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A subset of this paper will appear in the Distributed Systerasd dynamic [4] scheduling, event processing [5], /O sub-
Engineering Journal’'s “Online” edition, April 2001. system [6] and pluggable protocol [7] integration, syn-
chronous [8] and asynchronous [9] ORB Core architectures,
Abstract ORB fault tolerance [10], systematic benchmarking of multi-

ple ORBs [11], patterns for ORB extensibility [12], ORB per-

As network-centric computing becomes more pervasive a@emance [13], and CORBA load balancing performance [14].
applications become more distributed, the demand for greafdtis paper focuses on another dimension in the CORBA re-
scalability and dependability is increasing. Distributed systeggarch domainthe design of middleware-based load balanc-
scalability can degrade significantly, however, when servéig mechanisms developed using standard CORBA. ap-
become overloaded by the volume of client requests. To all@Pach is based on standard CORBA features available in any
ate such bottlenecks, load balancing middleware mechaniga3B compliant with the CORBA 2.3 [1] (or later) specifica-
can be used to distribute system load equitably across objéef. This approach can also be generalized to other distributed
replicas residing on multiple servers. This paper describes tpiect computing middleware, such as COM+ and Java RMI,
key design challenges we faced when adding this load balath@t offer similar features.
ing service to our CORBA ORB (TAO) and outline how we CORBA rich set of features provides the means to realize
resolved the challenges by applying patterns. an adaptive load balancing service. CORBA is an effective
Keywords: Middleware, patterns, CORBA, load balancinghoice for distributed systems due to the inherent distribution
and common heterogeneity of clients and servers written in
different programming languages running on different hard-
1 Introduction ware and software platforms. In this context, CORBA can sim-
plify system implementation because it offers a language- and
An increasingly popular and cost effective technique to imlatform-neutral communication infrastructure. Moreover, it
prove networked server performancédad balancingwhere reduces development effort by offering higher level program-
hardware and/or software mechanisms distribute client working abstractions that shield application developers from dis-
load equitably among back-end servers to improve oveflbution complexities, thereby allowing them to concentrate
system responsiveness. This paper focuses on middlewtreir efforts on stock trading business logic.
based load balancing supported by CORBAdltject request  The remainder of this paper is organized as follows: Sec-
brokers(ORBs). ORB middleware allows clients to invokdéion 2 summarizes the requirements of CORBA-based load
operations on distributed objects without concern for objdmlancing services; Section 3 describes the design of our load
location, programming language, OS platform, communidaalancing service, which is based on standard CORBA fea-
tion protocols and interconnects, and hardware [2]. Moreoveres and implemented using the TAO open-sot@®RBA-
ORBs can determine which client requests to route to whicbmpliant ORB; Section 4 outlines the key challenges we
object replicas on which servers. faced when design TAO’s load balancing service and illus-
Our previous research on middleware has examined méiages the patterns we applied to address these challenges; and
dimensions of ORB endsystem design, including static [Sgction 5 presents concluding remarks.

*This work was funded in part by Automated Trading Desk, BBN, Cisco, 1The source code and documentation for TAO can be downloaded from
DARPA contract 9701516, and Siemens MED. www.cs.wustl.edu/ ~schmidt/TAO.html



2 Requirements for a CORBA Load -certain conditions. For example, some applications may define
Balancing Service ad hocload metrics, such as number of active transactions or
user sessions. In practice, collecting these metrics may require

The OMG CORBA specification provides the core capabiﬁ-ome modifications to server application code.

ties needed to support load balancing. In particular, a CORBAnamic client operation request patterns: Load balanc-
load balancing service can take full advantage ofrdtpiest ing services can be based on various client request patterns.
forwarding mechanisrh mandated by the CORBA specificaFor example, load balancers for certain types of systems as-
tion [1]. A CORBA server application can use this mechaume client requests occur at deterministic or stochastic rates
nism to forward client requests to other senvigamsparently that execute for known or fixed durations of time. While these
portably, andinteroperably assumptions may apply for certain types of applications, such

The CORBA specification, however, does standardize as continuous multimedia streaming [16], they do not apply in
load balancing interfaces. Nor does it specify load balare@mplex Internet or military [17] environments where client
ing mechanisms, which are left as implementation decisiaperation request patterns are dynamic and the duration of
for ORB providers. Below, therefore, we describe the key reach request may not be known in advance. In this paper,
guirements that CORBA load balancing services should be tieerefore, we focus on load balancing techniques that do not
signed to address. requirea priori scheduling information.

Support an object-oriented load balancing model: In the Maximize scalability and equalize dynamic load distribu-
CORBA programming model objects are the unit of abstraiéon: ~ Although it is common practice to design lightweight
tion and system architects reason about objects in ordetogd distribution capabilitie®.g, based on extensions to nam-
manage their available resources. Thus, the granularityiitg services [18], these approaches do not balance dynamic
load balancing in CORBA should be based on objects, rathgds equitably, which limits their scalability. Thus, a CORBA
than, e.g, processes or TCP/IP addresses. Moreover, a Id@dd balancing service must increase system scalability by
balancing service and ORB should coordinate the interactiéi@ximizing dynamic resource utilization in a group of servers
amongsmultipleobject replicas. Sets of multiple object repliwhose resources would not otherwise be used as efficiently.
cas are calledbject groupr replica groups By improving resource utilization via load balancing, the over-

. L o all scalability of the server group should be enhanced signifi-
Client application transparency: Distributing work load cantly.

