Registry with an opaque profile,
which corresponds to an object address for a particular pro-
tocol instance. The registry is responsible for locating the cor-
rect concrete factory, to which it then delegates the respon-
sibility for establishing the connection. The concrete factory
establishes the connection using the corresponding protocol-
specific instance, notifying the client of its success or failure.
Thereafter, the client simply invokes CORBA operations using
the selected protocol.

The server delegates endpoint creation to the
Acceptor Registry in a similar manner. The reg-

istry is passed an opaque endpoint representation, which
it provides to the corresponding concrete factory for the
indicated protocol instance. The concreteAcceptor factory
creates the endpoint and enables the ORB to receive requests
on the new endpoint.

4.2 Adding New Protocols Dynamically

Context: When developing new pluggable protocols, it is
inconvenient to recompile the ORB and applications just to
validate a new protocol implementation. Moreover, it is often
useful to experiment with different protocols,e.g., systemati-
cally compare their performance, footprint size, and QoS guar-
antees. Moreover, in 24�7 systems with high availability re-
quirements, it is important to configure protocols dynamically,
even while the system is running. This level of flexibility helps
simplify upgrades and protocol enhancements.

Problem: How to populate the registry with the correct ob-
jectsdynamically.

Solution: Use the Component Configurator [3] pattern,
which decouples the implementation of a service from its con-
figuration into the application. This pattern can be applied in
either of the following ways:

1. The Component Configurator pattern [3] can be used to
dynamically load the registry class. This facade knows how to
configure a particular set of protocols. To add new protocols,
we must either implement a new registry class or derive from
an existing one.

This alternative is well-suited for embedded systems with
tight memory footprint constraints since it minimizes the num-
ber of objects that are loaded dynamically. Implementations
of the Component Configurator pattern can optimize for use-
cases where objects are configured statically. Embedded sys-
tems can exploit these optimizations to eliminate the need for
loading objects into the pluggable protocols framework dy-
namically.

2. Use the Component Configurator pattern to load the set
of entries in a registry dynamically. For instance, a registry can
simply parse a configuration script and link the services listed
in it dynamically. This design is the most flexible strategy, but
it requires more code,e.g., to parse the configuration script and
load the objects dynamically.

Applying the solution in TAO: TAO implements a class
that maintains all parameters specified in a configuration
script. Adding a new parameter to represent the list of pro-
tocols is straightforward,i.e., the default registry simply ex-
amines this list and links the services into the address-space
of the application, using the Component Configurator pattern

11

implementation provided by ACE [29].5 Figure 8 depicts the
Connector Registry and its relation to the ACE Compo-
nent Configurator implementation.

IIOP ATM-IOP

REGISTRY

COMPONENT CONFIGURATOR

<<INSTANTIATES>>

<<INSTANTIATES>>

Figure 8: TAO Connector Registry and the ACE Component
Configurator Implementation

4.3 Profile Creation

Context: The contents of a profile must be parsed to deter-
mine an object’s location. In general, the format and semantics
of the profile contents are protocol-specific. Therefore, a com-
pletely generic component for it cannot be written. Parsing the
data is a relatively expensive operation that should be avoided
whenever possible. It is also useful to support multiple pro-
tocols (see section 3.1), each one potentially using a different
address representation (see section 3.2).

Problem: As new protocols are added to the system, new
profile formats are introduced. It is essential that the correct
parsing function be used for each profile format.

Solution: We use the Factory Method pattern [17] to cre-
ate the rightProfile class for each protocol. This pattern
defines a fixed interface to create an object, while allowing
subclasses the flexibility to create the correct type of object.
Two of our classes play theCreatorrole in this pattern: (1) the
Connector , using theProfile ’s CDR representation for
initialization and (2) theAcceptor , using the object key for
initialization.

These two approaches are based on the two use-cases
in which a Profile object must be manipulated. In the
Connector case TAO interprets aProfile received re-
motely, whereas in theAcceptor it builds aProfile for a
local object. As usual, theConnector Registry and the
Acceptor Registry are used as facades [17] that locate
the appropriateConnector or Acceptor and delegate the
job of building the object to it.

5ACE provides a rich set of reusable and efficient components for high-
performance, real-time communication, and forms the portability layer of
TAO.

Applying the solution in TAO: TheProfile class is used
to represent a protocol-specific profile. This class provides an
abstract interface for parsing, marshaling, hashing, and com-
paring profiles. In addition, it provides a unit of encapsulation
to maintain information about forwarding and caching connec-
tions established to a particular server.

4.4 Decoupling ORB Messaging and Transport
Protocol Implementations

Context: It is desirable to support alternative mappings be-
tween different ORB messaging protocols and ORB transport
adaptors. For example, a single ORB messaging protocol,
such as GIOP, can be mapped to any reliable, connection-
oriented transport protocol, such as TCP. Alternatively, a sin-
gle transport protocol can be the basis for alternative instanti-
ations of ORB messaging protocols,e.g., different versions of
GIOP differing in the number and types of messages, as well
as in the format of those messages.

An ORB messaging protocol imposes requirements on any
underlying network transport protocols. For instance, the
transport requirements assumed by GIOP described in Sec-
tion 2 require the underlying network transport protocol to
support a reliable, connection-oriented byte-stream. These re-
quirements are fulfilled by TCP, thus leading to the direct map-
ping of GIOP onto this transport protocol. However, alterna-
tive network transport protocols, such as ATM with AAL5,
encapsulation may be more appropriate in some environments.
In this case, the messaging implementation must provide the
missing semantics, such as reliability, to use GIOP.

Problem: The ORB Messaging protocol implementations
must be independent of the adaptation layer needed for trans-
ports that do not satisfy all their requirements. Otherwise, the
same messaging protocol may be re-implemented needlessly
for each transport, which is time-consuming, error-prone, and
time/space inefficient. Likewise, for those transports that can
support multiple ORB Messaging protocols, it must be pos-
sible to isolate them from the details of the ORB messaging
implementation. Care must be taken, however, because not
all ORB Messaging protocols can be used with all transport
protocols,i.e., some mechanism is needed to ensure that only
semantically compatible protocols are configured [30].

Solution: Use the Layers architectural pattern [4], which de-
composes the system into groups of components, each one at
a different level of abstraction.6 The Layers architectural pat-
tern can be implemented differently, depending on whether the
ORB plays the role of a client or a server, as outlined below.

6Protocol stacks based on the Internet or ISO OSI reference models are
common examples of the Layers architectural pattern.

