Applying Patterns to Develop a Pluggable
Protocols Framework for ORB Middleware

Douglas C. Schmidt, Carlos O’Ryan, and Ossama Othman Fred Kuhns and Jeff Parsons
{schmidt,coryan,ossarh@uci.edu {fredk,parsons@cs.wustl.edu
Electrical & Computer Department of Computer Science
Engineering Department Washington University
University of California, Irvine, USA St. Louis, MO, USA

This paper appeared as a chapter in the bdekign Pat- middleware can replace many ad hoc and proprietary solu-
terns in Communications(Linda Rising, ed.), Cambridgetions.
University Press, 2001. An earlier version appeard in the
IFIP/ACM Middleware 2000 Conference, Pallisades, New
York, April 3-7, 2000. 1 Introduction

Standard CORBA middleware now available off-the-shelf al-
Abstract lows clients to invoke operations on distributed components
without concern for component location, programming lan-

To be an effective platform for performance-sensitive ap- L -)
plications, off-the-shelf CORBA middleware must prese Léage, OS platiorm, communication protocols and intercon

the communication-layer quality of service (QoS) propertin C;SéAor hdagljware [1]. Ho;llvelvek colnvennon?]! off-thSe-sheIf
of applications end-to-end. However, the standard COR middleware generally lacks (1) support for QoS spec-

GIOP/IIOP interoperability protocols are not well-suited fo'Ication and enforcement, (2) integration with high-speed net-
applications with stringent message footprint size, laten¥yorking technology, and (3) efficiency, predictability, and
and jitter requirements. It is essential, therefore, to devel§galability optimizations [2]. These omissions have limited
standard pluggable protocols frameworks that allow custdifie rate at which performance-sensitive applications, such
messaging and transport protocols to be configured flexilsly video-on-demand, teleconferencing, and avionics mission
and used transparently by applications. computing, have been developed to leverage advances in
This paper provides three contributions to the study GORBA middleware.
pluggable protocols frameworks for performance-sensitiveTo address the shortcomings of CORBA middleware men-
CORBA middleware. First, we outline the key design cha@ibned above, we have develop&tle ACE ORETAO) [2],
lenges faced by pluggable protocols developers. Second\#gch is an open-sourdestandards-based, high-performance,

describe how we resolved these challenges by developing4.time ORB endsystem CORBA middleware that supports

pluggable protocols framework for TAO, which is our highs,yjications with deterministic and statistical QoS require-
performance, real-time CORBA-compliant ORB. Third, P Q d

present the results of benchmarks that pinpoint the impact o?nts’ as well as "best-effort” requirements. This paper fo-

TAO’s pluggable protocols framework on its end-to-end effii>cs on the design and |r_nplementat|on prq;)gabIe protp—
ciency and predictability. cols frameworkhat can efficiently and flexibly support high-

speed protocols and networks, real-time embedded system in-

Our results demonstrate how the application of optimiza®
tions and patterns to CORBA middleware can yield both highiayrconnects, and standard TCP/IP protocols over the Internet.

flexible/reusable designs and highly efficient/predictable im—ﬁt the hgartto;Tég sdplgggagledfprotohgo:ls;ramevvlork_ll:%Alés’
plementations. These results illustrate that (1) CORBA m%%grns-orlen'e d tesugn [t,' t], ;/v Ic f eco'L:p ?S St
dleware performance is largely an implementation detail an messaging and transport Interiaces from s fransport-

: ey cific protocol components. This design allows custom
2)th - f - .)
(2) the next-generation of optimized, standards-based COR?éB messaging and transport protocols to be configured flex-

“This work was supported in part by AFOSR grant F49620-00-1-0338)Y @nd used transparently by CORBA applications. For ex-

ATD, BBN, Boeing, Cisco, DARPA contract 9701516, Motorola Commerci@mple, if ORBs communicate over a high-speed networking

Government and Industrial Solutions Sector, Motorola Laboratories, Siemens
and Sprint. 1TAO is available atvww.cs.wustl.edu/ ~schmidt/TAO.html

infrastructure, such as ATM AALS5 or specialized protocol2 Overview of the CORBA Protocol In-

like HPPI, then simpler ORB messaging and transport proto- teroperability Architecture
cols can be configured to optimize unnecessary features and

ovlerg%cli: of tfgjel s;tand?:dtcogfg PGetnera}I :Pé%'OLRkB P.rOtPﬁe CORBA specification [5] defines an architecture for ORB
_(;’_zé |)anbl n ernte nlerf- rokocok('t).t ! .evr\]/t'fs%nteroperability. Although a complete description of the model
S pluggable prolocals framework makes 1t straightiofs beyond the scope of this paper, this section outlines the

\éﬁg fsségfnogggtu; éoln;IrZ?/dMeEmZi%de?(ir?gssfteamdlgtrzr?(gge[gc Ftions of the CORBA specification that are relevant to our

General Inter-ORB Protocol (GIOP), resent topici.e., object addressing and inter-ORB protocols.
For OO researchers and practitioners, the results in this 8RBA Object addressing: To identify objects, CORBA

per provide two important contributions: defines a generic format called the Interoperable Object Ref-

erence (IOR). An object reference identifies one instance of an

1. We demonstrate empirically that the ability ofPbject and associates one or more paths by which that object

standards-based CORBA middleware to support higfn be accessed. The same object may be located by different

performance, real-time systems is largelyiaplementation object reference®.g, if a server is re-started on a new port or
detail, rather than an inherent liabilitg,g: migrated to another host. Likewise, multiple server locations

can be referenced by one IORg, if a server has multiple net-

« TAO's end-to-end one-way latency overhead is on ork interfaces connecting it to distinct networks, there may
Eée multiple network addresses.

~110 psecs using commercial off-the-self 200 MH) ,
PowerPCs, a 320 Mbps VMEbus, and VxWorks References to server locations are caledfiles A pro-
' ’ file provides an opaque, protocol-specific representation of an

e The overall roundtrip latency of a TAO two-way methodbject location. Profiles can be used to annotate the server lo-
invocation using the standard inter-ORB protocol and usation with QoS information, such as the priority of the thread
ing a commercial, off-the-self Pentium Il Xeon 400 MHzerving each endpoint or redundant addresses to increase fault-
workstation running in loopback mode €189 usecs. tolerance.

The ORB middleware accounts for approximately 48%
or ~90 pisecs of the total roundtrip latency. CORBA protocol model: CORBA Inter-ORB Protocols

(IOP)s support the interoperability between ORB endsystems.

e Using the specialized POSIX local IPC protocol reducé®Ps define data representation formats and ORB messaging

roundtrip latency te~125 secs. protocol specifications that can be mapped onto standard or

customized transport protocols. Regardless of the choice of

These results are as fast, or faster, than mahhog pro- ORB messaging or transport protocol, however, the same stan-
prietary solutions, thereby motivating the use of well-tunedard CORBA programming model is exposed to the appli-

standards-based CORBA middleware, even for real-time egation developers. Figure 1 shows the relationships between

bedded applications with stringent QoS requirements. these various components and layers.

2. We explore how patterns can be applied to resolve key STANDARD CORBA PROGRAMMING API

design challenges. TAO's pattern-oriented OO design cancﬂs
. B MESSAGING
extended to other pluggable protocols frameworks, eithern GIOP GIOPLITE ESIOP
. N o . COMPONENT
standard middleware or in distributed applications using pro-

prietary middleware. ORB TRANSPORT

ApAPTER component OP VME-IOP ATM -IOP

The remainder of this paper is organized as follows: Sec-_ _ _ . _ . __ . ____/ IRELIAELE
tion 2 outlines the CORBA protocol interoperability archi- SEQUENCED
tecture; Section 3 motivates the requirements for standaffNSPORT LAYER TCP VME AAL S
CORBA pluggable protocols and outlines TAO’s pluggable - - -------------ommmoo o o o
protocols framework; Section 4 describes the patterns that. o |\ er T= DRGSR ATM

guide the architecture of TAO’s pluggable protocols frame-

work and resolve key design challenges. Section 5 illustrates -~~~ ~-~""-"""----~ PROTOCOL CONFIGURATIONS

the performance characteristics of TAO'’s pluggable protocols

framework; Section 6 compares TAO with related work; arfdgure 1: Relationship Between CORBA Inter-ORB Protocols
Section 7 presents concluding remarks. and Transport-specific Mappings

In the CORBA protocol interoperability architecture, theays to access a serverg, through different physical net-
standardGeneral Inter-ORB Protoco{GIOP) is defined by work connections or alternate protocols.
the CORBA specification [5]. In addition, CORBA defines CORBA also defines other attributes that can be associated
a TCP/IP mapping of GIOP, which is called thnternet Inter- with a specific profile, group of profiles, or an entire I0OR.
ORB Protoco[llOP). ORBs must support IIOP to be “interopThese attributes are calleédgged cormponents Tagged com-
erability compliant.” Other mappings of GIOP onto differergonents can contain various types of QoS information dealing
transport protocols are allowed by the specification, as are @fth security, server thread priorities, network connections,
ferent inter-ORB protocols, which are knownBsvironment CORBA policies, or other domain-specific information.
Specific Inter-ORB Protocol&SIOP)s. An 1IOP Version 1.0 profile contains the protocol version,

Regardless of whether GIOP or an ESIOP is used,hastname, and port number, as well as an object key that is
CORBA IOP must define a data representation, an ORB mesed to demultiplex an object within a server’'s Object Adapter.
sage format, an ORB transport protocol or transport prototol IOP version 1.1, a new field was added to the GIOP
adapter, and an object addressing format. For example, libader that defines a sequence of tagged components, which
GIOP specification consists of the following: are name/value pairs that can be used for security, QoS, or

« A Common Data Representation (CDR) definition: othgr purposes. Taggeq compon.ents may contain more infor-
CDR is a transfer syntax that maps IDL types from their natifa2tion than just the object location. For example, IlIOP 1.1
host format to a low-levebi-canonicalrepresentation, which d€fines a flexible mechanism to include QoS parameters, secu-
supports both little-endian and big-endian formats. CDIfit—_y and authentlcathn tokens, per-object policies for bndgmg
encoded messages are used to transmit CORBA requests’4ffjnon-CORBA middleware, character set representations,
server responses across a network. All IDL data types are nfild alternative addresses for a server.
shaled using the CDR syntax into encapsulationwhich is ESIOP synopsis: In addition to the standard GIOP and IIOP
an octet stream that holds marshaled data. protocols, the CORBA specification allows ORB implemen-

« GIOP message formats: The GIOP specification de-tors to define Environment Specific Inter-ORB Protocols (ES-

fines seven types of messages that send requests, redglf@s: ESIOPs can define unique data representation for-
replies, locate objects, and manage communication chanrf@@ts, ORB messaging protocols, ORB transport protocols or
The following table lists the seven types of messages in GI&@NSPOrt protocol adapters, and object addressing formats.

1.0 and the permissible originators of each type: These pr_otocc_)Is can_expl0|t .the QoS features and guaran-
tees provided in certain domains, such as telecommunications
Message Type | Originator | Value or avionics, to satisfy performance-sensitive applications that
Request Client have stringent bandwidth, latency, and jitter requirements.

Reply Server Only one ESIOP protocol is defined in the CORBA 2.x
CancelRequest | Client

0
1
2) .
LocateRequest | Cient 3 family of specifications: the DCE Common Inter-ORB Pro-
4
5
6

tocol (DCE-CIOP) [5]. The OMG is attempting to standardize
other protocols for domains, such as wireless and mobile sys-
tems [6], which have unique performance characteristics and
optimization points.

e GIOP transport adapter: The GIOP specification de-
scribes the features of an ORB transport protocol that can .
carry GIOP messages. Such protocols must be reliable éhd The Design of a CORBA Pluggable
connection-oriented. In addition, GIOP defines a connection Protocols Framework
management protocol and a set of constraints for GIOP mes-
sage ordering.

LocateReply Server
CloseConnection| Server
MessageError Both

The CORBA specification provides a standard for general-

e Object addressing: An Interoperable Object Referencgurpose CORBA middleware. Within the scope of this specifi-
(IOR) is a sequence of opaqupeofiles each representing acation, however, ORB implementors are free to optimize inter-
protocol-specific representation of an object’s location. Foal data structures and algorithms [7]. Moreover, ORBs may
example, an IIOP profile includes the IP address and port nurse specialized inter-ORB protocols and ORB services and
ber where the server accepts connections, as well as the olsiittcomply with the CORBA specificatioh. For example,
key that identifies an object within a particular server. An IOQRB providers can develop additional ESIOPs for protocols
may contain multiple profiles because there may be multigiech as ATM or VME, as shown in Figure 1.