amongst multiple servers should require little or no modifi- o _ .
cations to the way in which CORBA applications are devdicrease system dependability: Load balancing services
oped normally. In particular, a CORBA load balancing sef@n also handle certain types of server failures. By using
vice should be as transparent as possible to clients and ser@fglinistrative interfaces or automated policies, for example,
Likewise, a general principle in CORBA is that client imp|ecllents that access a'crashed or failing server can be migrated
mentations should be as simple as possible. A CORBA |O.t9dother. servers until the failure is resolved. Load balanc-
balancing service that follows this principle should therefol®d Services need not provide full fault-tolerance capabilities,

require no changes to clients whose requests it balances. howeverj.e., it should not be the role of a load balancing ser-
vice to detect and mask failures [19, 20]. Instead, they should

Server application transparency: - Althoughload balancing provide mechanisms to handle those failures efficiently when

should ideally require few modifications to servers, this go@ey are detected by administrators or other components in the
is hard to achieve in practice. For example, load balancigigstem.

a stateful CORBA object requires the transfer of its state to

a new replica. The application implementation must eithaHPPort administratiye taskg: System .adminis.trators may

perform the transfer itself or define hooks that allow the lod§€d t0 add new object replicas dynamically, without disrupt-
balancing framework to perform the state transfer as unobtfid ©" suspe_ndlng service for existing clients. A gpod C.QRBA
sively as possible [15] oad balancing service should allow the dynamic addition of

The situation for stateless CORBA servers is different. JIfV replicas and adjust to the new load conditions rapidly.
this case, the implementation of an server objestsvant Likewise, the service should allow the removal of replicas for

should require no changes to support load balancing. yggrades, preemptive maintenance, or re-allocation of system
changes to the servapplicationmay still be required under€SOUrces.

Minimal overhead: A CORBA load balancing service
2The standard CORBAOCATION_FORWARD GIOP message used to fa- hould ; d d [ Ki head
cilitate this request forwarding mechanism is discussed in Section 4.0.1. S, ould not m,tro _uce undue latency or networking overnea
3The servant is a programming language entity that implements objg#aC€ Otherwise it can actually redqce—rather than enhan_ce—
functionality in a server application. overall system performance. In particular, an implementation



that (1) increases the average number of messages per-request
or (2) uses a single server to process all requests may be in- %

. - . : Client
appropriate for high-performance and/or large-scale applica-
tions. [30] illustrates empirically how certain load balancing
strategies can degrade overall performance due to excess over-| | d Bal
head. : Load Balancer requests

Support application-defined load metrics and balancing
policies: Different types of applications have different no-
tions of load. Thus, a CORBA load balancing service should
allow applications to: . Load Analyzerf-——————————~—

1

¢ Specify the semantics of metrics used to measure load
— For example, some applications may want to bal-
ance CPU load, whereas other applications may be more
concerned with balancing I/O resources, communication

loads O—: Replica Proxy

; : Replica
bandwidth, or memory load. ~mepiea -
e Set policies that determine the load balancing service’s  * ‘
orequests

semantics- For example, some applications may want to
distribute load uniformly, others randomly, and still oth-

ers may want load distributed based on dynamic metrics,
such as current CPU load or current time.

. Load Monitor

Figure 1: Components in the TAO Load Balancing Service
Support for application-defined metrics and policies need not
affect client transparency because these policies can be admin-

istered solely for server replicas. Thus, clients can be shiel@gdemand request forwarding. Each of these components is
from knowledge of load balancing metrics and policies.  outlined below:

CORBA interoperability and portability: ~ Application de- Rgplica I.ocator': This component identifies which rgplicas
velopers rarely want to be restricted to a single providepdll receive which requests. It is also the mechanism that
ORB. Therefore, a CORBA load balancing service should r{:ggds clients to the |dent|f|eq replicas. The replica locator can
rely on extensions to GIOP/IIOP, which are standard protocB implemented portably using standard CORBA portable ob-
that allow heterogeneous CORBA clients and servers to ini€ft adapter (POA) mechanisms, such as servant locators [2],
operate. Likewise, it is desirable to avoid implementing lo¥ich implement the Interceptor pattern [22]. The Replica lo-

balanced objects by adding proprietary extensions to an ORR{Or forwards each request it receives to the replica selected
by the load analyzer described below.

. ) . Load monitor: This component (1) monitors loads on a
3 The DeSIQn of TAO's Load Balancmg given replica, (2) reports replica loads to a load balancer, and

Service for CORBA (3) responds to load advisories sent by the load balancer. As
depicted in Figure 2, a load monitor can be configured with
This section describes the design of an adaptive load balanaitger of two policies:
service in TAO [3], which is a CORBA-compliant ORB that ) i
supports applications with stringent QoS requirements. TAO’s® P_uII pOI'CY_ In this mode, a.'oa‘?,' ba!,ancer can query a
load balancing service is designed to support the requirements 9IVen replica load on-demanie., “pull” loads from the
presented in Section 2. load monitor.
e Push policy- In this mode, a load monitor can “push”

3.1 Component Structure in TAO's Load Bal- load reports to the load balancer.

ancing Service A load monitor also processes load advisories sent by the load
balancer and informs replicas when they should accept re-

Figure 1 illustrates the componehis the TAO's load bal-
g P a%asts versus forward them back to the load balancer.

ancing service, which supports adaptive load balancing

2 . . l,,oad analyzer: This component decides which replica will
The termcomponentised throughout this paper refers to a “componen . . . .
in the general sensee., an identifiable entity in a program, rather than in thé€CEIVe the'neXt client request. Thel' replica locator described
more specific sense of the CORBA Component Model [21]. above obtains a reference to a replica from the load analyzer



get_load()—» Pull Policy
- | Client Load Balancer | | Replica Locator | | Load Analyzer | | Load Monitor Replica |

. Load Balancer E Load Monitor!—!: Server Replica! L X | i | |

1. send_request() 6. get_load()

7. is_overloaded()
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<—report_load() 4. LOCATION_FORWARD() 8. load_advisory()

I: Load Monitor!—!: Server Replica!