12

transport ()
iop ()

Profile

IIOP_Profile

transport_
iop_

transport ()
iop ()

profile_in_use_

STUB_Object

profile_in_use ()
next_profile ()

1 1

1

1

IIOP_Transport

receive ()
send ()
handler ();

handler_

receive ()
send ()
handler ()

Transport1

IOP

start ()
invoke ()

GIOP

start ()
invoke ()

1

Figure 9: Client Inter-ORB and Transport Class Diagram

� Client ORB: For the client, the ORB uses a particu-
lar ORB messaging protocol to send a request. This ORB
messaging protocol delegates part of the work to the trans-
port adapter component that completes the message and sends
it to the server. If the low-level transport in use, such as ATM,
UDP, or TCP/IP, does not satisfy the requirements of the ORB
messaging protocol, the ORB transport adapter component can
implement them.

� Server ORB: In the server, the transport adapter com-
ponent receives data from the underlying communication in-
frastructure, such as sockets or shared memory, and it passes
the message up to the ORB messaging layer. As with the
client, this layer can be very lightweight if the requirements
imposed by the ORB messaging layer are satisfied by the un-
derlying network transport protocol. Otherwise, it must im-
plement those missing requirements by building them into the
concrete transport adapter component.

Applying the solution in TAO: As shown in Figure 9, TAO
implements the messaging protocol and the transport proto-
col in separate components. The client ORB uses the current
profile to find the right transport and ORB messaging imple-
mentations. The creation and initialization of these classes
is controlled by theConnector (described in Section 4.8),
with eachConnector instance handling a particular ORB
messaging/transport tuple.

Figure 10 illustrates how the server’s implementation uses
the same transport classes, but with a different relationship. In
particular, the transport class calls back the messaging class
when data is received from the IPC mechanism. As with the
client, a factory–in this case theAcceptor –creates and ini-
tializes these objects.

4.5 Exception Propagation and Error Detec-
tion

Context: The server and client use the same exceptions to
inform the application of failures in the communication me-

IOP

start ()
invoke ()

GIOP

start ()
invoke ()

1

IIOP_Transport

receive ()
send ()
handler ();

handler_

receive ()
send ()
handler ()

Transport1

transport_
iop_

IIOP_
Connection_Handler

iop ()
transport ()

1

1

Figure 10: Server Inter-ORB and Transport Class Diagram

dia. The ORB must be able to ignore certain communication
errors selectively and re-issue the request transparently using
alternative addresses or resources.

Problem: If the ORB uses exceptions to internally commu-
nicate failures, it can be confused by remote exceptions gener-
ated by the server.

Solution: Once again, apply the Layers architectural pat-
tern [4] to limit exceptions to communicate failures only be-
tween the higher levels of the ORB and the application. Thus,
the lower levels of the pluggable protocols framework simply
use integral return values to indicate an error. These return val-
ues are transformed to the appropriate CORBA exception by
the upper levels of the pluggable protocols framework when
reporting the error to the application.

Applying the solution in TAO: Higher level meth-
ods in all components,i.e., Acceptor s, Connector s,
Transport s, andProfile s, in TAO’s pluggable protocols
framework raise CORBA exceptions if lower level methods
return an integer value that indicates failure.

One drawback of using return codes rather than exceptions
is that it may burden ORB developers, who must explicitly
check for errors, rather than writing exception handlers. TAO
must run on platforms that do not support native C++ excep-
tions, however. Therefore, it is already necessary to check
return values, so there is no additional burden on TAO devel-
opers.

4.6 Adapting TAO to the ACE Framework

Context: TAO is built largely using the reusable and
portable ACE framework [29] components, particularly
Reactor s, Acceptor s, Connector s, Service
Handler s, and ACE IPC wrapper facades [29]. TAO’s
pluggable protocols framework uses inheritance and dynamic
binding to configure these ACE components to create new
protocols.

13

Problem: Using the lower-level ACE IPC wrapper facade
components directly is infeasible because ACE avoids poly-
morphism at this level to eliminate the overhead of virtual
methods by non-optimizing compilers [22]. Thus, the ACE
connectors for UNIX-domain sockets and Internet-domain
sockets have no common ancestor that can be used to dispatch
methods in subclasses polymorphically. However, a pluggable
protocols framework must be able to establish connections us-
ing any protocol.

Solution: Use the External Polymorphism pattern [31] to
encapsulate ACE components behind their TAO counterparts.
This pattern enables classes that are not related by inheritance,
or have no virtual methods, to be treated polymorphically.

Applying the solution in TAO: A TAO Acceptor con-
tains an ACEAcceptor , which is registered with an ACE
Reactor that the ORB uses to demultiplex IOP events to the
appropriate transport handlers. Eventually, the ACE IPC com-
ponents accept a connection and creates an ACEService
Handler to handle the communication. Our TAO-level
Acceptor encapsulates thatService Handler in a
Transport adapter object and passes it up to the ORB. As
a practical consequence of this solution, there exist two sub-
layers within TAO’sTransport object.

4.7 Multiple Profiles and Location Forwarding

Context: Object references may contain multiple profiles,
and servers may specify alternate object references in response
to a client’s request. In addition, a CORBA-compliant ORB is
required to try all object references and profiles until one suc-
ceedswithoutany client intervention.

Problem: Retries must occur transparently to the client ap-
plication, even though profiles for different ORB protocols
may be dissimilar and profile lists may be altered dynamically
as a result of forwarding.

Solution: Apply the Proxy pattern [17] and use polymor-
phism and an efficient list processing strategy.

Applying the solution in TAO: Figure 11 depicts the class
diagram for the solution. ASTUBObject is a client’s
local proxy for the (potentially) remote object. All com-
munication with the server object is done through the stub
proxy. While the server does not require aSTUBObject , the
Acceptor Registry will initialize an object’s IOR using
theMProfile andProfile classes.

Profile lists are maintained by anMProfile object. The
profile list is stored as a simple array of pointers toProfile
objects. All instances of IOP profiles are derived from this
commonProfile class. By relying on dynamic binding of
objects, the base class can be used for both referencing and

IIOP_Profile

hint
object_addr
version

transport ()
object_addr ()
hash ()

transport ()
object_addr ()
hash ()

Profile

base_profiles_
forward_profiles_

STUB_Object

set_mprofiles ()
add_forward_profiles ()
set_base_profiles ()
get_profiles ()
next_profile ()

MProfile

add_profile ()
give_profile ()

N

1

profiles_

1 N

Figure 11: Class Diagram for Multiple Profile and Forwarding
Support in TAO’s Pluggable Protocols Framework

performing common method invocations on the concrete pro-
file instances. TheMProfile object can therefore maintain
a list of Profile proxies to the actual concrete profile in-
stances.

The MProfile object keeps track of the current profile
and allows a user only to increment and decrement this refer-
ence. If the current profile is forwarded, a reference is kept
in that profile to the forwardingMProfile object. Like-
wise, the forwardingMProfile contains a back pointer to
theMProfile object that was forwarded. In this way, a list
of MProfile s is maintained, corresponding to the initial and
all forwarding profile lists.