2Version 1.1 of GIOP addedRragment message and version 1.2 relaxes 3An ORB mustimplement GIOP/IIOP, however, to be interoperability-
restrictions on message originators. compliant.

This section first identifies the limitations of, and requir.2 Pluggable Protocols Framework Require-
ments for, protocol support in conventional CORBA ORBs. It ments

then describes how TAO’s pluggable protocols framework is))))
designed to overcome these limitations. The limitations of conventional ORBs described in Section 3.1

make it hard for developers to leverage existing implementa-

tions, expertise, and ORB optimizations across projects or ap-
3.1 Protocol Limitations of Conventional ORBs plication domains. Defining a standaptliggable protocols

frameworkfor CORBA ORB:s is an effective way to address
CORBAs standard GIOP/IIOP protocols are well-suited f@fis problem. The requirements for such a pluggable protocols

conventional request/response applications with best-effpgimework for CORBA include the following:
QoS requirements [8]. They are not well-suited, however, for

high-performance real-time and/or embedded applications &apefin.e standard, unobtrgsiye protocol configqration in-
cannot tolerate the message footprint size of GIOP or the f@faces: To address the limitations of conventional ORBSs,
tency, overhead, and jitter of the TCP/IP-based IIOP transgoR!Uggable protocols framework should define a standard set
protocol. For instance, TCP functionality, such as adaptive Ri-APIS to install ESIOPs and their transport-dependent com-
transmissions, deferred transmissions, and delayed ackn&@nents. Most applications need not use this interface di-
edgments, can cause excessive overhead and latency for FEGIy- Therefore, the pluggable protocols interface should be
time applications [9]. Likewise, network protocols, such &XPosed only to application developers interested in defining
IPv4, lack packet admission policies and rate control capabf]W Protocols or in configuring existing protocol implementa-

ties, which can lead to excessive congestion and missed d&Q§$ in novel ways.

lines in networks and endsystems. 2. Use standard CORBA programming and control inter-
Therefore, applications with more stringent QoS requiriaces: To ensure application portability, clients should pro-
ments need optimized protocol implementations, QoS-awgram to standard application interfaces defined in CORBA
interfaces, custom presentations layers, specialized menidty, even if pluggable ORB messaging or transport protocols
managemeng(.g, shared memory between ORB and I/O sulare used. Likewise, object implementors need not be aware of
system), and alternative transport programming ARg,(the underlying framework. Developers should be able to set
sockets vs. VIA [10]). Domains where highly optimizegolicies, however, that control the ORB’s choice of protocols
ORB messaging and transport protocols are particularly iamd protocol properties. Moreover, these interfaces should
portantinclude (1) multimedia applications running over higkransparently support certain real-time ORB features, such as
speed networks, such as Gigabit Ethernet or ATM, and &atter/gather I/O, optimized memory management, and strate-
real-time applications running over embedded system intgized concurrency models [7].
connects, such as VME or CompactPCI.

. . . . 3. Simultaneous use of multiple ORB messaging and trans-
Conventional CORBA implementations have the followin

Sort protocols: To address the lack of support for multi-
ﬁl’e inter-ORB protocols in conventional ORBs, a pluggable
protocols framework should support different messaging and
1. Static protocol configurations: Conventional ORBs Sup_transport protocolsimultanequslyvi.thin an ORB endsystem.
port a limited number of statically configured protocaols, ofte-H1e frameyvork ShOUId conﬂgure |n.te.r_—O_RB_protocoIs trans-
just GIOP/IIOP over TCP/IP, parently, eithestaticallyduring ORB initialization [11] ody-

namicallyduring ORB run-time [12].

2. Lack of prOtOCOl control interfaces: Conventional 4. Support for mu|t|p|e address representations: This re-
ORBs do not allow applications to configure key protocol poluirement addresses the lack of support for multiple Inter-
cies and properties, such as peak virtual circuit bandW|dth®RB protoco|s and dynamic protoco| Configuraﬁons in con-
cell pacing rate. ventional ORBs. For example, each pluggable protocol imple-

i i mentation can potentially have a different profile and object
3. Single protocol support: Conventional ORBs do not,ressing strategy. Therefore, a pluggable protocols frame-
support simultaneous use of multiple inter-ORB messaging 0ty should provide a general mechanism to represent these
transport protocols. disparate address formats transparently, while also supporting
standard IOR address representations efficiently.

sensitive applications effectively:

4. Lack of real-time protocol support: Conventional
ORBs have limited or no support for specifying and enforcirly Support CORBA standard features and future en-
real-time protocol requirements across a backplane, netwdrncements: A pluggable protocols framework should sup-
or Internet end-to-end. port standard CORBA [13] features, such as object reference

IN ARGS

forwarding, connection transparency, preservation of foreigqﬁ opeSiion (aree) (o]

IORs and profiles, and the GIOP 1.2 protocol, in a manner) o
that does not degrade end-to-end performance and predictabil- :@
ity. Moreover, a pluggable protocols framework should a OTHER

ORB MESSAGING COMPONENT ORB CoRE
SERVICES
GIOPLTe || REAL-TIME || MULTICAST || EMBEDDED PoLICY

0P IoP 1oP ORB VESSAGE CONTROL
l l ESIOP i FACTORY CONNECTION

commodate forthcoming enhancements to the CORBA sp
ification, such as (1jault tolerance[14, 15], which supports
group communication, (Zeal-time propertie$11], which in-
clude features to reserve connection and threading resou
on a per-object basis, (3synchronous messagifif], which
exports QoS policies to application developers, andi(g-
less access and mobilif§], which defines lighterweight Inter-
ORB protocols for low-bandwidth links.

MANAGEMENT

ORB TRANSPORT PROFILE
ADAPTER FACTORY
RELIABLE, MANAGEMENT
BYTE-STREAM

ATM CONCURRENCY
MODEL

ORB TRANSPORT ADAPTER COMPONENT MEMORY

MANAGEMENT

i)
6. Optimized inter-ORB bridging: A pluggable protocols
framework should ensure that protocol implementors can drégure 2: TAO’s Pluggable Protocols Framework Architecture
ate efficient, high-performance inter-OR®Bline bridges An
in-line bridge converts inter-ORB messages or requests from . .
one type of IOP to another. This makes it possible to brid eIn general, the higher-level components and services of

disparate ORB domains efficiently without incurring unnece _O'(l;sg Ehe. Faclade p;ttern [17] Ito faccess trll(e r?_ichamsms
sary context switching, synchronization, or data movementPoVvIded by Its p uggable protocols framewor : us, ap-
plications can (re)configure custom protocols without requir-

7. Provide common protocol optimizations and real-time ing global changes to the ORB. Moreover, because applica-
features: A pluggable protocols framework should suppotions typically access only the standard CORBA APIs, TAO'’s
features required by real-time CORBA applications [11], supluggable protocols framework can be used transparently by
as resource pre-allocation and reservation, end-to-end pridDRBA application developers.

ity propagation, and mechanisms to control properties specifiThe key TAO pluggable protocols framework components
to real-time protocols. These features should be implemenitkgtrated in Figure 2 are described below.

without modifying the standard CORBA programming APIs

used by applications that do not possess real-time QoS requirg-1 oRB Messaging Component
ments.

PLUGGABLE PROTOCOLS FRAMEWORK

ADAPTIVE Communication Environment (ACE)

COMMUNICATION INFRASTRUCTURE

REAL -TIME | /O SUBSYSTEM
HIGH SPEED NETWORK INTERFACE

. o .. . This component is responsible for implementing ORB mes-
8. Dynamic protocol bindings: To address the I|m|tat|onssaging protocols, such as the standard CORBA GIOP ORB
with static, inflexible protocol bindingsin conventionaIORB%essaging protocol, as well as custom ESIOPs. An ORB
a pluggable protocols frameworks should support dynamit.ssaging protocol must define a data representation, an
binding of specific ORB messaging protocols with specific ityrg message format, an ORB transport protocol or transport
stances of ORB transport protocols. This design permits effiyayier, and an object addressing format. Within this frame-

cient and predictable configurations for both standard and c{iS;x ORB protocol developers are free to implement opti-

tomized IOPs. mized Inter-ORB protocols and enhanced transport adaptors,
as long as they respect the ORB interfaces.
3.3 Architectural Overview of TAO’s Plug- Each ORB messaging protocol implementation inherits
gable Protocols Framework from a common base class that def.lnes a uniform mterfece.
This interface can be extended to include new capabilities
To meet the requirements outlined in Section 3.2, we idareeded by special protocol-aware policies. For example, ORB
tified logical communication component layers within TAGCgnd-to-end resource reservation or priority negotiation can
factored out common features, defined general frameworklir@ implemented in an ORB messaging component. TAO's
terfaces, and implemented components to support differphiggable protocols framework ensures consistent operational
concrete inter-ORB protocols. Higher-level services in tltharacteristics and enforces general IOP syntax and semantic
ORB, such as stubs, skeletons, and standard CORBA psewdostraints, such as error handling.
objects, are decoupled from the implementation details of parwwhen adding a new IOP, it may not be necessary to re-
ticular protocols, as shown in Figure 2. This decoupling iimplement all aspects of the ORB’s messaging protocol. For
essential to resolve several limitations of conventional ORBgsample, TAO has a highly optimized CDR implementation
outlined in Section 3.1, as well as to meet the requirementstbegit can be used by new I0Ps [7]. TAO’s CDR implemen-
forth in Section 3.2. tation contains highly optimized memory allocation strategies

and data type translations. Thus, protocol developers can siwer-constraining ORB implementations or (2) increasing in-
ply identify new memory or connection management straterface complexity for common use-cases. Example policies
gies that can be configured into the existing CDR componemtdevant for pluggable protocols include buffer pre-allocations,
Message factorieare another key part of TAO's ORB mesfragmentation, bandwidth reservation, and maximum trans-
saging component. During connection establishment, thesgt queue sizes.
factories instantiate objects that implement various ORB mesPolicies in CORBA can be set at the ORB, thread, or ob-
saging protocols. These objects are associated with a spejsfit level. Thus, application developers can set global poli-
connection and ORB transport adapter compon@ntthe ob- cies that take effect for any request issued in a particular ORB.
ject that implements the component, for the duration of thoreover, these global settings can be overridden on a per-
connection. thread basis, a per-object basis, or even before a particular re-
quest. In general, CORBAs Policy framework provides very
fine-grained control over the ORB behavior, while providing
3.3.2 ORB Transport Adapter Component simplicity for the common case.
This component maps a specific ORB messaging protocol,certain policies, such as 'tir'neouts, can be sh'ared b.etw.een
such as GIOP or DCE-CIOP, onto a specific instance of Itlplg protocols.' Other policies, such as ATM virtual circuit
underlying transport protocol, such as TCP or ATM. Figure nc_jmdth allocation, may apply to,a sm_gle protocol. Each
shows an example in which TAO’s transport adapter maps ﬁ%mgured proFoch can query TAO's policy contro_l compo-
'_?%]t to determine its policies and use them to configure itself

GIOP messaging protocol onto TCP—-this standard mappin ds. M tocol imol tati .
called IIOP. In this case, the ORB transport adapter combi guser neeas. vioreover, protocol implementations can sim-
y ignore policies that do not apply to it.

with TCP corresponds to the transport layer in the Internet r8 TAO' Y | bl licat
erence model. However, if ORBs are communicating over anI s policy control component enables applications to

embedded interconnect, such as a VME bus, the bus driveré}ﬁ&d their protocol(s). This choice can be controlied by

DMA controller provide the “transport layer” in the commu- € Cl|entProt.0.col!30I|cy . defmed n the Real-—t|m.e
nication infrastructure. CORBA specification [11]. Using this policy, an application