9. issue_control()

. Replica Proxy
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: Load Balancer
Load Monitor and Replica

. . .. are at the same location.
Figure 2: Load Reporting Policies j

Figure 3: TAO Load Balancer Interactions
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and then forwards the request to that replica. The load analyzer

also allows a load balancing strategy to be selected explicitly

at run-time, while maintaining a simple and flexible desighigure 3 is outlined below.

Since the load balancing strategy can be chosen at run-time,

replica selection can be tailored to fit the dynamics of a syster#. A client obtains an object reference to what appears to be
that is being load balanced. a replica and invokes an operation. In actuality, however,
the client transparently invokes the request on the load

Replica proxy: Each object managed by TAO’s load bal- balancer itself.

ancing service communicates with it via a unique proxy. The

load balancer uses these replica proxies to distinguish diffe2. After the requestis received from the client, the load bal-

ent replicas to workaround CORBA's so-called “weak” notion  ancer’s POA dispatches the request to its servant locator,
of object identity [20], where two references to the same ob- i.e, the replica locator component.

ject may have @ﬁerent values. Thus, it is only possible to3. Next, the replica locator queries its load analyzer for an
compare theequivalenceof two object references. Two ob- . .

) ) . . appropriate server replica.

ject references are equivalent if they refer to the same object.
Otherwise, they are not equivalent if they do not refer to thet. The replica locator then transparently redirects the client
same object or the ORB was unable to make this determina- to the chosen replica.

tion. Itis the intentional ambiguity of the latter case that make
CORBA object identity “weak?® Section 4.0.5 discusses the
replica proxy in more detail.

%, Requests will continue to be setiitectly to the chosen
replica until the load balancer detects a high load on that
replica. The additional indirection and overhead incurred

Load balancer: This component is a mediator that inte- by per-request load balancing architectures is eliminated

grates all the components described above. It provides an since the client communicates with the replica directly.

interface through which load balancing can be administered6
without exposing clients to the intricate interactions between ™"
the components it integrates.

The load balancer monitors the replica’s load. Depending
on the load reporting policy (séead monitordescription

in Section 3.1) that is configured, the load monitor will

) . ) either report the load to the balancer or the load balancer
3.2 Dynamic Interactions in TAO’s Load Bal- will query the load monitor for the replica’s load.

ancing Service 7. As loads are collected by the load balancer, the load ana-

As described in [30], selecting a target replica using a non- lyzer analyzes the load on the replica.
adaptive balancing policy can yield non-uniform loads acros
replicas. In contrast, selecting a replica adaptively for each”
request can incur excessive overhead and latency. To avoid
either extreme, therefore, TAO’s load balancing service pro-
vides a hybrid solution via one of its load balancing strategies,
whose interactions are shown in Figure 3. Each interaction in

If a replica becomes overloaded the load balancer can
dynamically forward the client to another less loaded
replica. To achieve the transparency requirements out-
lined in Section 2, TAO'’s load balancer does not com-
municate with the client application when forwarding it
to another replica. Instead, TAO’s load balancer issues a
5See [23] for the rationale behind CORBA's object identity semantics. load advisory to the replica’s load monitor.




9. The load monitor issues a control message to the repli8alution — the Interceptor pattern: The Interceptor pat-
Depending on the contents of the load advisory issutsin [22] allows a framework to transparently add services that
by the load balancer, this control message will cause e triggered automatically when certain events occur. This
replica to either accept or redirect requests. pattern enhances extensibility by exposing a common inter-

10. When instructed by the load monitor, the replica uses tlfﬁ{ge implemented by eoncrete interceptorMethods in this

GIOPLOCATION.FORWARDMessage (o redirect the next '(Ia'::Clit?arrig:)\;glr(epda?t)é?132::1022 implemented via standard
request sent by a client back to the load balancer. X
q y CORBA POA [1] features. For example, the role of the in-

11. Atthis point the load balancing cycle starts again.  terceptor is played by aervant locatot and the role of the
dispatcher is played byROA In particular, aeplica locator
) ) can implement the standard CORB#&rvantLocator [1]
4 Design Challenges and Their Solu-interface provided by the POA.
tions Figure 4 illustrates how load can be balanced transparently
using standard CORBA features. Initially, clients are given

The following design challenges were identified prior to and
during the development of TAO's load balancing service:

NS
1. Implementing portable load balancing 066\@\? T T T T~
. Q‘QQQO : Load Balancer )
2. Enhancing feedback and control 69,0/\\@/ N 7
. . . v R T
3. Supporting modular load balancing strategies VOO 3. send_request()—»
4. Coping with adaptive load balancing hazards - Replica
5. ldentifying objects uniquely @
6. Integrating all the load balancing components effectively
These challenges and the solutions we applied to address them 86&/' T T T T T~ e%
are discussed below. The solutions to each design challenge & . iLoadBalancer K
manifest themselves within the load balancing service compo- & i’ S < e,
nents described in Section 3.1. > Z
4.0.1 Challenge 1: Implementing Portable Load Balanc- (b)

ing

) . . N Figure 4: Load Balancing Transparency in Applications: (a)
Context._ A CORBA Ioaq balancmg.serwce IS be!ng 'mplefequest forwarded by the client and (b) request forwarded on
mented in accordance with the requirements outlined in S

tion 2 B&half of the client.

n object reference to the load balancer, so they first issue re-

Problem: Changing application code—particularly clien ests to the load balancer. The load balancer’s servant loca-

applications—to support load balancing can be tedious, erot

prone, and costly. Changing the middleware infrastruct tPer intercepts those requests and forwards them transparently

to support load balancing is also problematic since the sab%éhe appropriate replicas. Depending on the type of client

middleware may be used in applications that do not requr'g‘.j'ng grgnular!ty selec_ted by the application, one of the fol-
. . . owing actions will occur:
load balancing, in which case extra overhead and footprint

may be unacceptable. Likewise, usiad hocor proprietary e The client will forward requests to the appropriate
interfaces to add load balancing to existing middleware can replica, as shown in Figure 4(a); or

increase maintenance effort and may be unattractive to appli- . .
! W o e The load balancer will forward requests to the appropriate
cation developers who fear “vendor lock-in" from features that

are unavailable in other middleware. replica on behalf of the client, as shown in Figure 4(b).
6

So, how can we implement load balancing transparentlg Servant locators are a meta-programming mechanism [24] that allows

. - . . . “ORBA server application developers to obtain custom object implementa-
without changlng appllcatlons, middleware or using propr, ons dynamically, rather than using the POA's active object map [13].
etary features?




Applying the solution in TAO: In TAO, each replica regis- be considered when making load balancing decisions, so that
ters itself with the load balancer. Each replica then becomes bbad balancer can support any type of load metric, rather
potential candidate to handle a request intercepted by the Itzh just one type of metric. The same deployment scalability
balancer. The interception is performed by a servant locatoissues encountered for load sampling transparency also apply
TAO’s load balancer implements its own servant locatdrere. If a load balancer were load-metric specific it would be
which is registered with the load balancer’'s POA. When a neastly to deploy load balancers for distributed applications that
request arrives, the POA delegates the task of locating a stgtjuire balancing based on several load metrics. For example,
able servant to the servant locator, rather than using the seseparate load balancer would be needed to balance replicas
vant lookup mechanism in the POA's active object map [13Jased on various metrics, such as CPU, I/O, memory, network,
Thus, the load balancer can use the servant locator to forwand battery power utilization.
requests to the appropriate replica transparendy,without  In addition, a load balancer must react to various replica
affecting server application code. load conditions to ensure that loads across replicas are bal-
After receiving a request, the replica locator obtains a refaced. For example, when high load conditions occur, a
erence to the replica chosen by the load analyzer (see $eplica must be instructed to forward the client request back
tion 4.0.3) and throws &orwardRequest exception ini- to the load balancer so subsequent requests can be reassigned
tialized with a copy of that reference. The server ORB catchesa less loaded replica.
this exception and then returns @CATION_FORWARD GIOP  So, how can we implement a flexible load balancing service
message. When the client ORB receives this message, tHa@ can be extended to support new load metrics, as well as
CORBA specification requires it to different policies to collect such metrics?

1. Re-issue the request to the new location specified by iution — the Strategy and Mediator patterns: The
object references embedded in tlEECATION_FORWARD  Strategy [25] design pattern allows the behavior of frameworks

response; and and components to be selected and changed flexibly. For ex-
2. To continue using that location until either the commurftmple, the same interface can be used to obtain different types
cation fails or the client is redirected again. of loads on a given set of resources. Only object implementa-

tions must change since load measuring techniques may differ
Thus, a server application and an ORB can forward client fer each type of load. Each implementation is called a “strat-
quests to other servetmnsparently portably, andinteroper- egy” and can be embodied in an object calldda monitot

ably. A load monitor implements a strategy for monitoring loads
on a given resource. The interface for reporting loads to the
4.0.2 Challenge 2: Enhancing Feedback and Control load balancer or to obtain loads from the load monitor re-

. ) . mains unchanged for each load monitoring strategy. Strategiz-

Context: An adaptiveload balancing service must detefg |0ad monitoring makes it possible to use a load balancer
mine the current load conditions on replicas registered WillL; is not specific to a particular type of load, such as CPU
it. A load balancer should not need to know the type of 10gghq or battery power utilization. Thus, a load balancer need
metric beforehand, however. Moreove.r, a Iogd balancer MYSt be specialized for a given type of load. This design sim-
take steps to ensure that loads across its registered rephca&m@s deployment of a load balanced distributed system since
balanced. These steps include (1) forcing the replica to regie |9ad balancer can balance many different types of load.
rect the clie.nt back to t_he load balanc_er when itslload is highThe Mediator [25] design pattern defines an object that en-
and (2) forcing the replica to once again accept client requesiS g ates how objects will interact. In addition to playing the
when its load is nominal. role of a strategy, a load monitor acts as a mediator between the
Problem: Sampling loads from replicas should be as transad balancer and a given replica. This pattern ensures there
parent as possible to the replicas. If load sampling was iso@ loose coupling between the load balancer and the server
transparent, a load balancer would have to sample loads fr@plicas. Thus, the load balancer need not have any knowl-
server replicas directly, which is undesirable since it woudige of the interface exported by the replica.
require replicas to collect loads. If replicas collect loads, how-In its capacity as a mediator, a load monitor responds to load
ever, application developers must modify existing applicatibalancing requests sent by the load balancer. Depending on the
code to support load balancing. Such an obtrusive design diype of request the load balancer sends to the load monitor, the
not scale well from a deployment point of view, nor is it alway®plica will either continue accepting client requests or redirect
feasible to alter existing application code. the client back to the load balancer. Note that the load balancer