When a client decodes the initial IOR, the resulting profile
list is stored in anMProfile object. If the client receives a
location forward, either as a result of aLocate Request
GIOP message or in aLOCATION FORWARD reply, the re-
ceived IOR is decoded and added to theSTUBObject us-
ing its add forward profiles method. TheMProfile
object that was forwarded keeps track of the current profile,
marks it as being in aFORWARDING state, and sets a reference
to the forwarding profile list. TheSTUBObject maintains a
reference to the initial profile list and to the current forwarding
profile list, i.e., theMProfile object, because the forward-
ing MProfile objects each contain a back pointer to the for-
wardedMProfile object.

Figure 12 illustrates how forwarding is represented using
the MProfile objects. Not shown is theSTUBObject ,
which maintains references to the initial or unforwarded pro-
file list, the current profile in use, and the last forwarding pro-
file list. In effect, theSTUBObject andMProfile present
the ordered profile list–P1, P2, P5, P6, P7, P8, P9, P3, P4–to
theConnection Registry .

4.8 Establishing Connections Actively

Context: When a client references an object, the ORB must
obtain the corresponding profile list, which is derived from the

14

P7
P8
P9

 MPROFILEP5
P6

MPROFILE
P1
P2
P3
P4

MPROFILE

current currentcurrent

1) Current profile is P8, P2 and P6 were forwarded

P1
P2
P3
P4

MPROFILE

current

P7
P8
P9

 MPROFILEP5
P6

MPROFILE
P1
P2
P3
P4

MPROFILE

current
current

current

2) P8 failed, try P9

3) P9 failed, remove forwarding profile lists and try P3

Figure 12: Object Reference Forwarding Example

IOR and a profile ordering policy, and establish a connection
to the server transparently.

Problem: There can be one or more combinations of inter-
ORB and transport protocols available in an ORB. For a given
profile, the ORB must verify the presence of the associated
IOP and transport protocol, if available. It must then locate
the applicableConnector and delegate to it to establish the
connection.

Solution: We use theConnector component in the
Acceptor-Connector pattern [3] to actively establish a con-
nection to a remote object. This pattern decouples the con-
nection establishment from the processing performed after the
connection is successful. Figure 13 shows how multiple pro-
files may be used during connection establishment in both the
client and server. This figure shows a connection toObject
A being requested of theConnector Registry . The reg-
istry will in turn try the profiles listed in thesupplied
profile list for Object A . In this figure, the first pro-
file is for an IIOP connection toHost A atport 1 . Assum-
ing the connect fails for some reason, the registry will try the
second profile automatically. This profile contains a reference
to the same host via ATM interface using an ESIOP.

Assuming the connect on the second profile succeeds, the
Connector andAcceptor create their corresponding con-
nection handlers and ATM-IOP transport objects. The con-
nection handlers then create transport objects, which provide
the mapping from the chosen transport protocol to a transport-
independent interface used by the IOP messaging component.
The connection handler is considered as part of the ORB trans-
port adapter component.

Applying the solution in TAO: As described in Section 4.6,
Connector s are adapters for the ACE implementation of
the Acceptor-Connector pattern. Thus, they are lightweight
objects that simply delegate to a corresponding ACE com-
ponent. Figure 15 shows the base classes and their relations

CONNECT (PROFILE2)

ATM TRANSPORT

OBJECT
CONNECTION HANDLER

OBJECT

CONNECTION HANDLER

OBJECT

ATM-IOP
OBJECT

1 - IIOP:// HOSTA:PORT1/OBJECT_KEY

2 - ATM-IOP:// HOSTA_ATM :SAP1/OBJECT_KEY

3 - IIOP:// HOSTB:PORT2/OBJECT_KEY

PROFILE LIST FOR OBJECT A

IIOP ATM-IOP

CONNECTOR_REGISTRY
CONNECT (PROFILE_LIST A)

ACCEPTOR_REGISTRY

IIOP ATM-IOP
OBJECT A

ATM TRANSPORT

OBJECT

ATM-IOP
OBJECT

<<INSTANTIATES >>

CLIENT

SERVER

ESTABLISH CONNECTION

TO OBJECT A

PERFORM INVOCATION

ON OBJECT A

<<INSTANTIATES >>

<<INSTANTIATES >>

<<INSTANTIATES >>

<<INSTANTIATES >>

<<INSTANTIATES >>

Figure 13: Connection Establishment Using Multiple Plug-
gable Protocols

for IIOP. This figure shows an explicit co-variance between

IIOP_Transport

receive ();
send ();
handler ();

handler_

Transport

receive ()
send ()
handler ()

transport_

IIOP_
Connection_Handler

handler_input ()
svc ()
transport ()

open ()
close ()
accept ()

IIOP_
Strategegy_Acceptor

GIOP

start ()
invoke ()

IOP

start ()
invoke ()

IIOP_Acceptor

create_profile ();
acceptor ();

transport_acceptor

Acceptor

create_profile ()
acceptor ()

transport ()
object_addr ()
hash ()

Profile

IIOP_Profile

hint = 0
object_addr
version

transport ()
object_addr ()
hash ()

<<instantiates>>

<<instantiates>>

<<Instantiates>>

N

1

1

1

1

1

11

1

1

<<instantiates>>

Acceptor Registry

add_acceptor ()
get_acceptor ()
create_ior ()

registered acceptors

1

Figure 14: Server Pluggable Protocols Class Diagram

the Profile and theConnector s for each protocol. In
general, aConnector must downcast theProfile to its
specific type. This downcast is safe because profile creation
is limited to theConnector andAcceptor registries. In
both cases, the profile is created with a matching tag. The
tag is used by theConnector Registry to choose the
Connector that can handle each profile.

As shown in the same figure, theConnector Registry
manipulates only the base classes. Therefore, new protocols
can be added without requiring any modification to the ex-
isting pluggable protocols framework. When a connection is

15

established successfully, theProfile is passed a pointer to
the particular IOP object and to theTransport objects that
were created.

4.9 Accepting Connections Passively

Context: A server can accept connections at one or more
endpoints, potentially using the same protocol for all end-
points. The set of protocols that an ORB uses to play the client
role need not match the set of protocols used for the server
role. Moreover, the ORB can even be a “pure client”,i.e., a
client that only makes requests. In this case it can use several
protocols to make requests, but receive no requests from other
clients.

Problem: The server must generate an IOR that includes all
possible inter-ORB and transport-protocol-specific profiles for
which the object can be accessed. As with the client, it should
be possible to add new protocols without changing the ORB.

Solution: Use theAcceptor component in the Acceptor-
Connector pattern [3] to accept the connections. An
Acceptor accepts a connectionpassively, rather than be-
ing initiatedactively, as with theConnector component de-
scribed above.