TAO's ORB transport component accepts a byte stre San indicate its preferred protocol(s) and TAO’s pollcy.control
.) . co[nponent then attempts to match that preference with its set
from the ORB messaging component, provides any addition : . -
i .) ... Qf available protocols. TAO provides other policies that con-
processing required, and passes the resulting data unit to_t £ . . A
. T o trol'the behavior of the ORB if an application’s preferences
underlying communication infrastructure. Additional process- . . .
. , . annot be satisfied. For example, an exception can be raised
ing that can be implemented by protocol developers includéy)
: or another available protocol can be selected transparently.
(1) concurrency strategies, (2) endsystem/network resource
reservation protocols, (3) high-performance techniques, such . _
as zero-copy I/0, shared memory pools, periodic I/0, and #h3.4 Connection Management Services
:ierrf_]acer ptoollr|19, (4) ?n\tliartilen;enrt (;f Erdsrltyln?r ConTmru?'Céénnection management services are a fundamental compo-
T s oo s S b e Of TAOS plggable protocols framonrk_ These sor.
ficient user-s' ace rotogcol im FI)em%ntations such as Fast écgs are responsible for creating ORB protocol objects dy-
sages [18] P P P ' eﬁnically and associating them with specific connections.
9 ' They also interpret profiles and create object references on
the server. By employing patterns and leveraging TAO's real-
3.3.3 ORB Policy Control Component time features [19], protocol implementors can design high-
performance IOPs that enforce stringent QoS properties.
It is not possible to determina priori all attributes defined The connection management services are implemented with
by all protocols. Therefore, TAO'’s pluggable protocols frameennectorsacceptors reactorsandregistriesthat keep track
work provides an extensibfaolicy controlcomponent, which of available protocols, create protocol objects, and interpret
implements the QoS framework defined in the CORBA Megrofiles and object addresses. Acceptors and connectors im-
saging [16] and Real-time CORBA [11] specifications. Thisgement theAcceptor-Connectgpattern [3], which decouples
component allows applications to control the QoS attributig® task of connection establishment and connection handler
of configured ORB transport protocols. initialization from subsequent IOP message processing. The
In general, the CORBA QoS framework allows applicazonnectors and acceptors register themselves with their corre-
tions to specify varioupoliciesto control the QoS attributessponding registries. The registries in turn keep track of avail-
in the ORB. The CORBA specification uses policies to dable ORB message and transport protocols and are responsible

fine semantic properties of ORB features precisely without by interpreting object references.

TAQO's connection management services behave differentlyTAO’s multiple profiles implementation incorporates sup-
depending on whether the ORB plays the role of a client opart for location forwarding which occurs when an ORB
server, as outlined below. sends a request to a server object, and the server responds with
Client ORB components: In the client ORB, the & location forward reply. The location forward reply will in-

establish clude an IOR that the client decodes to get the list of forward-

Connector _Registry and Connector) i h di | il th | h
connections to server objects and link the constituent obje profiles. The forwarding profiles will then replace the for-

together statically or dynamically. When a client applicatid'ﬁarded profile in the original profile list. Each new profile will

invokes an operation, it uses the list of profiles derived frome" P€ tried in turn until one succeeds, is itself forwarded, or
the object's IOR. until all fail. If all forwarding profiles fail, the forwarding list

ORB and transport protocol combinatié)% removed and the ORB continues with the next profile after
the one that was forwarded initially.

For each inter-

available in the ORB, there is a correspond@gnnector :) o .
object responsible for performing the connection. The registry! "€'€ i N0 pre-defined limit on the number of location-
will cycle through the list of profiles for an object, requestiny'ard messages that an ORB may receive. For example,

i&ﬁﬁ_should also be forwarded, the process will repeat recur-
file is returned to the client. If no connect succeeds, the ORE!Y until the operation succeeds or all profiles have been
throws atransient exception to the client. tried. In prac_tlce, however, |t.|s advantageous to limit the depth
of recursion in case forwarding loops occur.

Server ORB components: In the server ORB, an \yiiple profiles can be used for other purposes, such as
Acceptor waits passively fo'r a connection event using,it-tolerance [14, 15]. For example, consider an object that
a Reactor in accordance with the Reactor pattern [3js replicated in three locations,g, on different hosts, pro-
Different concurrency architectures may be used, SUffsses, or CPU boards in an embedded system. The IOR for
as single-threaded, thread-per-connection or thread-Rgfs object would contain three profiles, one for for each object
priority [20]. The actual concurrency strategy used f§cation. If an invocation fails using the first profile, TAO's
provided as a service by TAO's ORB Core and the plugiggable protocols framework will transparently retry the in-
gable protocols framework. Regardless of the threading apgtation using the second profile that corresponds to the repli-
connection concurrency strategy, the basic steps are the saigg:g object at a different location. By using some form of

1. AnAcceptor listens to endpoints and waits for conne&heckpointing or reliable multicast the state of these object in-
tion requests. stances can be synchronized.

2 Wh L q ion handl Location forwarding can also be used for load balancing.
- When a connection is accepted, a connection handler @8z o ample, if one server becomes overloaded, it can migrate

jectand IOP object are created. some of its objects to another server. Subsequent requests on

The Acceptor _Registry creates object references fothe relocated object will then result in a location forward reply
registered server objects. When an object is advertised, ifssage. The message contains the new IOR for the relocated
registry will request each registerédtceptor to create a object. In the client ORB, TAQO'’s pluggable protocols frame-
profile for this object. Theé\cceptor will place in this pro- work will then retry the object operation invocation using the
file the host address, the corresponding transport service W IOR transparently to the application. When system loads
cess point (for example, port number for TCP/IP), and objégfurn to normal, the object can migrate back to the original

key. All profiles are then bundled by ti#eceptor into an Server, and if the client performs another operation invocation,
IOR, which clients can use to access the object. the forwarded server can reply with an exception indicating the

object is no longer there. The client then retries at the original
3.3.5 Multiple Profiles and Location Forwarding location transparently to the application.
As explained in Section 2, clients obtain interoperable o§—4
ject references (IORs), which are used to locate the objects
upon which invocations are performed. An object reference ife illustrate how TAO’s pluggable protocols framework has
cludes at least one profile, which contains information for deeen applied in practice, we now describe two scenarios
cessing an object through different network interfaces, shatkdt require performance-sensitive and real-time CORBA sup-
memory, security restrictions, or QoS parameters. Multigbert. These scenarios are based on our experience developing
profiles could be used in a situation where an object resideshigh-bandwidth, low-latency audio/video streaming applica-

a server with multiple interfaces,g, ATM and Ethernet. A tions [21] and avionics mission computing [22] systems. In
profile will then be created for each of the two interfaces. previous work [20], we addressed the network interface and

Pluggable Protocols Scenarios

I/0 system and how to achieve predictable, real-time perfor-The A/V streaming application is primarily concerned with
mance. In the discussion below, we focus on ORB support {&j pushing data to clients via one-way method invocations and
alternate protocols. (2) meeting a specific set of latency and jitter requirements.
Considering this, a simple frame sequencing protocol can be
3.4.1 Low-latency, High-bandwidth Multimedia Stream- used gs_the ORB's ESIOP. Moreover, k_)ecause multimedia data
ing has d|m|n|s_h|ng value over time, a reliable prptocol like '_I'CP
is not required. The overhead of full GIOP is not required,
Multimedia applications running over high-speed networks ridserefore, nor are the underlying assumptions that require a
guire optimizations to utilize available link bandwidth, whiléransport protocol with the semantics of TCP.
still meeting application deadlines. For example, consider Fig-A key goal of this scenario is to simplify the ORB messag-
ure 3, where network interfaces supporting 1.2 Mbps or 2§ and transport protocol, while adding QoS-related informa-
tion to support timely delivery of the video frames and audio.
For example, a CORBA request could correspond to one video
frame or audio packet. To facilitate synchronization between
P endpoints, a timestamp and sequence number can be sent with

— WUGS HIGH. SPEED GowD) each request. The Inter-ORB messaging protocol can perform
[supries NETWORK owsover] @ similar function as the real-time protocol (RTP) and real-time

TAO QOS-ENABLED ORB

TAO QOSENABLED ORB conitrol protocol (RTCP) [24].
00

DD:D% The ORB messaging protocol can be mapped onto an ORB
. IS transport protocol using AAL5. The transport adapter is then
Figure 3: Example CORBA-based Audio/Video (A/V) App"_responsible for exploiting any local optimizations to hardware
cation or the endsystem. For example, conventional ORBs copy user
parameters into internal buffers used for marshaling. These
Mbps link speeds are used for a CORBA-based studio qualiyffers may be allocated from global memory or possibly from
audio/video (A/V) application [21]. a memory pool maintained by the ORB. In either case, at least
In this example, we use TAO’s pluggable protocols fram@ne system call is required to obtain mutexes, allocate buffers,
work to replace GIOP/IIOP with a custom ORB messagif§'d copy the data. Thus, not only is an additional data copy
and transport protocol that transmits A/V frames using TAQ®Bcurred, but this scenario is rife with opportunities for prior-
real-time 1/0 (RIO) subsystem [20]. At the core of RIO gy inversion and jitter while waiting to acquire shared ORB
the high-speed ATM port interconnect controller (APIC) [23fNndsystem resources.
APIC is a high-performance ATM interface card that supports
standard ATM host interface features, such as AAL5 (SAR).)) e
addition, the APIC supports (1) shared memory pools betwé%ﬂge s to implement an optimized pluggable protocol that

user and kernel space, (2) per-VC pacing, (3) two levels Ofp|mplements the design described above. For example, mem-

ority queues, and (4) interrupt disabling on a per-VC bases?Y ¢an be shared throughout the ORB endsysteen, be-

We have leveraged the APIC features and the underlyltﬁveer? the application, ORB middleware, OS kemel, and net-
rk interface, by allocating memory from a common buffer

ATM network to support end-to-end QoS guarantees for TA gol [23, 7]. This optimization eliminates memory copies be-

middleware. In particular, pluggable ORB message and tra ween user- and kernel-space when data is sent or received
port protocols can be created to provide QoS services to gap- P : '
o !) greover, the ORB endsystem can manage this memory,
plications, while the ORB middleware encapsulates the act%ha L o : .
ereby relieving application developers from this responsibil-

resource allocation and QoS enforcement mechanisms. Le\{ r- In addition, the ORB endsystem can manage the APIC

aging the underlying APIC hardware requires the resolution!alf . . .
the following two design challenges: interface driver, interrupt rates, and pacing parameters, as out-

lined in [20].

Custom protocols: The first challenge is to create custom Figure 4 illustrates a buffering strategy where the ORB man-

ORB messaging and transport protocols that can exploit higiges multiple pools of buffers to be used by applications send-
speed ATM network interface hardware. A careful examinizxg multimedia data to remote nodes. These ORB buffers are
tion of the system requirements along with the hardware astthred between the ORB and APIC driver in the kernel. The

communication infrastructure is required to determine (1) th@nsport adapter implements this shared buffer pool on a per-
set of optimizations required and (2) the best partitioning odbnnection and possibly per-thread basis to minimize or re-

the solution into ORB messaging, transport and policy coufice the use of resource locks. For example, in the strategy
ponents. depicted in Figure 4, each active connection is assigned its

timized protocol implementations: The second chal-

CONSUMER I

interoperating over shared memory, 1/0 buses, and traditional
network interfaces. Support for deterministic real-time re-
DL =N FRAVES) i quirements is essential for mission computing tasks, such as
ARSHAL \‘ ORBMANAGED ! weapon release and navigation, that must meet all their dead-
FRAMES | DATABUFFERS i lines. Likewise, avionics software must support tasks, such as
= built-in-test and low-priority display queues, that can tolerate
P = o LB minor fluctuations in scheduling and reliability guarantees, but
e nonetheless require QoS support [25].
To enforce end-to-end application QoS guarantees, mission

SUPPLIER I

movie->ship (frame)

DEMARSHAL @

OUTGOING
DONINOINI

T computing middleware must reduce overall inter-ORB com-

munication latencies, maximize I/O efficiency, and increase
overall system utilization [8, 26]. A particularly important op-
timization point is the inter-ORB protocol itself, and the se-
lection of an optimal transport protocol implementation for a
Figure 4: Shared Buffer Strategy particular platform.
For example, Figure 5 depicts an embedded avionics con-
figuration with three CPU boards, each with an ORB instance.
own send and receive queues. Likewise, there are two fEegh board is connected via a VME bus, which enables the
buffer pools per connection, one for receive and one for send.
An ORB can guarantee that only one application thread will
be active within the send or receive operation of the transport
adapter. Therefore, buffer allocation and de-allocation can >
be performed without locking. A similar buffer management o rewore
strategy is described in [23] TERMINALS
User applications can interact with the buffering strategy de- |
scribed above as follows:

DRIVER %

ATM LINK

GET FREE

INTER-ORB communicaTioN viA VME Bus
e Zero-copy: The application requests a set of send
buffers from the ORB that it uses for video and audio data. In

this case, application developers must not reuse a buffer after . . o
it has been given to the ORB. When the original set of buffé@RkBs on each CPU board to communicate using optimized

are exhausted, the application must request additional bufféfr-board communication, such as DMA between the indi-
vidual board address spaces. CPU board 1 has a 1553 bus

* Single-copy: The ORB copies appllcatlon data into th?nterface to communicate with so-called remote terminals,
ORB manageq bt%ﬁers- While this strategy incurs one d h as aircraft sensors for determining global position and
copy, the application developgr need not be concerned Wiward- looking infrared radar [22]. This configuration al-
how or when buffers are used in the ORB. lows ORB A to provide a bridging service that forwards ORB

Well-designed ORBs can be strategized to allow applid@quests between ORBs B and C and remote terminals con-
tions to decide whether data are copied into ORB buffersrngcted with board 1.
not. For instance, it may be more efficient to copy relatively The scenario in Figure 5 motivates the need for multiple
small request data into ORB buffers, rather than using sha@®B messaging and transport protocols that can be added
buffers within the ORB endsystem. By using TAO'’s policgeamlessly to an ORB without affecting the standard CORBA
control component, this decision can be configured on a pgmegramming API. For instance, ORB A could use a 1553
connection, per-thread, per-object or per-operation basis. transport protocol adapter to communicate with remote termi-

nals. Likewise, custom ORB messaging and transport proto-
3.4.2 Low-latency, Low-jitter Avionics Mission Comput- COIS can be used to leverage the underlying VME bus hardware
ing and eliminate sources of unbounded priority inversion. Lever-
aging the underlying bus hardware requires the resolution of
Avionics mission Computing applications [22] are real'tinme f0||owing two design Cha”enges:
embedded systems that manage sensors and operator displays,
navigate the aircraft's course, and control weapon releaSastom protocols: With TAO'’s pluggable protocols frame-
CORBA middleware for avionics mission computing applicavork, we can create optimized VME-based and 1553-based
tions must support deterministic real-time QoS requiremeiriger-ORB messaging and transport protocols. Moreover, by

Figure 5: Example Avionics Embedded ORB Platform

separating the IOP messaging from a transport-specific m
¢

ping, we can adapt TAO’s pluggable protocols framework to obr>om (arams) g

different transmission technologies, such as CompactPC| v R B DL
Fibrechannel, by changing only the transport-specific mappij MARSHAL 1] f SKELETON & e
of the associated inter-ORB messaging protocol. PARAMS PATACORY PATACOPYY ?

o

Consider an embedded application that must periodigall{oze vessacing) DX ORB MESSAGING
process sensor data. The sensor data is collected arid| f{fore transporT)
warded aperiodically to a central, although redundant, proce OS KERNEL
sor. The sensor data is sent/received aperiodically. Therefp
the resulting bus transfers, interrupts, and driver processi
can reduce the overall utilization of the system. For example®
a DMA transfer between two CPU boards requires that the
VMEBus, the source ECI bus and the destination PCI bus be Figure 6: One-way Delayed Buffering Strategy
acquired and data copied.

ONINODNI

VME
DRIVER

DMA copy

VME BUS :

A more efficient protocol could buffer these one-way dat -
transfers until a predetermined byte count or timeout vaIueZFs Key DeSIQn Challenges and Pattern-
reached. Thus the time required to acquire the different buses based Resolutions
could be amortized over a larger data transfer. Additionally,
given the periodic nature of the transfers rate monotonic angéction 3.3 describetow TAO's pluggable protocols frame-
ysis could be used to better predict system performance. work is designed. It does not, however, motivatey this par-

ticular design was selected. In this section, we explore each
feature in TAO’s pluggable protocols framework and show
how they achieve the goals described in Section 3.2. To clar-
Optimized protocol implementations: To optimize the on- ify and generalize our approach, the discussion below focuses
the-wire protocol message footprint we use a lightweight vén the patterns [17] we applied to resolve the key design chal-
sion of GIOP, called GIOPlite. GIOPIlite is a streamlined velenges we faced during the development process.
sion of GIOP that removez 15 extraneous bytes from the
standard GIOP message and request he4ddiisese bytes .
include the GIOP magic number (4 bytes), GIOP version o1 Adding New Protocols Transparently
bytes), flags (1 byte), Request Service Context (at Ieas&é
bytes), and Request Principal (at least 4 bytes). GIOPlite
duces the number of bytes transfered across the backplan
operation.

ntext: The QoS requirements of many applications can
be supported solely by using default static protocol config-
%Pffﬁonns,i.e., GIOP/IIOP, described in section 3.1. How-
ever, applications with more stringent QoS requirements often
Another optimization that pertains to avionics mission corfequire custom protocol configurations. Implementations of
puting involves the use of buffered one-way operations [18)ese custom protocols require several related classes, such as
TAO’s pluggable protocols framework has been optimized @nnector s,Acceptor s,Transport s, andProfile —s.
send a series of queued one-way requests in a smaller nlignform a common framework, these classes must all be cre-
ber of ORB messages. For example, Figure 6 depicts the c&ted consistently.
where one-way CORBA invocations are buffered in the ORBIn addition, many embedded and deterministic real-time
for later delivery. In this case, a series of one-way invocatioggstems require protocols to be configueegriori, with no
to the same object and for the same operation are queued iratiiditional protocols required once the application is config-
same buffer and sent via a single ORB message. This resuted statically. These types of systems cannot afford the foot-
in an overall increase in throughput between CPU boardsgynt overhead associated with dynamic protocol configura-
amortizing key sources of communication overhead, suchtiass.

context switching, synchronization, and DMA initialization.
Problem: It must be possible to add new protocols to TAO's

pluggable protocols framework without makiagy changes
to the rest of the ORB. Thus, the framework must be open for
4The request header size is variable. Therefore, it is not possible to Riktensions, but closed to modifications,, the Open-Closed
cisely pinpoint the proportional savings represented by these bytes. In m . y . " . .
cases, however, the reduction is as Iarge as 25%. _S%lc[ple [27]. Ideally, creating a new protocol and configur
ing it into the ORB is all that should be required.

10

Solution: Use aregistryto maintain a collection odibstract istry is passed an opaque endpoint representation, which
factories In the Abstract Factory pattern [17], a single class provides to the corresponding concrete factory for the
defines an interface for creating families of related objectsdicated protocol instance. The concr@tzeptor factory
without specifying their concrete types. Subclasses of an abeates the endpoint and enables the ORB to receive requests
stract factory are responsible for creating concrete classes timathe new endpoint.

collaborate among themselves. In the context of pluggable

protocols, each abstract factory can createGbanector . .

Acceptor , Profile , andTransport classes for a par-4-2 Adding New Protocols Dynamically

ticular protocol. Context: When developing new pluggable protocols, it is

Applying the solution in TAO: In TAO, the role of the pro- inconvenient to recompile the ORB and applications just to
tocol registry is played by th€onnector _Registry on Vvalidate a new protocol implementation. Moreover, it is often
the client and thécceptor _Registry on the server. This useful to experiment with different protocoksg, systemati-
registry is created by TAO'Resource _Factory ,whichis cally compare their performance, footprint size, and QoS guar-
an abstract factory that creates all the ORB’s strategies amtiees. Moreover, in 247 systems with high availability re-
policies [28]. Figure 7 depicts th@onnector _Registry quirements, it is important to configure protocols dynamically,
and its relation to the abstract factories. even while the system is running. This level of flexibility helps
simplify upgrades and protocol enhancements.

CLIENT SIDE SERVER SIDE
CONNECTOR_REGISTRY ACCEPTOR_REGISTRY Problem: How to populate the registry with the correct ob-
[iioP TATM-iOP] [0 [ATMIOP | jectsdynamically
Solution: Use the Component Configurator [3] pattern,
v which decouples the implementation of a service from its con-

figuration into the application. This pattern can be applied in
either of the following ways:

ABSTRACT
FACTORY
ABSTRACT
FACTORY
ABSTRACT
FACTORY
ABSTRACT
FACTORY

1. The Component Configurator pattern [3] can be used to
dynamically load the registry class. This facade knows how to
configure a particular set of protocols. To add new protocols,

Figure 7: TAO Connector and Acceptor Registries ~ We must either implement a new registry class or derive from
an existing one.

Note that TAO does not use abstract factories directly, hov.v--r:hIS altern?tlve IS weII—swtgd for- empedq 9d .systehms with
ever. Instead, these factories are accessed vieabade[17] tig tTeg?OQt’ c;gt;?[rlnt c?nsdtra(;nés since |t|r|n|n:m|z|est etn?.m'
pattern to hide the complexity of manipulating multiple fact®S" Of Objects that are loaded dynamically. Implementations

ries behind a simpler interface. The registry described ab&]; he Component Configurator pattern can optimize for use-

plays the role of a facade. As shown below, these patterns Fﬁ%s_es where objects are configured statically. Embedded sys-

fems can exploit these optimizations to eliminate the need for

ide sulfficient flexibility to add new protocols transparentl
;lflle OlgBl ! g WP P y[loading objects into the pluggable protocols framework dy-
: mically.

Establishing connections, manipulating profiles, and i

ating endpoints are delegated to ti@onnector and 5 yse the Component Configurator pattern to load the set
Acceptor registries respectively. Clients will simply pro< entries in a registry dynamically. For instance, a registry can
vide the Connector _Registry with an opaque profile, simply parse a configuration script and link the services listed
which corresponds to an object address for a particular pgoj; dynamically. This design is the most flexible strategy, but

tocol instance. The registry is responsible for locating the CRFequires more code,g, to parse the configuration script and
rect concrete factory, to which it then delegates the resp@fq the objects dynamically.

sibility for establishing the connection. The concrete factory

establishes the connection using the corresponding protoégplying the solution in TAO: TAO implements a class

specific instance, notifying the client of its success or failurtiat maintains all parameters specified in a configuration

Thereafter, the client simply invokes CORBA operations usisgript. Adding a new parameter to represent the list of pro-

the selected protocol. tocols is straightforward,e., the default registry simply ex-
The server delegates endpoint creation to thenines this list and links the services into the address-space

Acceptor _Registry in a similar manner. The reg-of the application, using the Component Configurator pattern

11

implementation provided by ACE [29].Figure 8 depicts the Applying the solutionin TAO: TheProfile class is used
Connector _Registry and its relation to the ACE Compo-to represent a protocol-specific profile. This class provides an
nent Configurator implementation. abstract interface for parsing, marshaling, hashing, and com-
paring profiles. In addition, it provides a unit of encapsulation
REGISTRY to maintain information about forwarding and caching connec-
[loP_[ATM-IOP | I —— tions established to a particular server.

<INSTANFIATES>> .~

-
Bl

PR 2 L,fﬂ“*NﬂATES» 4.4 Decoupling ORB Messaging and Transport
Protocol Implementations

&
g
2 Context: It is desirable to support alternative mappings be-
é tween different ORB messaging protocols and ORB transport
adaptors. For example, a single ORB messaging protocol,
Figure 8: TAO Connector Registry and the ACE Componesitich as GIOP, can be mapped to any reliable, connection-
Configurator Implementation oriented transport protocol, such as TCP. Alternatively, a sin-
gle transport protocol can be the basis for alternative instanti-
ations of ORB messaging protocoésg, different versions of
GIOP differing in the number and types of messages, as well
4.3 Profile Creation as in the format of those messages.
i An ORB messaging protocol imposes requirements on any
Context: The contents of a profile must be parsed t0 detfagerlying network transport protocols. For instance, the
mine an object’s location. In general, the format and semantg%sport requirements assumed by GIOP described in Sec-
of the profile contents are protocol-specific. Therefore, a coy, 2 require the underlying network transport protocol to
pletely generic component for it cannot be written. Parsing 8¢t 4 reliable, connection-oriented byte-stream. These re-
data is a relatively expensive operation that should be aVOi%ements are fulfilled by TCP, thus leading to the direct map-
whenever possible. It is also useful to support multiple prosq of GIOP onto this transport protocol. However, alterna-
tocols (see section 3_.1), each one potentially using a differgiit” network transport protocols, such as ATM with AALS,
address representation (see section 3.2). encapsulation may be more appropriate in some environments.
Problem: As new protocols are added to the system, nel\r/]\zthi.S case, thg messaging implgr_nentation must provide the
X . . : Mmissing semantics, such as reliability, to use GIOP.
profile formats are introduced. It is essential that the correct
parsing function be used for each profile format.