Moreover, a load balancer should not be tightly coupled taaver interacts with the replica directly — all interaction occurs
particular load metric. Only thmagnitudeof the load should via the load monitor. Similarly, the replica never interacts with



the load balancer directly. Instead, it interacts with the lo&loblem: Since certain load analysis techniques are not suit-
balancer indirectly through the load monitor. able for all use-cases, it may be useful to analyze a set of
Applying the solution in TAO:  When registering a replicareplica loads in d?ﬁerent ways 'dependin'g on the situation. For
with TAO’s load balancer, its corresponding load monitor Iexample, tq predict future rep"c?‘ Ioads'lt may be useful to an-
also registered. As shown in Figure 5, the load balanu‘:l.(ze Fhe h!story ofloads_ f_oragwen objectgrqup,thereby an-
ICipating high load conditions. Conversely, this level of anal-
ysis may be too costly in other use-cases, if the duration

, I1 %et_:joad()» o el of the analysis exceeds the time required to complete client
. load_advisory()—» . reject_requests()—» request processing.

[-Load Balancer}————: Load Monitor}———{ ": Replica | In some applications it may even be necessary to change the

load analysis algorithm dynamically,g, to adapt to new ap-
Figure 5: Feedback and Control when Balancing Loads plication workloads. Moreover, bringing the system down to

reconfigure the load balancing strategy may be unacceptable
queries the load monitor for the load on the current replica, & applications with stringent 247 availability requirements.
suming that pull-based load monitoring is being used (see Seikewise, application developers may be interested in evaluat-
tion 3.1). In other words, the load balancer recefezsiback ing several alternative load balancing policies, in which case
from the load monitor. Load balancing control messagegguiring a full recompilation or relink cycle would unduly in-
calledload advisoriesare then sent to the load monitor frontrease system development effort. A load balancing service
the load balancer and set the state of the current replica loaddnnot simply implement all possible load balancing strate-
one of the following values: gies, however.g, application developers may wish to define

) ) ) ] . application-specific oad-hocload balancing algorithms dur-
e Nominal- When the load is nominal, the replica contlr]—ng testing or deployment.

ues to accept requests.

So, how can we allow dynamic (re)configurations of the

e High — A high load advisory causes the replica to redead balancing service, such as the load monitor and load an-
rect client requests by forwarding them back to the loatl/zer, without requiring expensive system recompilations or
balancer, at which point the load balancer forwards tirerruptions of service?

request to a less loaded replica. , i
Solution — the Component Configurator pattern: The

These two state values are the defaults provided by TAO. Useémnponent Configuratadesign pattern [22] allows applica-
can define their own customized load states, however, by digns to link and unlink components into and out of an applica-
tomizing the load analyzer and load monitor component iffien at run-time. In TAO's load balancing service this pattern
plementations. can be used to change the replica selection strategy dynami-
TAO’s load balancer isidaptivedue to the bi-directional cally. Thus, a load balancer can use this pattern to adapt to
feedback/control channel between the load monitor and tliierent load balancing use-cases, without being hard-coded
load balancer, which allows TAO's load balancer to admii® handle just those use-cases.
ister control. Since the load monitor is decoupled from the At times it may be necessary to load balance only a few
load balancer it is also possible to balance loads across reglplicas, in which case a simple load balancing strategy may
cas based on various types of load metrics. For instance, suffice. In other situations, such as during periods of peak ac-
type of load monitor could report CPU loads, whereas anotltiwity during the workday, a load balancing strategy may need
could report I/0O resource load. The fact that the type of loatbdifications to account for increased load. In such cases,
presented to the load balancer is opaque allows the same baabre complex strategy may be necessary. The Component
balancer—specifically the load analysis algorithm—to be reussshfigurator pattern makes it easy to dynamically configure
for any load metric. load balancing algorithms appropriate for different use-cases
withoutstopping and restarting the load balancer.

4.0.3 Challenge 3: Supporting Modular Load Balancing appiving the solution in TAO:  TAO's load analyzer uses
Strategies the Component Configurator pattern to customize the load bal-

Context: A distributed system employs a load balancir@'cing algorithm used when making load balancing decisions,
service to improve overall throughput by ensuring that loa@8 depicted in Figure 6. TAO's load balancing service can be
across replicas are as uniform as possible. In some appl@figured dynamically to support the following strategies:

tions, loads may peak in a predictable fashion, such as at cel; oo nd-robin:  This non-adaptive strategy is straightfor-

tain times of the day or days of the week. In other applicationg, 4 and does not take load into account. Instead, it simply
loads cannot be predicted easdlyriori.