Applying the solution to TAO: Figure 14 illustrates how
TAO’s pluggable protocols framework leverages the design

PRINTER FILE SYSTEM

CD
ROM

NETWORK

FILE

SERVICE

CYCLE

SERVICE

DISPLAY

SERVICE

PRINT

SERVICE

NAME

SERVICE

TIME

SERVICE

Figure 15: Client Pluggable Protocols Class Diagram

presented in Section 4.1. The concrete ACEService
Handler created by the ACEAcceptor is responsible for
implementing the External Polymorphism pattern [31] and en-
capsulating itself behind theTransport interface defined in
TAO’s pluggable protocols framework.

As discussed in Section 4.6, TAO use the Adapter pat-
tern [17] to leverage the ACEAcceptor implementa-
tion. This pattern also permits a seamless integration with
lower levels of the ORB. In the Acceptor-Connector pattern,

the Acceptor object is a factory that createsService
Handler s, which perform I/O with their connected peers.
In TAO’s pluggable protocols framework, theTransport
objects areService Handlers implemented as abstract
classes. This design shields the ORB from variations in the
Acceptor s, Connector s, andService Handler s for
each particular protocol.

When a connection is established, the concreteAcceptor
creates the appropriateConnection Handler and IOP
objects. The Connection Handler also creates a
Transport object that functions as the implementation role
in the Bridge pattern [17]. As with theConnector , the
Acceptor also acts as the interface role in the Bridge pat-
tern, hiding the transport- and strategy-specific details of the
Acceptor .

5 The Performance of TAO’s Plug-
gable Protocols Framework

Despite the growing demand for off-the-shelf middleware in
many application domains, a widespread belief persists that
OO techniques are not suitable for real-time systems due to
performance penalties [22]. In particular, the dynamic binding
properties of OO programming languages and the indirection
implied in OO designs seem antithetical to real-time systems,
which require low latency and jitter. The results presented in
this section are significant, therefore, because they illustrate
empirically how the choice of patterns described in Section 4
enabled us to meet non-functional requirements, such as porta-
bility, flexibility, reusability, and maintainability, without com-
promising overall system efficiency, predictability, or scalabil-
ity.

To quantify the benefits and costs of TAO’s pluggable pro-
tocols framework, we conducted several benchmarks using
two different ORB messaging protocols, GIOP and GIOPlite,
and two different transport protocols, POSIX local IPC (also
known as UNIX-domain sockets) and TCP/IP. These bench-
marks are based on our experience developing CORBA mid-
dleware for avionics mission computing applications [22] and
multimedia applications [21], as described in Section 3.4.

Note that POSIX local IPC is not a traditional high-
performance networking environment. However, it does pro-
vide the opportunity to obtain an accurate measure of ORB
and pluggable protocols framework overhead. Based on these
measurements, we have isolated the overhead associated with
each component, which provides a baseline for future work on
high-performance protocol development and experimentation.

16

5.1 Hardware/Software Benchmarking Plat-
form

All benchmarks in this section were run on a Quad-CPU Intel
Pentium II Xeon 400 MHz workstation, with one gigabytes
of RAM. The operating system used for the benchmarking
was Debian GNU/Linux “potato” (glibc 2.1) with Linux ker-
nel version 2.2.10. GNU/Linux is an open-source operating
system that supports true multi-tasking, multi-threading, and
symmetric multiprocessing.

For these experiments, we used the GIOP and GIOPlite [7]
messaging protocols. GIOPlite is a streamlined version of
GIOP that removes�15 extraneous bytes from the standard
GIOP message and request headers.7 These bytes include the
GIOP magic number (4 bytes), GIOP version (2 bytes), flags
(1 byte), Request Service Context (at least 4 bytes), and Re-
quest Principal (at least 4 bytes).

Our benchmarks were run using the standard GIOP ORB
messaging protocol, as well as TAO’s GIOPlite messaging
protocol. For the TCP/IP tests, the GIOP and GIOPlite ORB
messaging protocols were run using the standard CORBA
IIOP transport adapter along with the Linux TCP/IP socket
library and the loopback interface.

For the local IPC tests, GIOP and GIOPlite were used along
with the optimized local IPC transport adapter. This resulted
in the following four different Inter-ORB Protocols: (1) GIOP
over TCP (IIOP), (2) GIOPlite over TCP, (3) GIOP over local
IPC8 (UIOP), and (4) GIOPlite over local IPC. No changes
were required to our standard CORBA benchmarking tool,
calledIDL Cubit [32], for either of the ORB messaging and
transport protocol implementations.

5.2 Blackbox Benchmarks

Blackbox benchmarks measure the end-to-end performance of
a system from an external application perspective. In our ex-
periments, we used blackbox benchmarks to compute the av-
erage two-way response time incurred by clients sending vari-
ous types of data using the four different Inter-ORB transport
protocols.

Measurement technique: A single-threaded client is used
in the IDL Cubit benchmark to issue two-way IDL opera-
tions at the fastest possible rate. The server performs the oper-
ation, which cubes each parameter in the request. For two-way
calls, the client thread waits for the response and checks that it

7The request header size is variable. Therefore, it is not possible to pre-
cisely pinpoint the proportional savings represented by these bytes. In many
cases, however, the reduction is as large as 25%.

8For historical reasons, TAO retains the expression “UNIX-domain” in
its local IPC pluggable protocol implementation, which is where the name
“UIOP” derives from.

is correct. Interprocess communication is performed over the
selected IOPs, as described above.

We measure throughput for operations using a variety of
IDL data types, includingvoid , sequence , andstruct
types. Thevoid data type instructs the server not to per-
form any processing other than that necessary to prepare and
send the response,i.e., it does not cube any input parame-
ters. Thesequence andstruct data types exercise TAO’s
(de)marshaling engine. Thestruct contains anoctet , a
long , and ashort , along with padding necessary to align
those fields. We also measure throughput using long and short
sequences of thelong and octet types. Thelong se-
quences contain 4,096 bytes (1,024 four bytelong s or 4,096
octet s) and the short sequences are 4 bytes (one four byte
long or fouroctet s).

Blackbox results: The blackbox benchmark results are
shown in Figure 16. All blackbox benchmarks were averaged

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

vo
id

sh
or

t
oc

te
t

lon
g

str
uc

t

sm
all

 se
q<

oc
te

t>

lar
ge

 se
q<

oc
te

t>

sm
all

 se
q<

lon
g>

lar
ge

 se
q<

lon
g>

sm
all

 se
q<

str
uc

t>

lar
ge

 se
q<

str
uc

t>

Data Type

C
al

ls
 p

er
 S

ec
o

n
d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)

IIOP IIOP/GIOPlite
UIOP UIOP/GIOPlite
Performance Increase

Figure 16: TAO’s Pluggable Protocols Framework Perfor-
mance Over Local IPC and TCP/IP

over 100,000 two-way operation calls for each data type, as
shown in Figure 16.