TCP FACTORY

Problem: The ORB Messaging protocol implementations
Solution: We use the Factory Method pattern [17] to créPUst be independeqt of the adaptatign layer needed for trans-
ate the rightProfile class for each protocol. This patterROrts that do not satisfy all their requirements. Otherwise, the
defines a fixed interface to create an object, while allowiS§Mme Mmessaging protocol may be re-implemented needlessly
subclasses the flexibility to create the correct type of objeétl €ach transport, which is time-consuming, error-prone, and
Two of our classes play thereatorrole in this pattern: (1) the time/space mefﬁment. leeW|sg, for those transports that can
Connector , using theProfile s CDR representation for SUPPOrt multiple ORB Messaging protocols, it must be pos-

initialization and (2) thedcceptor , using the object key for Sible to isolate them from the details of the ORB messaging
initialization. implementation. Care must be taken, however, because not

These two approaches are based on the two use-cé‘é‘e@RB Messaging protocols can be used with all transport
in which aProfile object must be manipulated. In thé)rotocols,i.e., some mechanism is needed to ensure that only

Connector case TAO interprets ®rofile received re- semantically compatible protocols are configured [30].

motely, whereas in thAcceptor it builds aProfile fora) . .
local object. As usual, th€onnector _Registry and the Solution: Use the Layers architectural pattern [4], which de-

Acceptor _Registry are used as facades [17] that locaf@®MPOses the system into groups of components, each one at

the appropriat€onnector or Acceptor and delegate the® different Igvel of abstract_lo‘ﬁ]' he Layers a(chltectural pat-

job of building the object to it. tern can be implemented (_jlfferently, depending on whether the
5ACE provides a rich set of reusable and efficient components for hng—RB plays the role of a client or a server, as outlined below.

performance, real-time communication, and forms the portability layer of 8Protocol stacks based on the Internet or ISO OSI reference models are
TAO. common examples of the Layers architectural pattern.

12

receive ()

receive ()
send ()
handler ()

1I0P_Transport

receive ()
send ()
handler ();

handler_

STUB_Object 1 1 Profile

profile_in_use () transport ()
next_profile () iop ()

profile_in_use_

1

IoP

start ()

transport () invoke ()

iop
transport_
op_

GIOP

start ()
invoke ()

Figure 9: Client Inter-ORB and Transport Class Diagram Figure 10: Server Inter-ORB and Transport Class Diagram

e Client ORB: For the client, the ORB uses a particudia. The ORB must be able to ignore certain communication
lar ORB messaging protocol to send a request. This OBBors selectively and re-issue the request transparently using
messaging protocol delegates part of the work to the traafernative addresses or resources.
port adapter component that completes the message and sends
it to the server. If the low-level transport in use, such as ATNfroblem: If the ORB uses exceptions to internally commu-
UDP, or TCP/IP, does not satisfy the requirements of the ORgate failures, it can be confused by remote exceptions gener-
messaging protocol, the ORB transport adapter component@kgsl by the server.

implement them. Solution: Once again, apply the Layers architectural pat-

e Server ORB: In the server, the transport adapter contern [4] to limit exceptions to communicate failures only be-
ponent receives data from the underlying communication tiseen the higher levels of the ORB and the application. Thus,
frastructure, such as sockets or shared memory, and it pagisesower levels of the pluggable protocols framework simply
the message up to the ORB messaging layer. As with thse integral return values to indicate an error. These return val-
client, this layer can be very lightweight if the requiremeniges are transformed to the appropriate CORBA exception by
imposed by the ORB messaging layer are satisfied by the the upper levels of the pluggable protocols framework when
derlying network transport protocol. Otherwise, it must inteporting the error to the application.
plement those missing requirements by building them into the .) .
concrete transport adapter component. Applying the solution in TAO: Higher level meth-

) o L ods in all componentsj.e., Acceptor s, Connector s,
Applying the solutionin TAO: ~ As shown in Figure 9, TAO angnort s, andProfile s, in TAO's pluggable protocols
implements the messaging protocol and the transport Prgfdie\vork raise CORBA exceptions if lower level methods
col in separate components. The client ORB uses the current - - integer value that indicates failure.

profile to find the right transport and ORB messaging Imple'One drawback of using return codes rather than exceptions

mentations. The creation and initialization of these Classf?%hat it may burden ORB developers, who must explicitly
|s'c;10ntrorl1lcéd by theConpector (gesglrllbed n Sgctllon gg)’check for errors, rather than writing exception handlers. TAO
with eachConnector instance handling a particular Bmust run on platforms that do not support native C++ excep-

messagingftransport tuple. tions, however. Therefore, it is already necessary to check

Figure 10 illustrates how the server's implementation us Rurn values, so there is no additional burden on TAO devel-
the same transport classes, but with a different relationship '

particular, the transport class calls back the messaging cID ssrs'
when data is received from the IPC mechanism. As with the
client, a factory—in this case thcceptor —creates and ini- 4.6 ~ Adapting TAO to the ACE Framework

tializes these objects. _ . _
Context: TAO is built largely using the reusable and

. . portable ACE framework [29] components, particularly
4.5 Exception Propagation and Error Detec- Reactor s, Acceptor s, Connector s, Service

tion Handler s, and ACE IPC wrapper facades [29]. TAO'’s

Context: The server and client use the same exceptionsy992able protocols framework uses inheritance and dynamic
inform the application of failures in the communication mé)_lnctjlnglto configure these ACE components to create new
protocols.

13

Problem: Using the lower-level ACE IPC wrapper facade N| Rdfile

components directly is infeasible because ACE avoids poly-) Hf;f“;dg 0
morphism at this level to eliminate the overhead of virtual 55 5 1 N wmofile hash ()
methods by non-optimizing compilers [22]. Thus, the ACE [wailes () ad profile () ‘y\'
connectors for UNIX-domain sockets and Internet-domain gjb;gdﬂf;l(e)ﬁo gvepdile () P Pofile
sockets have no common ancestor that can be used to dispat| g diles () profiles traspat ()
methods in subclasses polymorphically. However, a pluggabl¢=-71¢0 ok il
protocols framework must be able to establish conNections Us (oo wo | e -
ing any protocol. obj ect_addr
version

Solution: Use the External Polymorphism pattern [31] to

encapsulate ACE components behind their TAO counterpaFigiure 11: Class Diagram for Multiple Profile and Forwarding
This pattern enables classes that are not related by inheritaBogport in TAO’s Pluggable Protocols Framework

or have no virtual methods, to be treated polymorphically.

Applying the solution in TAO: A TAO Acceptor con- performing common method invocations on the concrete pro-

tains an ACEAcceptor , which is registered with an ACEfjle instances. Th&/Profile object can therefore maintain
Reactor that the ORB uses to demultiplex IOP events to thejist of Profile proxies to the actual concrete profile in-

appropriate transport handlers. Eventually, the ACE IPC coggnces.

ponents accept a connection and creates an S€iice The MProfile object keeps track of the current profile
Handler to handle the communication. Our TAO-Ievelnq allows a user only to increment and decrement this refer-
Acceptor encapsulates thabervice Handler — in @ gnce. If the current profile is forwarded, a reference is kept

Transport adapter object and passes it up to the ORB. 45 that profile to the forwardingProfile object. Like-
a pracuc_al_consequence of this sqluuon, there exist two S\?\hée, the forwardingViProfile contains a back pointer to
layers within TAO'sTransport object. the MProfile object that was forwarded. In this way, a list
of MProfile sis maintained, corresponding to the initial and

4.7 Multiple Profiles and Location Forwarding all forwarding profile lists.

_ _ _ . When a client decodes the initial IOR, the resulting profile
Context: Object references may contain multiple profilegist is stored in arMProfile object. If the client receives a
and servers may specify alternate object references in respgi>ion forward, either as a result ofLlmcate _Request
to a client’s request. In addition, aCORBA-compIiant ORB @|OP message or in BOCATION_FORWARD rep|y’ the re-
required to try all object references and profiles until one sugived IOR is decoded and added to 8IBUBObject us-
ceedswithoutany client intervention. ing itsadd _forward _profiles ~ method. TheMProfile
g{bject that was forwarded keeps track of the current profile,

plication, even though profiles for different ORB protoco arks it as being in BORWARDING state, and sets a reference

may be dissimilar and profile lists may be altered dynamicaﬁ the me&fdi”Q F?FOf”e “S_t' ThSTUBObject maintains a
as a result of forwarding. reference to the initial profile list and to the current forwarding

profile list, i.e., the MProfile object, because the forward-
Solution: Apply the Proxy pattern [17] and use polymoring MProfile objects each contain a back pointer to the for-
phism and an efficient list processing strategy. wardedMProfile object.

Applying the solution in TAO: Figure 11 depicts the classth F:\?ll;re fﬁz |Ilus;[)r'atets hontforhwardlrjgtﬁsr_?ﬁgéinte? using
diagram for the solution. ASTUBObject is a client’s e Miromie —objects. Not shown IS ject

local proxy for the (potentially) remote object. Al comWhich maintains references to the initial or unforwarded pro-

munication with the server object is done through the stpk? I.iSt’ the current profile in use, and the Iast_forwarding pro-
proxy. While the server does not requir8 8UBObject , the e ist. Inefrect,'thdﬁTUBObJect andMProfile _ present
Acceptor _Registry will initialize an object’s IOR using the ordered.proflle "S'F.Ll’ P2, PS, P6, P7, P8, P9, P3, P40
theMProfile andProfile classes. theConnection _Registry

Profile lists are maintained by aviProfile object. The
profile list is stored as a simple array of pointerfrofile 4.8 Establishing Connections Actively
objects. All instances of IOP profiles are derived from this
commonProfile class. By relying on dynamic binding ofContext: When a client references an object, the ORB must
objects, the base class can be used for both referencing alniin the corresponding profile list, which is derived from the

Problem: Retries must occur transparently to the client a

14

current—>|P2 current > current —> 1- IIOP:// HOSTA: PORT1/OBIECT KEY
2- ATM-IOP:// HOSTA_ATM :SAP1/0BJECT_KEY
- 3- IIOP:// HOSTB:PORT2/OBJECT _KEY

1) Grrent profile is P8, P2 and F6 vere forvarded

ESTABLISH CONNECTION
TO OBJECT A

MPRoFI LE MPRoFI LE P5 MPROFI LE PROFILE LIST FOR OBJECT A
P1 p7

< <
P9

PERFORM INVOCATION
ON OBJECT A

— < CONNECTOR_REGISTRY
MPROFI LE P1 / MPRoFI LE P5 /7 MPRoFI LE P7 CONNECT (PROFILE _LIST A)
current—>{p2 current —>|P6 P8
P3 current —>|P9 -
CONRECT (PROFILE2) __ - - - ATM-IOP

P4

<<INSTANTIATES >> OBJECT

2) RBfaled try P E
MPROFI LE (p1] E <<INSR°\NTIATES >>
P2 = CONNECTION HANDLER [SSINSTANTIATES 321 ATM TRANSPORT
current—>|P3 (3} OBJECT < > OBJECT
P4 [~ - >
— CLIENT s
3) M faled renove forverdng profile lists and try B3 SER\/ER """"" : """"""""""""""""""

CONNECTION HANDLER [SSINSTANTIATES 221 ATM TRANSPORT
OBJECT

OBJECT —

7
<<INSTANTIATES >>

-- > ATM-IOP
OBJECT

Figure 12: Object Reference Forwarding Example

SAP1

PORT]

ATMACCEPTOR
5l

g
g
2
A
o
&)

' <<iNsTANTIATES >>

IOR and a profile ordering policy, and establish a connection
to the server transparently.