4.0.4 Challenge 4: Coping With Adaptive Load Balanc-
Group 1 : Object Group mg Hazards

references : object(idl)

: Load Balancer J

|

!

pLoad Analvzer| _ _ Context: A customized adaptive load balancing strategy is
|

—
********* Balanci under development by a distributed application developer.
alancing Strategy . . i
This load balancing strategy will be used to balance loads

across a group of replicas.

- Component Configurator Problem: Adaptive load balancing has the potential to im-
Dynamically Ioadgk H H HR
load balancing prove system responsiveness. Itis hard to ensure thle ;tablllty
strategies. of loads across replicas when the overall state of distributed
Round Robin : Balancing Strategy . .
systems changes quickly due to the following hazards:

Minimum Dispersion : Balancing Strate becomes available, a “thundering herd” phenomenon may oc-
cur if the load balancer forwards all requests to that replica
immediately. If the rate at which the loads are reported and an-
Figure 6: Applying the Component Configurator Pattern @dyzed is slower than the rate at which requests are forwarded
TAO’s Load Balancing Service to the replica, it is possible that the load on that replica will

increase rapidly. Ideally, the rate at which requests are for-

warded to replicas should be less than or equal to the rate at
causes a request to be forwarded to the next replica in the wbich loads are reported and analyzed. Satisfying this condi-
ject group being load balanced [18]. tion can eliminate the thundering herd phenomenon.

e Thundering herd: When a less loaded replica suddenly

o ' _ ' ' ] e Balancing paroxysms: The smaller the number of
e Minimum dispersion:  This adaptive strategy is morggpjicas, the harder it can be to balance loads across them
sophisticated than the round-robin algorithm described abogﬁecﬂvew_ For example, if only two replicas are available
The goal of this strategy is to ensure load differences fgden one replica may be more loaded than the other. A naive
within a certain tolerance,e., it attempts to ensure that thgoaq palancing strategy will attempt to shift the load to the less
average difference in load between each replica is minimizgghged replica, at which point it will most likely become the
The following steps are used in this on-demand adaptive stighjica with the greater load. The entire process of shifting the

egy: load may begin again, causing system instability.

1. The average load across all replicas within a given ob-S0, how canwe adapt to dynamic changes in load, but with-

ject group is updated each time a load balancing decisf# overreacting transient, short lived or sample errors in the
occurs. load metric?

tion — Dampening load sampling rates and request
Irection: Theminimum dispersiotoad balancing strat-
egy described in Section 4.0.3 can be employed to alleviate the
3. Ifthe difference between the average load and the instdnindering herd phenomenon and balancing paroxysms since
taneous load is larger than the tolerance set byntme- it will not attempt to shift loads the moment an imbalance oc-
mum dispersioftoad balancing strategy, the load balanceurs. Specifically, by relaxing the criteria used to decide when
will attempt to decrease the difference so that they fétlads across a group of replicas is balanced, a load balancer
within the tolerance. can adjust to large load discrepancies with less probability of
experiencing the hazards discussed above. The criteria for de-
Note that a set of replicas balanced via this strategy will ieiding when to shift loads can also change dynamically as the
necessarily have the same load on each of them, but over tiragber of replicas increases.
the loaddispersiorbetween the replicas will be minimized. Using control theory terminology, this behavior is called
dampening where the system minimizes unpredictable be-
A large amount of work on load balancing strategies [2Bhvior by reacting slowly to changes and waiting for defi-
has already been done. Many of those same strategiesmttrends to minimize over-control decisions. TAQO’s mini-
be integrated in to the CORBA-based load balancing servibem dispersion balancing strategy does not react to changes
via the Component Configurator pattern implementation de{oad immediately because its default load balancing strategy
scribed above. averages instantaneous load samples with older load values.

2. The instantaneous load on each replica is then compa$8
to the average load. re



The empirical results presented in [30] illustrate the effects of

TAO’s dampening mechanisms. krepof‘,‘oado

: Load Monitor A

4.0.5 Challenge 5: Identifying Objects Uniquely

. Load Balancer

: Load Monitor B

Context: A load balancing service that manages multiple
objects is responsible for collecting and analyzing informa-
tion, such as the state, health, and environmental conditions,
throughout the lifetime of each object it manages. This in-
formation is obtained from the load monitor, as described in <—report_load()
Section 4.0.2. In some applications usingul modelto ac-
quire the load information may not scale well and can be hard
to optimize. In contrashpush modelsan resubmit load infor-
mation when it has changed beyond a pre-set threshold or after
a fixed period of time.

Which load monit
is the load report
coming from?

: Replica Proxy A|—|: Load Monitor A|

: Load Balancer

: Replica Proxy B|—|: Load Monitor B|

The load balanc

. L . . assigns a replica
Problem: When receiving information about the load in one proxy to each load

replica the load balancing service should determine the source monitor.
of the load information efficiently and uniquely. This goal can
be achieved easily via pull models, but it is harder to imple- Figure 7: ldentifying the Source of a Message Uniquely
ment via push models. CORBA does not provide a lightweight

mechanism to determine the source of a reqliddbreover, ] ]

as described in Section 3.1, CORBA proviskesak identitfor ~ AS €ach load is reported to teplicaProxy , the load
objects, relying on the replica object reference to distingui%ﬂawzer is notified that a new load is available for analysis.

them would not be portable. Since theReplicaProxy  caches the object reference of its
So, how can we portably and efficiently determine ttf@responding replica, the load balancer can redirect the client
source of the load information? to a nominally loaded replica using the cached replica object
reference.