UIOP performance surpassed IIOP performance for all data
types. The benchmark results show how UIOP improves per-
formance from 20% to 50% depending on the data type and
size. For smaller data sizes and basic types, such asoctet
and long , the performance improvement is approximately
50%. For larger data payload sizes and more complex data
types, however, the performance improvements are reduced.
This result occurs due to the increasing cost of both the data
copies associated with performing I/O and the increasing com-
plexity of marshaling structures other than the basic data types.

For certain data types, additional improvements are ob-
tained by reducing the number of data copies required. Such
a situation exists when marshaling and demarshaling data of

17

type octet and long . For complicated data types, such
as a largesequence of struct s, ORB overhead is par-
ticularly prevalent. Large ORB overhead implies lower effi-
ciency, which accounts for the smaller performance improve-
ment gained by UIOP over IIOP for complex data types.

GIOPlite outperformed GIOP by a small margin. For
IIOP, GIOPlite performance increases over GIOP ranged from
0.36% to 4.74%, with an average performance increase of
2.74%. GIOPlite performance improvements were slightly
better over UIOP due to the fact that UIOP is more efficient
than IIOP. GIOPlite over UIOP provided improvements rang-
ing from 0.37% to 5.29%, with an average of 3.26%.

Our blackbox results suggest that more substantial changes
to the GIOP message protocol are required to achieve sig-
nificant performance improvements. However, these results
also illustrate that the GIOP message footprint has a rela-
tively minor performance impact over high-speed networks
and embedded interconnects. Naturally, the impact of the
GIOP message footprint for lower-speed links, such as second-
generation wireless systems or low-speed modems, is more
significant.

5.3 Whitebox Benchmarks

Whitebox benchmarks measure the performance of specific
components or layers in a system from an internal perspective.
In our experiments, we used whitebox benchmarks to pinpoint
the time spent in key components in TAO’s client and server
ORBs. The ORB’s logical layers, or components, are shown
in Figure 17 along with the timeprobe locations used for these

ORB TRANSPORTORB TRANSPORT

RECVRECV

OBJECT (SERVANT)

ORBORB
CORECORE

OBJECT ADAPTEROBJECT ADAPTER

IDLIDL
SKELETONSKELETON

VME BUSVME BUS

OS KERNELOS KERNEL

VME DRIVERVME DRIVER

OS KERNELOS KERNEL

VME DRIVERVME DRIVER

ORB MESSAGINGORB MESSAGING

ORB TRANSPORTORB TRANSPORT

ACTIVEACTIVE

OBJECTOBJECT

 MAPMAP

GET OBJECTGET OBJECT

REFREF

IDLIDL
STUBSSTUBS

MARSHALMARSHAL

PARMATERSPARMATERS

ORB MESSAGINGORB MESSAGING

SENDSEND

ORB MESSAGINGORB MESSAGING

ORB TRANSPORTORB TRANSPORT

ORB TRANSPORTORB TRANSPORT

SENDSEND

II//O SENDO SEND

II//O RECVO RECV77

88

ORB MESSAGINGORB MESSAGING

RECVRECV99

CLIENTCLIENT

DEMARSHALDEMARSHAL

PARAMETERSPARAMETERS

7799

II//O RECVO RECV

ORB TRANSPORTORB TRANSPORT

RECVRECV

ORB MESSAGINGORB MESSAGING

RECVRECV

PARSE OBJECTPARSE OBJECT

 KEY KEY

OBJECTOBJECT

DEMUXDEMUX

DEMARSHALDEMARSHAL

PARAMETERSPARAMETERS

USER UPCALLUSER UPCALL

ORB MESSAGINGORB MESSAGING

SENDSEND

ORB TRANSPORTORB TRANSPORT

SENDSEND

II//O SENDO SEND

MARSHALMARSHAL

PARAMETERSPARAMETERS

OPERATIONOPERATION

DEMUXDEMUX

1313
11

22

44

66
1111

1010

1212

33

88
INITIALIZATIONINITIALIZATION

33

55

44

11

22

66

1010

OUTGOINGOUTGOING INCOMINGINCOMING

IN
C

O
M

IN
G

IN
C

O
M

IN
G

O
U

T
G

O
IN

G
O

U
T

G
O

IN
G

POAPOA

DEMUXDEMUX55

Figure 17: Timeprobe Locations for Whitebox Experiment

benchmarks.

5.3.1 Measurement Techniques

One way to measure performance overhead of operations in
complex CORBA middleware is to use a profiling tool, such
as Quantify [33]. Quantify instruments an application’s bi-
nary instructions and then analyzes performance bottlenecks
by identifying sections of code that dominate execution time.

Quantify is useful because it can measure the overhead of sys-
tem calls and third-party libraries without requiring the source
code.

Unfortunately, Quantify is not available for Linux kernel-
based operating systems on which whitebox measurement of
TAO’s performance was performed. Moreover, Quantify mod-
ifies the binary code to collect timing information. It is most
useful, therefore, to measure therelativeoverhead of different
operations in a system, rather than measuringabsoluterun-
time performance.

To avoid the limitations of Quantify, we therefore used a
lightweight timeprobe mechanism provided by ACE to pre-
cisely pinpoint the amount of time spent in various ORB com-
ponents and layers. The ACE timeprobe mechanism provides
highly accurate, low-cost timestamps that record the time
spent between regions of code in a software system. These
timeprobes have minimal performance impact,e.g., 1-2�sec
overhead per timeprobe, and no binary code instrumentation
is required.

Depending on the underlying platform, ACE’s timeprobes
are implemented either by high-resolution OS timers or by
high-precision timing hardware. An example of the latter is the
VMEtro board, which is a VME bus monitor. VMEtro writes
unique ACE timeprobe values to an otherwise unused VME
address. These values record the duration between timeprobe
markers across multiple processors using a single clock. This
enables TAO to collect synchronized timestamps and mea-
sure communication delays end-to-end accurately across dis-
tributed CPUs.

Below, we examine the client and server whitebox perfor-
mance in detail.

5.3.2 Whitebox Results

Figure 17 shows the points in a two-way operation request path
where timeprobes were inserted. Each labeled number in the
figure corresponds to an entry in Table 1 and Table 2 below.
The results presented in the tables and figures that follow were
averaged over 1,000 samples.

Client performance: Table 1 depicts the time in microsec-
onds (�s) spent in each sequential activity that a TAO client
performs to process an outgoing operation request and its re-
ply.

Each client outgoing step is outlined below:

1. In theinitialization step, the client invocation is created
and constructors are called for the input and output Common
Data Representation (CDR) stream objects, which handle mar-
shaling and demarshaling of operation parameters.