[iiop [ATw-i0P]
Problem: There can be one or more combinations of inter- | Acceeror Recisray
ORB and transport protocols available in an ORB. For a givefyyre 13: Connection Establishment Using Multiple Plug-
profile, the ORB must verify the presence of the associaigghe Protocols

IOP and transport protocol, if available. It must then locate

the applicableConnector and delegate to it to establish the

connection. for IIOP. This figure shows an explicit co-variance between

Solution: We use theConnector component in the

N

Acceptor-Connector pattern [3] to actively establish a con- Ao Ry

nection to a remote object. This pattern decouples the con- Z;‘;;;;f‘g(‘f .@ -
nection establishment from the processing performed after the csscdaaios] frmteadied 1o ey oneptor
connection is successful. Figure 13 shows how multiple pro- T] |] (s

< stantiat es>>

files may be used during connection establishment in both the
client and server. This figure shows a connectio®@hjpect

A being requested of theonnector _Registry . The reg-
istry will in turn try the profiles listed in thesupplied o
profile _list for Object A . In this figure, the first pro- o et

=0

file is for an IIOP connectiontblost A atport 1 . Assum- e () T
ing the connect fails for some reason, the registry will try the L
second profile automatically. This profile contains a reference TR
to the same host via ATM interface using an ESIOP. e

Assuming the connect on the second profile succeeds, theFigure 14: Server Pluggable Protocols Class Diagram
Connector andAcceptor create their corresponding con-

nection handlers then create transpor bjecte, which pro g -10fIe__ and theConnector s for each protocol. In
the mapping from the chosen transport protocoi to atransp %e'rgl, aConnegtor must dpwncast thérofile .to Its :
independent interface used by the IOP messaging compon CITIC type. This downcast is safe because p_rof_lle creation
The connection handler is considered as part of the ORB tr I q_mned o theConngctgr andAccgptor reg|§tr|es. In

P A3th cases, the profile is created with a matching tag. The
port adapter component. tag is used by th&€onnector _Registry to choose the
Applying the solution in TAO: As described in Section 4.6,Connector that can handle each profile.
Connector s are adapters for the ACE implementation of As shown in the same figure, tlBmnnector _Registry
the Acceptor-Connector pattern. Thus, they are lightweightinipulates only the base classes. Therefore, new protocols
objects that simply delegate to a corresponding ACE conan be added without requiring any modification to the ex-
ponent. Figure 15 shows the base classes and their relatistisg pluggable protocols framework. When a connection is

15

established successfully, tifofile is passed a pointer tothe Acceptor object is a factory that createService

the particular IOP object and to tAgansport objects that Handler s, which perform 1/O with their connected peers.
were created. In TAO's pluggable protocols framework, thEransport
objects areService Handlers implemented as abstract
classes. This design shields the ORB from variations in the
Acceptor s, Connector s, andService Handler s for

Context: A server can accept connections at one or md#&ch particular protocol.

endpoints, potentially using the same protocol for all end-ywhen a connection is established, the conchetgeptor
points. The set of protocols that an ORB uses to play the clightates the appropriatgonnection Handler and 10P
role need not match the set of protocols used for the sen¥Bfects. The Connection Handler also creates a
role. Moreover, the ORB can even be a “pure clien®, & Transport object that functions as the implementation role
client that only makes requests. In this case it can use sevg{ghe Bridge pattern [17]. As with th€onnector , the
protocols to make requests, but receive no requests from ofi@eptor also acts as the interface role in the Bridge pat-
clients. tern, hiding the transport- and strategy-specific details of the

Problem: The server must generate an IOR that includes Afceptor
possible inter-ORB and transport-protocol-specific profiles for

which the object can be accessed. As with the client, it should

be possible to add new protocols without changing the ORB.

Solution: Use theAcceptor component in the Acceptor-5 The Performance of TAO'’s Plug-
Connector pattern [3] to accept the connections. An

Acceptor accepts a connectigpassively rather than be- gable Protocols Framework

ing initiatedactively as with theConnector component de-

scribed above. Despite the growing demand for off-the-shelf middleware in

Applying the solution to TAO: Figure 14 illustrates how many application domains, a widespread belief persists that

TAO's pluggable protocols framework leverages the desigrp techniques are_not suitable fqr real-time systems .du.e o
erformance penalties [22]. In particular, the dynamic binding

properties of OO programming languages and the indirection
TIME
NAME —— CYCLE implied in OO designs seem antithetical to real-time systems,

SERVICE SERVICE|| which require low latency and jitter. The results presented in
- \ [T

4.9 Accepting Connections Passively

—www \ this section are significant, therefore, because they illustrate
— —-l — ’ ’
;if;g; R empirically how the choice of patterns described in Section 4
—aoabled us to meet non-functional requirements, such as porta-
;:;Eﬁ NETWORK seRility[flexibility, reusability, and maintainability, without com-
PRINT
SERVICE wiiii‘:i cp
I_-I;I m ROM Fa)
" PRINTER = Frgvedifierent ORB messaging protocols, GIOP and GIOPIlite,

and two different transport protocols, POSIX local IPC (also
Figure 15: Client Pluggable Protocols Class Diagram Known as UNIX-domain sockets) and TCP/IP. These bench-
marks are based on our experience developing CORBA mid-
dleware for avionics mission computing applications [22] and
multimedia applications [21], as described in Section 3.4.

presented in Section 4.1. The concrete ASErvice
Handler created by the ACRcceptor is responsible for
implementing the External Polymorphism pattern [31] and en-Note that POSIX local IPC is not a traditional high-
capsulating itself behind thEransport interface defined in performance networking environment. However, it does pro-
TAQ's pluggable protocols framework. vide the opportunity to obtain an accurate measure of ORB
As discussed in Section 4.6, TAO use the Adapter pand pluggable protocols framework overhead. Based on these
tern [17] to leverage the ACEAcceptor implementa- measurements, we have isolated the overhead associated with
tion. This pattern also permits a seamless integration withch component, which provides a baseline for future work on
lower levels of the ORB. In the Acceptor-Connector patterigh-performance protocol development and experimentation.

16

5.1 Hardware/Software Benchmarking Plat- is correct. Interprocess communication is performed over the
form selected IOPs, as described above.
We measure throughput for operations using a variety of

All benchmarks in this section were run on a Quad-CPU InigJ. data types, includingoid , sequence , andstruct
Pentium Il Xeon 400 MHz workstation, with one gigabytegpes. Thevoid data type instructs the server not to per-
of RAM. The operating system used for the benchmarkif§rm any processing other than that necessary to prepare and
was Debian GNU/Linux “potato” (glibc 2.1) with Linux ker-send the responség., it does not cube any input parame-
nel version 2.2.10. GNU/Linux is an open-source operatifigts. Thesequence andstruct data types exercise TAO's
system that supports true multi-tasking, multi-threading, a[“db)marshaling engine. Theruct contains aroctet |, a
symmetric multiprocessing. long , and ashort , along with padding necessary to align

For these experiments, we used the GIOP and GIOPlite {ifdse fields. We also measure throughput using long and short
messaging protocols. GIOPIite is a streamlined version gfquences of thieng and octet types. Thelong se-
GIOP that remove$15 extraneous bytes from the standaigliences contain 4,096 bytes (1,024 four bgtey s or 4,096
GIOP message and request headeFiese bytes include theoctet s) and the short sequences are 4 bytes (one four byte
GIOP magic number (4 bytes), GIOP version (2 bytes), flagsg or fouroctet s).

1 byte), Request Service Context (at least 4 bytes), and Re-
éue;’t P)rincip?al (at least 4 bytes). (ytes) Blackbox results: The blackbox benchmark results are

Our benchmarks were run using the standard GIOP Oﬁ%own in Figure 16. All blackbox benchmarks were averaged

messaging protocol, as well as TAO's GIOPIite messadina
protocol. For the TCP/IP tests, the GIOP and GIOPlite [oo
messaging protocols were run using the standard Ct "]
[IOP transport adapter along with the Linux TCP/IP sc £ |
library and the loopback interface. 5000 |

For the local IPC tests, GIOP and GIOPIlite were used £ 4000
with the optimized local IPC transport adapter. This res 3 3000
in the following four different Inter-ORB Protocols: (1) GI ~ 2%
over TCP (IlOP), (2) GIOPlite over TCP, (3) GIOP over|]
IPC® (UIOP), and (4) GIOPIlite over local IPC. No chat o

r 50.00%

r 40.00%

r 30.00%

r 20.00%

Calls per Second
Performance Improvement (%)

r 10.00%

+ 0.00%

& & &
were required to our standard CORBA benchmarking ToF 9
calledIDL _Cubit [32], for either of the ORB messaging
transport protocol implementations. Data Type
EAIIOP CJ110P/GIOPIlite
CUIoP B UIOP/GIOPlite
== Performance Increase

5.2 Blackbox Benchmarks

Blackbox benchmarks measure the end-to-end performanc’é'gf‘re 16: TAO's Pluggable Protocols Framework Perfor-

a system from an external application perspective. In our &ance Over Local IPC and TCP/IP
periments, we used blackbox benchmarks to compute the&ye—
erage two-way response time incurred by clients sending va
ous types of data using the four different Inter-ORB transpo
protocols.

/€ r 100,000 two-way operation calls for each data type, as
hown in Figure 16.

UIOP performance surpassed IIOP performance for all data
types. The benchmark results show how UIOP improves per-
Measurement technique: A single-threaded client is usedormance from 20% to 50% depending on the data type and
in the IDL _Cubit benchmark to issue two-way IDL operaSize. For smaller data sizes and basic types, sudtis
tions at the fastest possible rate. The server performs the o\SBFi long , the performance improvement is approximately
ation, which cubes each parameter in the request. For two-w2y0- For larger data payload sizes and more complex data

calls, the client thread waits for the response and checks thi{i€s, however, the performance improvements are reduced.
This result occurs due to the increasing cost of both the data

"The request header size is variable. Therefore, it is not possible to @epies associated with performing 1/0 and the increasing com-
cisely pinpoint the proportional savings represented by these bytes. In mgiexity of marshaling structures other than the basic data types.

cases, however, the reduction is as large as 25%. ; . ; _
8For historical reasons, TAO retains the expression “UNIX-domain” in For certain data types, additional improvements are ob

its local IPC pluggable protocol implementation, which is where the narﬁéin.ed l?y redL'JCing the number Qf data copies requ_ired- Such
“UIOP” derives from. a situation exists when marshaling and demarshaling data of

17

type octet andlong . For complicated data types, suckuantify is useful because it can measure the overhead of sys-
as a largesequence of struct s, ORB overhead is par-tem calls and third-party libraries without requiring the source
ticularly prevalent. Large ORB overhead implies lower effcode.
ciency, which accounts for the smaller performance improve-Unfortunately, Quantify is not available for Linux kernel-
ment gained by UIOP over IIOP for complex data types. based operating systems on which whitebox measurement of
GIOPIlite outperformed GIOP by a small margin. FoFAQ's performance was performed. Moreover, Quantify mod-
IIOP, GIOPIite performance increases over GIOP ranged fraims the binary code to collect timing information. It is most
0.36% to 4.74%, with an average performance increaseuséful, therefore, to measure tiedative overhead of different
2.74%. GIOPIlite performance improvements were slighthperations in a system, rather than measughgoluterun-
better over UIOP due to the fact that UIOP is more efficienine performance.
than [IOP. GIOPIite over UIOP provided improvements rang- To avoid the limitations of Quantify, we therefore used a
ing from 0.37% to 5.29%, with an average of 3.26%. lightweight timeprobe mechanism provided by ACE to pre-
Our blackbox results suggest that more substantial changisely pinpoint the amount of time spent in various ORB com-
to the GIOP message protocol are required to achieve gignents and layers. The ACE timeprobe mechanism provides
nificant performance improvements. However, these restiiighly accurate, low-cost timestamps that record the time
also illustrate that the GIOP message footprint has a redgent between regions of code in a software system. These
tively minor performance impact over high-speed networkimeprobes have minimal performance impatg, 1-2 usec
and embedded interconnects. Naturally, the impact of tneerhead per timeprobe, and no binary code instrumentation
GIOP message footprint for lower-speed links, such as secoisdequired.
generation wireless systems or low-speed modems, is morBepending on the underlying platform, ACE’s timeprobes
significant. are implemented either by high-resolution OS timers or by
high-precision timing hardware. An example of the latter is the
VMEtro board, which is a VME bus monitor. VMEtro writes
unigue ACE timeprobe values to an otherwise unused VME
Whitebox benchmarks measure the performance of Spedmgress. These valqes record the durqtion bgtween timepro_be
W@rkers across multiple processors using a single clock. This

components or layers in a system from an internal perspective. . ,
In our experiments, we used whitebox benchmarks to pinpdifi2Ples TAO to collect synchronized timestamps and mea-

the time spent in key components in TAO's client and servef'® communication delays end-to-end accurately across dis-
ORBs. The ORB's logical layers, or components, are shoWiputed CPUs.

in Figure 17 along with the timeprobe locations used for thesé>€loW, we examine the client and server whitebox perfor-
mance in detail.