Solution — the Asynchronous Completion Token pattern:

This patternis used to efficiently dispatch processing tasks that
result from responses to asynchronous operations invoked!6 Challenge 6: Integrating All the Load Balancing
a client [22]. In the load balancing service, the replica proxy ~ Components Effectively

plays the role of an asynchronous completion token (ACBOntext:

. . . . . As illustrated above, a load balanced distributed
Load monitors communicate load updates via their rephgs
r

tem has many components that interact with each other.
example, clients issue requests to replicas. Load moni-
s measure loads on replicas continuously and control client

proxy objects, as shown in Figure 7. The load balancing sg}-
vice creates a unique replica proxy for each monitor. Wr:ﬁﬂ
&

the replica proxy implementation creates and caches the i Cess to the replicas. Load analyzers decide if loads on repli-

tity of the replica AC.T anq load monitor thaF will later US&as are nominal or high. Finally, replica locators bind clients
the replica proxy. This design allows the replica proxy to dFd replicas

termine the identity of the remote replica efficiently whenever
new load information is received. Problem: All the components mentioned above must col-
Applying the solution in TAO: TAO uses a CORBA laborate effectively to ensure that a distributed system is load

Object to play the role of an asynchronous completion t§lanced. Direct interaction between some of those compo-
ken. The load balancing service creates a different CORBRN(S May complicate the implementation of distributed appli-
Object —called aReplicaProxy —for each replica. This catlor!s, however, since certain fupctlonallty may be exposed
proxy is created when the replica registers itself with the lo¥@ 9iven componentunnecessarily.
balancing service initially. All future communication with the S°; how can we integrate the functionality of all the load
load balancing service is performed through the proxy. TRalancing components without unduly coupling all of them?
Asynchronous Completion Token pattern allows the load bgl|ution — the Mediator pattern: The Mediator pattern
ancing service to process the requests from each replica ffbvides a means to coordinate and simplify interactions be-
ciently and unambiguously. tween associated objects. This pattern shields the objects from
7The CORBA Security Service [27] can authenticate client requests, bglationships and interactions that are not needed for their ef-
this is a much more expensive mechanism than required for many applicatiéestive operation.




A load balancercomponent can be used to tie together & Concluding Remarks and Future
the components listed above. It coordinates all interactions Work
between other componenig,, it is a mediator. For example,

it shields the client from the componentinteractions necessafyg paper describes the design of an adaptive middleware-
to conduct load balancing. Thus, clients can remain Unawglge q |nad balancing service developed for the TAO ORB [3].
of the_lnteract!ong mediated by the Ioad. balancer, which h 's load balancing service makes it easier to develop dis-
to satisfy application transparency requirements. tributed applications in heterogeneous environments by pro-
viding application transparency, high flexibility, scalability,

. o o run-time adaptability, and interoperability. TAO's load balanc-
Applying the solution in TAO: ~ As shown in Figure 1, the jng service is based entirely on standard features in CORBA.
load balancer in TAO mediates the following types of compgtjs implementation demonstrates that CORBA technology
nent interactions: has matured to the point where many higher-level services can

be developed effectively without requiring extensions to the
ORB or its communication protocols.
e Client binding interactions:  Rather than binding itself  Exploiting the rich set of primitives available in CORBA
to a specific replica that may be highly loaded, TAO's loaglill requires specialized skills, however, along with the use of
balancer binds the client to a suitable replica. The load bpborly understood features, such as location forwarding. We
ancer creates an object reference that corresponds to a gi@iligve that further research on effective architectures, strate-
of replicas—called awbject group-being load balanced. In-gies, and patterns to implement CORBA load balancing ser-
stead of using an object reference that directly refers to a givétes is necessary to advance the state of the art. Below, we
replica, the client uses the object reference created by the lpatline future work that we are conducting to improve our
balancer that represents the appropriate object group. ThisdeRBA load balancing service.
sign causes the client to invoke a request on the load balarg:éar

o . . o . rver transparency: Itis non-trivial to achieve transparent
initially, at which point the client is re-bound to a replica cho- ; : . .

server load balancing since obtaining feedback from a given
sen by the load balancer.

- . replica and controlling it without altering server application
It is important to note that the CORBA object model Wagode is hard. Fortunately, CORBA-based distributed systems

intentionally designed to decouple the object implementatiggn achieve server transparency by taking advantage of the fol-
from the object references that clients use to access the jiying recently standardized CORBA features:

plementations. In TAO'’s load balancing service we exploit :

this feature of CORBA to hide the particular location, num- ® Portable Ipterceptors: Portable interceptors [28, 24] :
ber, and characteristics of the replicas behind an object refé?! capture client requests transparently before they are dis-
ence that points clients to the load balancing service. ClieR ched to an object replica. For examplesmtver_ request
applications are shielded by this extra level of indirection BS}tercep.torcquld be added to the ORB where a given reP!'Ca
their ORBs, and use a load balanced object just like any otfgps- Since interceptors reside within the ORB no modifica-

CORBA object, unaware of the situation except perhaps ]tg}n to server application code is necessary, other than regis-
the difference in performance tering the interceptor with the ORB when it starts running.