2. TAO’s connector caches connections, so even though
its connect method is called for every operation, existing

18

Direction Client Activities Absolute Time (�s)

Outgoing 1. Initialization 6.30
2. Get object reference 15.6
3. Parameter marshal 0.74 (param. dependent)
4. ORB messaging send 7.78
5. ORB transport send 1.02
6. I/O 8.70 (op. dependent)
7. ORB transport recv 50.7
8. ORB messaging recv 9.25
9. Parameter demarshal op. dependent

Table 1:�seconds Spent in Each Client Processing Step

connections are reused for repeated calls. For statically config-
ured systems, such as avionics mission computing, TAO pre-
establishes connections, so the initial connection setup over-
head can be avoided entirely.

3. In the parameter marshalstep, the outgoingin and
inout parameters are marshaled. The overhead of this pro-
cessing depends on the operation signature,i.e., the number of
data parameters and their type complexity.

4. In thesend operation in theORB messaginglayer, the
client creates a request header and frames the message. The
messaging layer then passes the message to the ORB trans-
port component for transmission to the server. If the request
is a synchronous two-way operation, the transport component
waits for and processes the response.

5. Thesend operation in theORB transportcomponent
implements the connection concurrency strategy and invokes
the appropriate ACE I/O operation. TAO maintains a linked
list of CDR buffers [7], which allows it to use “gather-write”
OS calls, such aswritev . Thus, multiple buffers can be writ-
ten atomically without requiring multiple system calls or un-
necessary memory allocation and data copying.

6. TheI/O operation represents the time the client spends
in the receive system call. This time is generally dominated
by the cost of copying data from the kernel to user supplied
buffers.

Each client incoming step is outlined below:

7. TheI/O receiveoperation copies the data from a kernel
buffer to a receive CDR stream and returns control to the ORB
transport component.

8. The recv operation in theORB transportlayer dele-
gates the reading of the received messages header and body
to the ORB messaging component. If the message header is
valid, then the remainder of the message is read. This also in-
cludes time when the client is blocked waiting for the server
to read the supplied data.

9. The recv operation in theORB messaginglayer
checks the message type of the reply, and either raises an ap-
propriate exception, initiates a location forward, or returns the
reply to the calling application.

10. In theparameter demarshalstep, the incoming reply
out and inout parameters are demarshaled. The overhead
of this step depends, as it does with the server, on the operation
signature.

Server performance: Table 2 depicts the time in microsec-
onds (�s) spent in each activity as a TAO server processes a
request.

Direction Server Activities Absolute Time (�s)

Incoming 1. I/O 7.0 (op. dependent)
2. ORB transport recv 24.8
3. ORB messaging recv 4.5
4. Parsing object key 4.6
5. POA demux 1.39
6. Servant demux 4.6
7. Operation demux 4.52
8. User upcall 3.84 (op. dependent)

Outgoing 9. ORB messaging send 4.56
10. ORB transport send 93.6

Table 2:�seconds Spent in Each Server Processing Step

Each incoming server step is outlined below:

1. TheI/O operation represents the time the server spends
in theread system call.

2. The recv operation in theORB transportlayer dele-
gates the reading of the received message header to the ORB
messaging component. If it is a valid message the remaining
data is read and passed to the ORB messaging component.

3. The recv operation in theORB messaginglayer
checks the type of the message and forwards it to the POA.
Otherwise, it handles the message or reports an error back to
the client.

4. The Parsing object keystep comes before any other
POA activity. The time in the table includes the acquisition
of a lock that is held through all POA activities,i.e., POA de-
mux, servant demux, andoperation demux.

5. ThePOA demuxstep locates the POA where the servant
resides. The time in this table is for a POA that is one-level
deep, although in general, POAs can be many levels deep [7].

6. The servant demuxstep looks up a servant in the tar-
get POA. The time shown in the table for this step is based
on TAO’s active demultiplexing strategy [7], which locates a
servant in constant time regardless of the number of objects in
a POA.

19

7. The skeleton associated with the operation resides in
the operation demuxstep. TAO uses perfect hashing [7] to
locate the appropriate operation.

8. In theparameter demarshalstep, the incoming request
in and inout parameters are demarshaled. As with the
client, the overhead of this step depends on the operation sig-
nature.

9. The time for theuser upcallstep depends upon the ac-
tual implementation of the operation in the servant.

Each outgoing server step is outlined below:

10. In the return value marshalstep, the return ,
inout , andout parameters are marshaled. This time also
depends on the signature of the operation.

11. The send operation in theORB messaginglayer
passes the marshaled return data down to the ORB transport
layer.

12. Thesend operation in theORB transportlayer adds
the appropriate IOP header to the reply, sends the reply, and
closes the connection if it detects an error. Also included in
the category is the time the server is blocked in thesend op-
eration while the client runs.

13. The I/Osend operation gets the peer I/O handle from
the server connection handler and calls the appropriatesend
operation. The server uses a gather-write I/O call, just like the
client-side I/Osend operation described above.

Depending on the type and number of operation parame-
ters, theORB transport recvstep often requires the most ORB
processing time. This time is dominated by the required data
copies. These costs can be reduced significantly by using a
transport adapter that implements a shared buffer strategy.

Component costs: Figure 18 compares the relative over-

11
2

11
1

52 51

49 48

49 47

24 23

27 27

31

27

30

27

0

50

100

150

200

250

IIOP IIOP w/GIOPlite UIOP UIOP w/GIOPlite

Transport Protocol

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Figure 18: Comparison of ORB and Transport/OS Overhead
Using Timeprobes

head attributable to the ORB messaging component, transport

adaptor, ORB and OS for two-wayIDL Cubit calls to the
cube void operation for each possible protocol combina-
tion. This figure shows that when using IIOP the I/O and OS
overhead accounts for just over 50% of the total round trip
latency. It also shows that the difference in performance be-
tween IIOP and UIOP is due primarily to the larger OS and
I/O overhead of TCP/IP, compared with local IPC.

The only overhead that depends on size is(de)marshaling,
which depends on the type complexity, number, and size of
operation parameters, anddata copying, which depends on the
size of the data. In our whitebox experiment, only the param-
eter size changes,i.e., thesequence s vary in length. More-
over, TAO’s (de)marshaling optimizations [8] incur minimal
overhead when running between homogeneous ORB endsys-
tems.

In Figure 19, the parameter size is varied and the above test
is repeated. It shows that as the size of the operation parame-

64 64 65 65 65 66 73 81 85 93

77 77 77 77 77 77 78 76 76 77

27 27 27 27 28 28 29 31 33

3627 27 28 28 28 28

30

34 34

35

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11

Bytes in Octet Sequence (powers of two)

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Figure 19: ORB and Transport/OS Overhead vs. Parameter
Size

ters increases, I/O overhead grows faster than the overall ORB
overhead, including messaging and transport. This result illus-
trates that the overall ORB overhead is largely independent of
the request size. In particular, demultiplexing a request, creat-
ing message headers, and invoking an operation upcall are not
affected by the size of the request.