5.3 Whitebox Benchmarks

N e— —
@ CLIENT l OBJECT (SERVANT) I
p—

5.3.2 Whitebox Results

ONIODLAO

2 ooer b Figure 17 shows the points in a two-way operation request path
L = - where timeprobes were inserted. Each labeled number in the
= figure corresponds to an entry in Table 1 and Table 2 below.
S — The results presented in the tables and figures that follow were
0OS KERNEL @) 0OS KERNEL Q) rov d l 000 I
o | Averaged over 1,000 samples.
VME BUS:

INCOMING

OUTGOING

Client performance: Table 1 depicts the time in microsec-
Figure 17: Timeprobe Locations for Whitebox Experimentonds {:s) spent in each sequential activity that a TAO client
performs to process an outgoing operation request and its re-
benchmarks. ply.
Each client outgoing step is outlined below:

5.3.1 Measurement Techniques 1. Intheinitialization step, the client invocation is created

and constructors are called for the input and output Common

One way to measure performgnce overhead.c_)f operationg, iy, Representation (CDR) stream objects, which handle mar-
complex CORBA middleware is to use a profiling tool, suc, aling and demarshaling of operation parameters.

as Quantify [33]. Quantify instruments an application’s bi-
nary instructions and then analyzes performance bottleneck®. TAQO'’s connector caches connections, so even though
by identifying sections of code that dominate execution timiés connect method is called for every operation, existing

18

[Direction | Client Activities [Absolute Time (us) || 9. The recv operation in theORB messagindayer

Outgoing | 1. Initialization 6.30 checks the message type of the reply, and either raises an ap-
2. Get object reference 156 propriate exception, initiates a location forward, or returns the
3. Parameter marshal | 0.74 (param. dependent v to th ll licati
4. ORB messaging send 7.78 reply to the calling application.
5. ORB transport send 1.02 . .
510 8.70 (op. dependent 10. Iq the parameter demarshatep, the incoming reply
7. ORB transport recv 50.7 out andinout parameters are demarshaled. The overhead
8. ORB messaging recv 9.25 of this step depends, as it does with the server, on the operation
9. Parameter demarshal op. dependent] signature.

Table 1:useconds Spent in Each Client Processing Stepgeryer performance: Table 2 depicts the time in microsec-
onds (4S) spent in each activity as a TAO server processes a

. . request.
connections are reused for repeated calls. For statically conﬁgq—

ured systems, such as avionics mission computing, TAO prg=

: , L : Direction | Server Activities | Absolute Time (us) |
establishes connections, so the initial connection setup ov rl - o 70 (op_ Tort
head can be avoided entirely. ncoming | 2. -0 (0p. dependen

Y 2. ORB transport recv 24.8
. 3. ORB messaging rec 4.5

3. In the parameter marshastep, the outgoingn and : :
. . 4. Parsing object key 4.6
inout parameters are marshaled. The overhead of this pno- 5 POA demuix 139
cessing depends on the operation signailegthe number of 6: Servant demux "1_6
data parameters and their type complexity. 7. Operation demux 4.52

o . 8. User upcall 3.84 (op. dependent

4. Inthesend operation in th®ORB messagintgyer, the ["Guigoing | 9. ORB messaging senf 456
client creates a request header and frames the message. [The 10. ORB transport send 93.6

messaging layer then passes the message to the ORB trans-

port component for transmission to the server. If the request Table 2:useconds Spent in Each Server Processing Step
is a synchronous two-way operation, the transport component

waits for and processes the response. Each incoming server step is outlined below:

5. Thesend operation in theORB transporcomponent 1. Thel/O operation represents the time the server spends
implements the connection concurrency strategy and invokeferead system call.
the appropriate ACE 1/O operation. TAO maintains a linked 5

!]] ; .~--2. Therecv operation in theORB transportiayer dele-
list of CDR buffers [7], which allows it to use “gather-write"y 540 the reading of the received message header to the ORB
OS calls, such asritev . Thus, multiple buffers can be writ-

messaging component. If it is a valid message the remaining

ten atomically without requiring multiple system calls or Ungat, is read and passed to the ORB messaging component.
necessary memory allocation and data copying.

3. The recv operation in theORB messagindayer
6. Thel/O operation represents the time the client spenclsecks the type of the message and forwards it to the POA.
in the receive system call. This time is generally dominat&therwise, it handles the message or reports an error back to
by the cost of copying data from the kernel to user supplidtk client.

buffers. . .
uters 4. The Parsing object keystep comes before any other

Each client incoming step is outlined below: POA activity. The time in the table includes the acquisition
of a lock that is held through all POA activitiesg., POA de-
7. ThellO receiveoperation copies the data from a kernehux servant demuandoperation demux

:)r:fr:zr :)Orta Cf;e'ZE;?R stream and returns control to the ORBS. ThePOA demustep locates the POA where the servant
P P) resides. The time in this table is for a POA that is one-level

8. Therecv operation in theORB transporiayer dele- deep, although in general, POAs can be many levels deep [7].

gates the reading of the received messages header and bogy The servant demustep looks up a servant in the tar-
to the ORB messaging component. If the message headgje§POA. The time shown in the table for this step is based
valid, then the remainder of the message is read. This alsodR-TAO’s active demultiplexing strategy [7], which locates a

cludes time when the client is blocked waiting for the servegrvant in constant time regardless of the number of objects in
to read the supplied data. a POA.

19

7. The skeleton associated with the operation residesaittaptor, ORB and OS for two-wdipL _Cubit calls to the
the operation demustep. TAO uses perfect hashing [7] teube _void operation for each possible protocol combina-
locate the appropriate operation. tion. This figure shows that when using IIOP the I/O and OS
verhead accounts for just over 50% of the total round trip
%tency. It also shows that the difference in performance be-
en IIOP and UIOP is due primarily to the larger OS and
overhead of TCP/IP, compared with local IPC.
The only overhead that depends on siz&is)marshaling

9. The time for theuser upcalistep depends upon the acwhich depends on the type complexity, number, and size of
tual implementation of the operation in the servant. operation parameters, addta copyingwhich depends on the
size of the data. In our whitebox experiment, only the param-
eter size changese., thesequence s vary in length. More-

8. Intheparameter demarshatep, the incoming reques
in andinout parameters are demarshaled. As with t
client, the overhead of this step depends on the operation %yée
nature.

Each outgoing server step is outlined below:

~ 10. In the return value marshalstep, thereturn , over, TAO’s (de)marshaling optimizations [8] incur minimal
Inout , andout parameters are marshaled. This time alWerhead when running between homogeneous ORB endsys-
depends on the signature of the operation. tems.

11. The send operation in theORB messagingayer [N Figure 19, the parameter size is varied and the above test
passes the marshaled return data down to the ORB transjSdi¢Peated. It shows that as the size of the operation parame-

layer.

12. Thesend operation in theORB transportayer adds 300

the appropriate IOP header to the reply, sends the reply, and _ 250 -
closes the connection if it detects an error. Also included in
the category is the time the server is blocked ingbed op-
eration while the client runs.

200 -

27

27

27

27

28

Eks)
29
B3kl

150 -

77
76

13. Thel/Osend operation gets the peer /O handle from 100

the server connection handler and calls the appropsete
operation. The server uses a gather-write 1/0 call, just like the

client-side I/Osend operation described above. 0 ‘
2 3 4 5 6 7 8 9 10 11

Depending on the type and number of operation parame- Bytes in Octet Sequence (powers of two)
ters, theORB transport recstep often requires the most ORB
processing time. This time is dominated by the required data

copies. These costs can be reduced significantly by usingigre 19: ORB and Transport/OS Overhead vs. Parameter
transport adapter that implements a shared buffer strategy.g;,¢

Total Time (usecs

50 4

64
64
65
65
65
66
73
81

\IZI OS and I/O BORB O Transport @ Messaging\

Component costs: Figure 18 compares the relative over-
ters increases, I/0O overhead grows faster than the overall ORB

250 overhead, including messaging and transport. This result illus-
trates that the overall ORB overhead is largely independent of
the request size. In particular, demultiplexing a request, creat-
ing message headers, and invoking an operation upcall are not
affected by the size of the request.

TAO employs standard buffer size and data copy tradeoff
optimizations. This optimization is demonstrated in Figure 19
by the fact that there is a slight increase in the time spent both

n
o
1<)

i
a
S

Total Time (usecs)
=
o
o

112
111

50
¢ @ in the transport component and in the ORB itself when the
° P loPwiGIORie UIOP LGP wiGIOPie sequence size is greater than 256 bytes. The data copy tradeoff
Transport Protocol optimization is fully configurable via run-time command line
(90 and VO ORB B Transport M Messaging] options, so it is possible to configure TAO to further improve
Figure 18: Comparison of ORB and Transport/OS Overheaerformance above the 256 byte data copy threshold.
Using Timeprobes For the operations tested in tHeL. _Cubit benchmark, the

overhead of the ORB is dominated by memory bandwidth lim-
head attributable to the ORB messaging component, transftations. Both the loopback driver and local IPC driver copy

20

data within the same host. Therefore, memory bandwidth linwcol software to support ATM signaling. Key portions of the
tations should essentially be the same for both IIOP and Ul@®@nduit+ protocol frameworke.g, demultiplexing, connec-
This result is illustrated in Figure 18 by the fact that the tinteon management, and message buffering, were designed us-
spent in the ORB is generally constant for the four protodal patterns like Strategy, Visitor, and Composite [17]. Like-
combinations shown. wise, the concurrency, connection management, and demulti-
In general, the use of UIOP demonstrates the advantagjexing components in TAO's ORB Core and Object Adapter
of TAO's pluggable protocols framework and how optimizedso have been explicitly designed using patterns such as Re-
domain-specific protocols can be deployed. actor, Acceptor-Connector, and Active Object [3].

CORBA pluggable protocols frameworks: The archi-
6 Related Work tecture of TAO's pluggable protocols framework is in-
spired by the ORBacus [43] Open Communications Interface

We have used TAO to research many dimensions of h|dﬁ).C|) [44] The OCI framework provides aflexible, intuitive,
performance and real-time ORB endsystems, includifgd portable interface for pluggable protocols. The framework
static [2] and dynamic [25] scheduling, request demultipleiterfaces are defined in IDL, with a few special rules to map
ing [7], dispatching [34], and event processing [22], OR#itical types, such as data buffers.
Core connection [32] and concurrency architectures [35], IDLDefining pluggable protocols interfaces with IDL permits
compiler stub/skeleton optimizations for synchronous [8] af@velopers to familiarize themselves with a single program-
asynchronous [36] communication, 1/0O subsystem integfaing model that can be used to implement protocols in differ-
tion [20], evaluation Real-time CORBA [11] features [19Ent languages. In addition, the use of IDL makes it possible
fault tolerance features [14, 15], reflective QoS techniques thavrite pluggable protocols that are portable among different
CORBA Component Model [37], multimedia streaming su§?RB implementations and platforms.
port [21], systematic benchmarking of multiple ORBs [38], However, using IDL also limits the the degree to which
and patterns for ORB extensibility [28] and optimization [7)arious optimizations can be applied at the ORB and trans-
The design of TAO’s pluggable protocols framework is inflysort protocol levels. For example, efficiently handling locality
enced by prior research on the design and optimization of peonstrained objects, optimizing profile handling, strategized
tocol frameworks for communication subsystems. This sdwifer allocation, or interfacing with optimized OS abstrac-
tion outlines that research and compares it with our work. tion layers/libraries are not generally supported by existing
IDL compilers. Additionally, changes to an IDL compiler’s

Eonfigl]u?gble c co?r_nfniggtions frame\\//voSrI}sF:ZEZrl\m/leS 40 mapping rules on a per protocol basis is prohibitive.
ernel [39], Conduit+ [30], System [40], In our approach we use C++ classes and optimized frame-

ADAPTIVE [41], and F-CSS [42] are all COmchurabl‘:gork interfaces to allow protocol developers to exploit new

communication frameworks that provide a protocol bac frategies or available libraries. TAO uses the ACE frame-

plat\r;ve (|:(on5|?t|ngl %f stalmdard, treuzable sgrwcetst'that S_IfjhpR/%r [29] to isolate itself from non-portable aspects of under-
network protocol development and experimentation. g operating systems. This design leverages the testing, op-
frameworks support flexible composition of modular protoc; rlnizations implemented by ACE, enabling us to focus on the

processing components, such as connection-oriented and Wicular problems of developing a high-performance, real-
nectionless message delivery and routing, based on unif I ORB '

interfaces. . .
Our framework allows each protocol implementation to rep-

The frameworks for communication subsystems listed : . o .
. ; . r f§ent a profile as it sees fit. Since these profiles are only cre-
above focus on implementing various protocol layers benea

: : in a few instan iti ible for them rseth
relatively low-level programming APIs, such as sockets. F‘ned afewinstances, itis possible for them to parse the octet

ream representation an reitinamor nvenient format.
contrast, TAO'’s pluggable protocols framework focuses cs}%ea epresentation and store itin a more convenientformat

) . . pe parsing can be also done on demand to minimize startup
implementing and/or adapting to transport protocols beneﬁrrqe The protocol implementor is free to choose the strategy
a higher-level CORBA middleware APi,e., the standard .