The load balancer also rebinds the client to another replicd CORBA Component Model (CCM): - The CCM [21]
by using other components, such as the load monitor. In tif§foduces containersto decouple application component
case, a client is forwarded back to the load balancer so that!@@ic from the configuration, initialization, and administra-
client binding process can be begin again. Thus, load balaie? of servers. In the CCM, a container creates the POA

ing remains completely transparent to client applications. and interceptors required to activate and control a component.
These are the same CORBA mechanisms used to implement

the server components in TAO’s load balancing service. The
standard CCM containers can be extended to implement auto-
Hha_tic load balancingenericallywithout changing application
gomponent behavior.

e Load monitor and load analyzer interactions: The
load balancer allows the load analyzer to be completely dec
pled from load monitors. Load monitors are registered wi
the load balancer. This design allows the load balancer to Becentralized load balancing models: The CORBA-based
ceive load reports from each registered load monitor. Thesad balancing architecture described in this paper is based on
load reports are then delegated to the load analyzer for analgentralizedload balancing model. Specifically, it assumes
sis. The means by which these loads were obtained is hidtieat one load balancer performs all load balancing tasks for a
from the load analyzer. particular distributed system. This model simplifies the design
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and implementation of the load balancer, but introduces a siwr another object group. Suppose both object groups are bal-
gle point of failure, which can impede system reliability ananced based on CPU load. The load balancer detects low load
scalability. conditions for the first object group, causing requests to be sent
One solution is to implement @ooperativdoad balancing to that object group, which causes the CPU load to increase on
service. In this model, load balancing is facilitated throughlae given server. Since the second object group is load bal-
distributed set of load balancers that collectively form a singi@ced based on CPU load, the load balancer will detect a high
logical load balancing service. This model has the advantdgad on the server due to the increased load caused by the re-
that a single point of failure does not exist, and that no singlgests sent to the first object group. At this point, the load
bottleneck point exists either. Load balancing decisions wotalancer will cause the second object group to reject requests.
be made cooperativelye., each load balancer could commuThus, the second object group is starved by the first object
nicate with other balancers to decide how best to balance log3up. In this scenario, the two object groups must be load
across a given group of replicas. balanced collectively, which implies a common load monitor
must be used for both object groups.
Stateful replicas: Another issue we will address in future
work involves load balancing of stateful replicas. To load bdfault tolerant load balancing: By using the adaptive
ance replicas that retain state, some means of maintaining SE¥#RBA-based load balancing architecture described in this
consistency between replicas is necessary. Techniques us®d@egr, clients that have not been forwarded to replicas can still
achieve this consistency include (1) using reliable multicast® denied service. Some form of fault tolerance is therefore
share the current state efficiently between multiple replicas, (Bgded to prevent this situation. Fortunately, CORBA defines
providing hooks within a replica that allow a load balancer foStandardrault Tolerance20] service to address these types
perform state transfers explicitly to another less loaded replffdailures.
so that request servicing can continue there, or (3) a combiMaking a load balancing service fault tolerant by means of
nation of both (1) and (2). Efficient load balancing of stateftiault Tolerant CORBA can alleviate one of the inherent prob-
replicas is non-trivial, however, due to the additional load items with centralized load balancing: its single point of fail-
curred by ensuring state consistency between replicas.  ure. Itcan also ensure that state within replicas is consistent, in
the case of stateful replicas. This capability can simplify aload
Load monitoring granularity: A server can have multiplebalancer implementation since the load balancer can delegate
objects running in it. If there are a many objects in the serwiie task of ensuring state consistency between replicas to the
then instantiating a load monitor (see Section 4.0.2) for e&&dult Tolerance service. One implementation of the CORBA
object may not scale. For example, load monitor resourcEault Tolerance service is DOORS [10, 29]. Since DOORS
such as memory, CPU, and network bandwidth, can starve iebelf is a CORBA service implemented using TAO integrating
jects or processes running on the same server. it with TAO’s load balancer should be straightforward.
To improve the scalability of the load balancing system, we . . ) )
plan to support a more scalable load monitoring granularifiProved quality of service support: As mentioned in
Rather than instantiating a load monitor for each object on thgction 4.0.4, itis hard to ensure that loads across replicas stay
server, a single load monitor could be associated with a gr&%anced evenly when the overall state of distributed systems
of objects that share a common load metric. For example, 88anges rapidly. For example, several new replicas may be
spite the fact that objects may implement different interfac@§lded to an object group dynamically, which cannot be pre-
all are load balanced based on CPU utilization. dicted by a load balancer. Likewise, a poorly designed load
We believe this design can significantly reduce the amol@/@ncing strategy cannot handle degenerate load balancing
of resources imposed by adding server load balancing suppgffiditions, such as unstable replica loads. .
i.e., load monitors for a large number of objects residing in the S0Me approaches that can be used to improve the effective-
same server. However, it also introduces some complexifi€$s of a given load balancing strategy are:
to the load monitor implementation. For example, suppose a , i .
load balancer detects a high load and issues a load advisofy Take into account pa.s'.[ load trends in an effort to antici-
to the shared load monitor. The load monitor must now decide Pat€ future load conditions.
which objects sharing that load monitor should shed their loads Take advantage of sophisticated algorithms based on con-
e.g, by forcing the client to contact the load balancer so thatit  trol theory that are designed specifically to restore system
can be re-bound to another replica. equilibrium when it is perturbed by external forces. In
Other problems can occur when multiple object groups re- the case of load balancing, external forces could be addi-
side on a single server. Load balancing decisions for one ob- tional client requests or transient loads generated by other
ject group may actually interfere with load balancing decisions applications running over the network and end-systems.
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