TAO employs standard buffer size and data copy tradeoff
optimizations. This optimization is demonstrated in Figure 19
by the fact that there is a slight increase in the time spent both
in the transport component and in the ORB itself when the
sequence size is greater than 256 bytes. The data copy tradeoff
optimization is fully configurable via run-time command line
options, so it is possible to configure TAO to further improve
performance above the 256 byte data copy threshold.

For the operations tested in theIDL Cubit benchmark, the
overhead of the ORB is dominated by memory bandwidth lim-
itations. Both the loopback driver and local IPC driver copy

20

data within the same host. Therefore, memory bandwidth limi-
tations should essentially be the same for both IIOP and UIOP.
This result is illustrated in Figure 18 by the fact that the time
spent in the ORB is generally constant for the four protocol
combinations shown.

In general, the use of UIOP demonstrates the advantages
of TAO’s pluggable protocols framework and how optimized,
domain-specific protocols can be deployed.

6 Related Work

We have used TAO to research many dimensions of high-
performance and real-time ORB endsystems, including
static [2] and dynamic [25] scheduling, request demultiplex-
ing [7], dispatching [34], and event processing [22], ORB
Core connection [32] and concurrency architectures [35], IDL
compiler stub/skeleton optimizations for synchronous [8] and
asynchronous [36] communication, I/O subsystem integra-
tion [20], evaluation Real-time CORBA [11] features [19],
fault tolerance features [14, 15], reflective QoS techniques the
CORBA Component Model [37], multimedia streaming sup-
port [21], systematic benchmarking of multiple ORBs [38],
and patterns for ORB extensibility [28] and optimization [7].
The design of TAO’s pluggable protocols framework is influ-
enced by prior research on the design and optimization of pro-
tocol frameworks for communication subsystems. This sec-
tion outlines that research and compares it with our work.

Configurable communication frameworks: The x-
kernel [39], Conduit+ [30], System V STREAMS [40],
ADAPTIVE [41], and F-CSS [42] are all configurable
communication frameworks that provide a protocol back-
plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces.

The frameworks for communication subsystems listed
above focus on implementing various protocol layers beneath
relatively low-level programming APIs, such as sockets. In
contrast, TAO’s pluggable protocols framework focuses on
implementing and/or adapting to transport protocols beneath
a higher-level CORBA middleware API,i.e., the standard
CORBA programming API. Therefore, existing communica-
tion subsystem frameworks can provide building block proto-
col components for TAO’s pluggable protocols framework.

Patterns-based communication frameworks: An increas-
ing number of communication frameworks are being designed
and documented using patterns [28, 30]. In particular, Con-
duit+ [30] is an OO framework for configuring network pro-

tocol software to support ATM signaling. Key portions of the
Conduit+ protocol framework,e.g., demultiplexing, connec-
tion management, and message buffering, were designed us-
ing patterns like Strategy, Visitor, and Composite [17]. Like-
wise, the concurrency, connection management, and demulti-
plexing components in TAO’s ORB Core and Object Adapter
also have been explicitly designed using patterns such as Re-
actor, Acceptor-Connector, and Active Object [3].

CORBA pluggable protocols frameworks: The archi-
tecture of TAO’s pluggable protocols framework is in-
spired by the ORBacus [43] Open Communications Interface
(OCI) [44]. The OCI framework provides a flexible, intuitive,
and portable interface for pluggable protocols. The framework
interfaces are defined in IDL, with a few special rules to map
critical types, such as data buffers.

Defining pluggable protocols interfaces with IDL permits
developers to familiarize themselves with a single program-
ming model that can be used to implement protocols in differ-
ent languages. In addition, the use of IDL makes it possible
to write pluggable protocols that are portable among different
ORB implementations and platforms.

However, using IDL also limits the the degree to which
various optimizations can be applied at the ORB and trans-
port protocol levels. For example, efficiently handling locality
constrained objects, optimizing profile handling, strategized
buffer allocation, or interfacing with optimized OS abstrac-
tion layers/libraries are not generally supported by existing
IDL compilers. Additionally, changes to an IDL compiler’s
mapping rules on a per protocol basis is prohibitive.

In our approach we use C++ classes and optimized frame-
work interfaces to allow protocol developers to exploit new
strategies or available libraries. TAO uses the ACE frame-
work [29] to isolate itself from non-portable aspects of under-
lying operating systems. This design leverages the testing, op-
timizations, implemented by ACE, enabling us to focus on the
particular problems of developing a high-performance, real-
time ORB.

Our framework allows each protocol implementation to rep-
resent a profile as it sees fit. Since these profiles are only cre-
ated in a few instances, it is possible for them to parse the octet
stream representation and store it in a more convenient format.
The parsing can be also done on demand to minimize startup
time. The protocol implementor is free to choose the strategy
that best fits the application.

TAO implements a highly optimized pluggable protocols
framework that is tuned for high-performance and real-time
application requirements. For example, TAO’s pluggable pro-
tocols framework can be integrated with zero-copy high-speed
network interfaces [23, 45, 20, 9], embedded systems [8],
or high-performance communication infrastructures like Fast
Messages [18].

21

7 Concluding Remarks

To be an effective development platform for performance-
sensitive applications, CORBA middleware must preserve
end-to-end application QoS properties across the communica-
tion layer. It is essential, therefore, to define a pluggable proto-
cols framework that allows custom inter-ORB messaging and
transport protocols to be configured flexibly and transparently
by CORBA applications.

This paper identifies the protocol-related limitations of cur-
rent ORBs and describes a CORBA-based pluggable protocols
framework we developed and integrated with TAO to address
these limitations. TAO’s pluggable protocols framework con-
tains two main components: an ORB messaging component
and an ORB transport adapter component. These two com-
ponents allows applications developers and end-users to ex-
tend their communication infrastructure transparently to sup-
port the dynamic and/or static binding of new ORB messaging
and transport protocols. Moreover, TAO’s patterns-oriented
OO design makes it straightforward to develop custom inter-
ORB protocol stacks that can be optimized for particular ap-
plication requirements and endsystem/network environments.

This paper illustrates the performance of TAO’s pluggable
protocols framework empirically when running CORBA ap-
plications over high-speed interconnects, such as VME. Our
benchmarking results demonstrate that applying appropriate
optimizations and patterns to CORBA middleware can yield
highly efficient and predictable implementations, without sac-
rificing flexibility or reuse. These results support our con-
tention that CORBA middleware performance is largely an im-
plementation issue. Thus, well-tuned, standard-based CORBA
middleware like TAO can replacead hocand proprietary so-
lutions that are still commonly used in traditional distributed
applications and real-time systems.