: " . that best fits the application.
CORBA programming API. Therefore, existing communica TAO implements a highly optimized pluggable protocols

tion subsystem frameworks can provide building block protP- K that is tuned for hiah-perf q i

col components for TAO’s pluggable protocols framework. ramework that 1S tuned for high-per ormanf:e and rea-time
application requirements. For example, TAO’s pluggable pro-

Patterns-based communication frameworks: An increas- tocols framework can be integrated with zero-copy high-speed

ing number of communication frameworks are being designeetwork interfaces [23, 45, 20, 9], embedded systems [8],

and documented using patterns [28, 30]. In particular, Cam-high-performance communication infrastructures like Fast

duit+ [30] is an OO framework for configuring network proMessages [18].

21

7 CO”C'Uding Remarks [3] D.C.Schmidt, M. Stal, H. Rohnert, and F. Buschmann,

Pattern-Oriented Software Architecture: Patterns for Concurrent and

. Networked Objects, Volume Rew York: Wiley & Sons, 2000.
To be an effective development platform for performancezl] £ Busch R. Meunier. H. Rohnert. P. S \ad. and M. Stal
s Buschmann, R. Meunier, H. Ronhnert, P. sommeriad, an . oltal,
sensitive appllc.atlo'ns, CORBA ml.ddleware must preser}}e Pattern-Oriented Software Architecture — A System of Patte¥iesv
end-to-end application QoS properties across the communica- York: Wiley and Sons, 1996.
tion layer. It is essential, therefore, to definea pluggablg Protfy) object Management Grouhe Common Object Request Broker:
cols framework that allows custom inter-ORB messaging and Architecture and Specificatio®.2 ed., Feb. 1998.

transport protocols to be configured flexibly and transparentfy] object Management Grouffelecom Domain Task Force Request For

by CORBA applications. Information Supporting Wireless Access and Mobility in CORBA -

. . . S Request For InformatigrOMG Document telecom/98-06-04 ed., June
This paper identifies the protocol-related limitations of cur- 195‘; . ! !

rent ORBs and describes a CO.RBA-baSEd PIUggable prOtocng I. Pyarali, C. O'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
frameV\./or.k we developed and integrated with TAO to address A Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
these limitations. TAO's pluggable protocols framework con- IEEE Concurrency Magazineol. 8, no. 1, 2000.
tains two main components: an ORB messaging compongst A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
and an ORB transport adapter component. These two com- Engine for Minimal Footprint Multimedia SystemsJburnal on
At _ _ Selected Areas in Communications special issue on Service Enabling

ponents.allows appllca}tlor?s deVEIOpers and end-users to ex Platforms for Networked Multimedia Systemsl. 17, Sept. 1999.
tend their communication infrastructure transparently to sup- RS, Madukk § 4 H.V. Shah and C. Pu. “H _

. C e . . S. Madukkarumukumana and H. V. Shah and C. Pu, “Harnessing
port the dynamlc and/or static bmdmg of n?w ORB mess_agl User-Level Networking Architectures for Distributed Object
and transport protocols. Moreover, TAO’s patterns-oriented Computing over High-Speed Networks,” Rroceedings of the 2nd
OO design makes it straightforward to develop custom inter- Usenix Windows NT SymposiuAugust 1998.
ORB protocol stacks that can be optimized for particular ape] Compag, Intel, and Microsoft, “Virtual Interface Architecture, Version
plication requirements and endsystem/network environments. 1.0 www.viarch.org, 1997.

This paper illustrates the performance of TAO’s pluggatifg] Object Management GrouReal-time CORBA Joint Revised
. . SubmissionOMG Document orbos/99-02-12 ed., March 1999.
protocols framework empirically when running CORBA ap-

plications over high-speed interconnects, such as VME. @I(ﬁ] F. Kon and R. H. Campbell, “Supporting Automatic Configuration of
Component-Based Distributed Systems,Pimceedings of that”

ber?chma'rklng results demonstrate that gpplylng appropnate Conference on Object-Oriented Technologies and Sys{@aa Diego,
optimizations and patterns to CORBA middleware can yield CA), pp. 175-178, USENIX, May 1999.

h'gh'y efficient and predictable implementations, without sags) object Management Grouihe Common Object Request Broker:
rificing flexibility or reuse. These results support our con- Architecture and Specificatio®.3 ed., June 1999.

tention that CORBA middleware performanceis largely an imiz] B. Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “DOORS:
plementationissue. Thus, well-tuned, standard-based CORBA Towards High-performance Fault-Tolerant CORBA,Hroceedings of
middleware like TAO can replacad hocand proprietary so- the2n¢ International Symposium on Distributed Objects and

. . . . Lo Applications (DOA 200Q)Antwerp, Belgium), OMG, Sept. 2000.

lutions that are still commonly used in traditional dIStI’Ibute[(iiS] sz _ (A Goh |X bc g) _3)d S vai _kpA i
At _ti . Natarajan, A. Gokhale, D. C. Schmidt, and S. Yajnik, “Applying
appllcatlons and real-time systems. Patterns to Improve the Performance of Fault-Tolerant CORBA,” in

Most of the performance overhead associated with plug- Proceedings of thgt” International Conference on High Performance
gable protocols framework described in this paper stem from Computing (HiPC 2000XBangalore, India), ACM/IEEE, Dec. 2000.
“out-of-band” creation operations, rather operationsin the ciité] Object Management GrouORBA Messaging Specificatio®bject
ical path. We have shown how patterns can resolve key design Management Group, OMG Document orbos/98-05-05 ed., May 1998.
forces to flexibly create and control the objects in the frami@?] E. Gamma, R. Helm, R. Johnson, and J. VlissidEssign Patterns:
work. Simple and efficient wrapper facades can then be used ,\Eﬂ'ggszrc‘tﬁucs’;ﬁ::“;zz'i‘;g}?@gg{e{g‘;@.SO”Waead'”9'
to isolate the rest of the application from low-level implemen- i i o))
tation details, without significantly affecting end-to-end pef-e! '\Cﬂéﬁﬁﬂgi'ciﬁopik?é;nﬁeﬁ'sggfs”’zE%ﬁfgéé;ﬁgg”ff Iﬁg't%hH?gﬁed

formance. Performance Distributed Computing (HPDC7) confergri€hicago,
lllinois), July 1998.

[19] C. O'Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, |. Pyarali,
and D. Levine, “Evaluating Policies and Mechanisms for Supporting
Refe rences Embedded, Real-Time Applications with CORBA 3.0,"Rmnoceedings

.) . . of the6t IEEE Real-Time Technology and Applications Symposium
[1] M. Henning and S. VinoskiAdvanced CORBA Programming With (Washington DC), IEEE, May 2000.
C++. Reading, Massachusetts: Addison-Wesley, 1999.)) _
[20] F. Kuhns, D. C. Schmidt, C. O’'Ryan, and D. Levine, “Supporting

[2] D.C. Schmidt, D. L. Levine, and S. Mungee, “The Design and High-performance 1/O in QoS-enabled ORB Middlewat€luster
Performance of Real-Time Object Request BrokeEaimputer Computing: the Journal on Networks, Software, and Applications
Communicationsvol. 21, pp. 294-324, Apr. 1998. vol. 3, no. 3, 2000.

22

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

(36]

[37]

S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on System
SciencesJan. 1999.

T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,Pioceedings of
OOPSLA '97 (Atlanta, GA), pp. 184-199, ACM, October 1997. [40]

Z.D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC Approach to
High Performance Network Interface Design: Protected DMA and [41]
Other Techniques,” ifProceedings of INFOCOM '9{Kobe, Japan),

pp. 179-187, IEEE, April 1997.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time application®etwork Information
Center RFC 188%January 1996.

C. D.Gill, D. L. Levine, and D. C. Schmidt, “The Design and

(38]

[39]

[42]

Performance of a Real-Time CORBA Scheduling ServiBsal-Time [43]
Systems, The International Journal of Time-Critical Computing
Systems, special issue on Real-Time Middleywask 20, March 2001. [44]

C. O'Ryan and D. C. Schmidt, “Applying a Real-time CORBA Event
Service to Large-scale Distributed Interactive Simulation 8
International Workshop on Object-oriented Real-Time Dependable
Systems(Monterey, CA), IEEE, Nov 1999.

B. Meyer, Object-Oriented Software Construction, Second Edition
Englewood Cliffs, NJ: Prentice Hall, 1997.

D. C. Schmidt and C. Cleeland, “Applying a Pattern Language to
Develop Extensible ORB Middleware,” iDesign Patterns in
CommunicationgL. Rising, ed.), Cambridge University Press, 2000.

[45]

D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,”"Handbook of
Programming Language@. Salus, ed.), MacMillan Computer
Publishing, 1997.

H. Hueni, R. Johnson, and R. Engel, “A Framework for Network
Protocol Software,” irProceedings of OOPSLA '9%Austin, Texas),
ACM, October 1995.

C. Cleeland, D. C. Schmidt, and T. Harrison, “External Polymorphism
— An Object Structural Pattern for Transparently Extending Concrete
Data Types,” inPattern Languages of Program Desi@R. Martin,

F. Buschmann, and D. Riehle, eds.), Reading, Massachusetts:
Addison-Wesley, 1997.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokedsfirnal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internetol. 21, no. 2, 2001.

P. S. Inc. Quantify User's GuidePureAtria Software Inc., 1996.

I. Pyarali, C. O’'Ryan, and D. C. Schmidt, “A Pattern Language for
Efficient, Predictable, Scalable, and Flexible Dispatching Mechanisms
for Distributed Object Computing Middleware,” IProceedings of the
International Symposium on Object-Oriented Real-time Distributed
Computing (ISORG)Newport Beach, CA),BEE/IFIP, Mar. 2000.

D. C. Schmidt, “Evaluating Architectures for Multi-threaded CORBA
Object Request BrokersCommunications of the ACM special issue on
CORBAvol. 41, Oct. 1998.

A. B. Arulanthu, C. O’'Ryan, D. C. Schmidt, M. Kircher, and

J. Parsons, “The Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,’Hroceedings of
the Middleware 2000 Conferenc&CM/IFIP, Apr. 2000.

N. Wang, D. C. Schmidt, K. Parameswaran, and M. Kircher, “Applying
Reflective Middleware Techniques to Optimize a QoS-enabled CORBA
Component Model Implementation,” Bdth Computer Software and
Applications ConferencéTaipei, Taiwan), IEEE, Oct. 2000.

23

A. Gokhale and D. C. Schmidt, “Measuring the Performance of
Communication Middleware on High-Speed Networks,Pioceedings
of SIGCOMM '96 (Stanford, CA), pp. 306-317, ACM, August 1996.

N. C. Hutchinson and L. L. Peterson, “Tkeernel: An Architecture
for Implementing Network ProtocolslEEE Transactions on Software
Engineering vol. 17, pp. 64-76, January 1991.

D. Ritchie, “A Stream Input—Output SystenAT&T Bell Labs
Technical Journalvol. 63, pp. 311-324, Oct. 1984.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dynamically
Assembled Protocol Transformation, Integration, and eValuation
Environment,"Journal of Concurrency: Practice and Experience
vol. 5, pp. 269-286, June 1993.

M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication SubsystenttsEE Journal on
Selected Areas in Communicatjomol. 11, pp. 507-519, May 1993.

|. Object Oriented Concepts, “ORBacus.” www.ooc.com/ob.

1. Object-Oriented Concepts, “ORBacus User Manual - Version 3.1.2.”
www.0ooc.com/ob, 1999.

T. v. Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-Level
Network Interface for Parallel and Distributed Computing,1Bth
ACM Symposium on Operating System Principf&SM, December
1995.