Most of the performance overhead associated with plug-
gable protocols framework described in this paper stem from
“out-of-band” creation operations, rather operations in the crit-
ical path. We have shown how patterns can resolve key design
forces to flexibly create and control the objects in the frame-
work. Simple and efficient wrapper facades can then be used
to isolate the rest of the application from low-level implemen-
tation details, without significantly affecting end-to-end per-
formance.

References
[1] M. Henning and S. Vinoski,Advanced CORBA Programming With

C++ . Reading, Massachusetts: Addison-Wesley, 1999.

[2] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[3] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture – A System of Patterns. New
York: Wiley and Sons, 1996.

[5] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.2 ed., Feb. 1998.

[6] Object Management Group,Telecom Domain Task Force Request For
Information Supporting Wireless Access and Mobility in CORBA -
Request For Information, OMG Document telecom/98-06-04 ed., June
1998.

[7] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
IEEE Concurrency Magazine, vol. 8, no. 1, 2000.

[8] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
Engine for Minimal Footprint Multimedia Systems,”Journal on
Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[9] R. S. Madukkarumukumana and H. V. Shah and C. Pu, “Harnessing
User-Level Networking Architectures for Distributed Object
Computing over High-Speed Networks,” inProceedings of the 2nd
Usenix Windows NT Symposium, August 1998.

[10] Compaq, Intel, and Microsoft, “Virtual Interface Architecture, Version
1.0.” www.viarch.org, 1997.

[11] Object Management Group,Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[12] F. Kon and R. H. Campbell, “Supporting Automatic Configuration of
Component-Based Distributed Systems,” inProceedings of the5th

Conference on Object-Oriented Technologies and Systems, (San Diego,
CA), pp. 175–178, USENIX, May 1999.

[13] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.3 ed., June 1999.

[14] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “DOORS:
Towards High-performance Fault-Tolerant CORBA,” inProceedings of
the2nd International Symposium on Distributed Objects and
Applications (DOA 2000), (Antwerp, Belgium), OMG, Sept. 2000.

[15] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “Applying
Patterns to Improve the Performance of Fault-Tolerant CORBA,” in
Proceedings of the7th International Conference on High Performance
Computing (HiPC 2000), (Bangalore, India), ACM/IEEE, Dec. 2000.

[16] Object Management Group,CORBA Messaging Specification. Object
Management Group, OMG Document orbos/98-05-05 ed., May 1998.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison-Wesley, 1995.

[18] M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for High Speed
Communication: Fast Messages 2.x.,” inProceedings of the 7th High
Performance Distributed Computing (HPDC7) conference, (Chicago,
Illinois), July 1998.

[19] C. O’Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, I. Pyarali,
and D. Levine, “Evaluating Policies and Mechanisms for Supporting
Embedded, Real-Time Applications with CORBA 3.0,” inProceedings
of the6th IEEE Real-Time Technology and Applications Symposium,
(Washington DC), IEEE, May 2000.

[20] F. Kuhns, D. C. Schmidt, C. O’Ryan, and D. Levine, “Supporting
High-performance I/O in QoS-enabled ORB Middleware,”Cluster
Computing: the Journal on Networks, Software, and Applications,
vol. 3, no. 3, 2000.

22

[21] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on System
Sciences, Jan. 1999.

[22] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, October 1997.

[23] Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach to
High Performance Network Interface Design: Protected DMA and
Other Techniques,” inProceedings of INFOCOM ’97, (Kobe, Japan),
pp. 179–187, IEEE, April 1997.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applications,”Network Information
Center RFC 1889, January 1996.

[25] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”Real-Time
Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleware, vol. 20, March 2001.

[26] C. O’Ryan and D. C. Schmidt, “Applying a Real-time CORBA Event
Service to Large-scale Distributed Interactive Simulation,” in5

th

International Workshop on Object-oriented Real-Time Dependable
Systems, (Monterey, CA), IEEE, Nov 1999.

[27] B. Meyer,Object-Oriented Software Construction, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[28] D. C. Schmidt and C. Cleeland, “Applying a Pattern Language to
Develop Extensible ORB Middleware,” inDesign Patterns in
Communications(L. Rising, ed.), Cambridge University Press, 2000.

[29] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of
Programming Languages(P. Salus, ed.), MacMillan Computer
Publishing, 1997.

[30] H. Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” inProceedings of OOPSLA ’95, (Austin, Texas),
ACM, October 1995.

[31] C. Cleeland, D. C. Schmidt, and T. Harrison, “External Polymorphism
– An Object Structural Pattern for Transparently Extending Concrete
Data Types,” inPattern Languages of Program Design(R. Martin,
F. Buschmann, and D. Riehle, eds.), Reading, Massachusetts:
Addison-Wesley, 1997.

[32] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Journal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internet, vol. 21, no. 2, 2001.

[33] P. S. Inc.,Quantify User’s Guide. PureAtria Software Inc., 1996.

[34] I. Pyarali, C. O’Ryan, and D. C. Schmidt, “A Pattern Language for
Efficient, Predictable, Scalable, and Flexible Dispatching Mechanisms
for Distributed Object Computing Middleware,” inProceedings of the
International Symposium on Object-Oriented Real-time Distributed
Computing (ISORC), (Newport Beach, CA), IEEE/IFIP, Mar. 2000.

[35] D. C. Schmidt, “Evaluating Architectures for Multi-threaded CORBA
Object Request Brokers,”Communications of the ACM special issue on
CORBA, vol. 41, Oct. 1998.

[36] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M. Kircher, and
J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,” inProceedings of
the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[37] N. Wang, D. C. Schmidt, K. Parameswaran, and M. Kircher, “Applying
Reflective Middleware Techniques to Optimize a QoS-enabled CORBA
Component Model Implementation,” in24th Computer Software and
Applications Conference, (Taipei, Taiwan), IEEE, Oct. 2000.

[38] A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,” inProceedings
of SIGCOMM ’96, (Stanford, CA), pp. 306–317, ACM, August 1996.

[39] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Architecture
for Implementing Network Protocols,”IEEE Transactions on Software
Engineering, vol. 17, pp. 64–76, January 1991.

[40] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[41] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dynamically
Assembled Protocol Transformation, Integration, and eValuation
Environment,”Journal of Concurrency: Practice and Experience,
vol. 5, pp. 269–286, June 1993.

[42] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication Subsystems,”IEEE Journal on
Selected Areas in Communication, vol. 11, pp. 507–519, May 1993.

[43] I. Object Oriented Concepts, “ORBacus.” www.ooc.com/ob.

[44] I. Object-Oriented Concepts, “ORBacus User Manual - Version 3.1.2.”
www.ooc.com/ob, 1999.

[45] T. v. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-Level
Network Interface for Parallel and Distributed Computing,” in15th
ACM Symposium on Operating System Principles, ACM, December
1995.

23

