Editorial 6
Guest Editorial 8
Boris Magnusson

C++ 40

Understanding constructor initializers
in C++
Andrew Koenig

Modeling & Design 48
The evolution of bugs and systems
James Rumbaugh

Tools 53

Making inferences about objects
Paul Harmon

Smalltalk 56
Combining modal and nonmodal
components to build a picture viewer
Wilf LaLonde & John Pugh

Book Review 64
Eiffel, the Language
Reviewed by Steven C. Bilow

Advertiser Index 66

Career Opportunities 72
& Training Services

JOURNAL OF

OBJECT- ORIENTED

November/December 1991
Vol. 4, No. 7

Features

10

19

31

35

Contravariance for the rest of us
by Warren Harris

Contravariance is 2 phenomenon that occurs as an interaction between subtyping and higher-
order functions. It affects all object-oriented programming languages including C++ and is usually
circumvented by overloading. The author provides examples in C++ where overloading does not
have the desired effect, and discusses what a better — more expressive and typesafe — language

might look like.

Multilevel secure object-oriented data model —
issues on noncomposite objects, composite
objects, and versioning

by Bhavani Thuraisingham

While progress has been made in incorporating mulrilevel security into an object-oriented data
model, much still remains to be done. This article discusses the issues involved in supporting
noncomposite and composite objects and versioning, which have not yet been investigared in such
models, because these fearures are essential for data-intensive applications in hypermedia systems,
CAD/CAM, and knowledge-based systems.

Delegation in C++
by Ralph Johnson & Jonathan M. Zweig

Delegation is often viewed as a language feature thar replaces inheritance, when in fact it can be
viewed as a relationship between objects that can be implemented in any object-oriented language.
This article offers an example of this useful programming technique using C++.

Real-world reuse
by Mark Lorenz

Much of the focus of object-oriented (O-O) development today is on the class hierarchy and reuse
through inheritance. In reality, most of the classes in an application are drawn from various posi-
tions in the hierarchy and work together through collaboration. This author discusses O-O analysis
and design mechodologies and rools that he belicves will come into wider use as application devel-
opers focus more on this collaboration and less on the hicrarchy.

The Journal of Object-Oriented Programming (ISSN #0896-8438) is published nine rimes a year, monthly except for Mar/Apr, Jul/Aug, and Nov/Dec. Published by SIGS Publica-
tions, Inc., 588 Broadway, Suite 604, New York, New York 10012, (212)274-0640. Please direct advertising inquiries to this address. Secand class postage paid ac New York, New
Yorl, and additional mailing offices. POSTMASTER: Send address changes ta JOOP, P.O. Box 3000, Depr. OOP, Denville, NJ 07834. Inquiries and new subscription orders

should also be sent to that address.

© Copyright 1991 SIGS Publications, Inc. Al rights reserved. Reproduction of this marerial by electronic transmission, Xerox, or any other method will be created as a willful viola-
tion of the US Copyright law and is flatly prohibired. Material may be reproduced with express permission from the publisher.

Manuscripts under review should be typed double spaced (in rriplicare). Edirorial correspondence and Product News information should be sent to the Editor, Dr. Richard S.
Wiener, 2185 Broadmoor Road Circle, Colorado Springs, CO 80906, (719)520-1356.

Editorial

t was nice to meet with so many of our readers and writers at OOPSLA this past week

(October 7-11). I found OOPSLA to be an interesting and important conference.

The technical papers at the conference focused on expetiences with object orientation.

The industry now has some real experiences, both successes and failures. Some of
the more successful OOP book authors were on hand to discuss their recipes for O-O anal-
ysis, design, and programming, Representatives from the entire OOP industry were pre-
sent. It was evident to me that the move toward making object orientation a mainstream
activity is continuing. Of course, it is important to temper this observation by the fact
that whenever one is immersed in a sea of advocates of any technology it is easy to be-
lieve that the whole world has embraced the technology. In reality, this has not yet hap-
pened with object-oriented technology and may take several more years to occur. Many
computer science departments are still teaching their students structured analysis, design,
and programming techniques exclusively, Some schools have just started offering a few
elective courses on object orientation.

It was clear from the vendor area that most of the products exhibited featured C++ or
Smalltalk language development or software development tools. These two OOP lan-
guages have “won” the language wars in the commercial sector, at least for the time being.
Application frameworks and CASE tools for C++ were probably the most popular prod-
ucts on display. The major application ateas that are pushing OOP technology into the main-
stream are O-O database management and the development of graphical user interfaces.

We at JOOPwould like to report on experiences with object orientation and there-
fore plan to produce a special supplement dedicated to this subject in 1992. I would
like to solicit contributions now for this special supplement. Please follow the normal JOOP
guidelines for submission and mail your manuscripts to the editorial office. You are wel-
come to call me at the editorial office to discuss ideas for such contributions.

This issue contains four feature-length articles.

“Contravatiance for the Rest of Us” by Warren Hartis discusses a structural weakness
of C++ related to overloading. The article suggests areas of needed improvement for
C++.

“Multilevel Secure Object-Oriented Data Model: Issues on Noncomposite Objects,
Composite Objects, and Versioning” by Bhavani Thuraisingham examines the issues
related to maintaining multilevel security of dara in an object-oriented environment.

“Delegation in C++” by Ralph Johnson and Jonathan Zweig examines delegation as
a language feature that replaces inheritance. The article explotes how delegation may
be used in C++.

“Real-World Reuse” by Mark Lorenz looks at how application developers work with
and view their application classes and how this relates to analysis, design, and the hier-
archy of classes used for an application.

O LA U .

Richard S. Wiener

OBJECT-ORENTED
prosrammrt

EDITOR
Dr. Richard Wiener
L' . 'J a-f‘c' 7, y)), C 1

do Springs

SIGS PUBLICATIONS

EDITORIAL/ADVISORY BOARD
Thomas Atwood, Object Design
Grady Booch, Rational
George Bosworth, Digitalk
Brad). Cox, Information Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems
R. Jordan Kreindler, General Electric
Thomas Love, Conrultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Sesha Prawp, CenterLine Software, Inc.
P. Michael Seashols, Versent Object Tech.
Bjame Stroustrup, AT T Bell Labs
Dave Thomas, Object Teckmology International

JOOP ADVISORY BOARD
Daniel Fishman, Hewlett-Packard Labs
Stuart Greenfield, Marist College
Ivar Jacobson, Objective Systems
Boris Mag Lund University, Sweden
Lewis Pinson, Unsversity of Colorado
T Wﬂ.n.& Barl, A 1' ntey i I

COLUMNISTS
George Bosworth, Digitalk
Nickieben Bourbald, Lucid, Inc.
Panl Bucterworth, Servio Logic
Panl Harmon, Consultant
Jon Wyatt Hopkins, Palladio Sofiware
Andrew Koenig, ATSHT Bell Labs
Wilf Lalonde, Carleton University
John Pugh, Carleton University
James Rumbaugh, Genera! Electric
Tony Wasserman, [DE
C. Thomas Wu, Naval Postgraduate School
Erik Wiener, Product News Fditor

S1GS PUBLICATIONS, INC.

Richard P. Friedman
Founder & Group Publisher

ART/PRODUCTION
Elisa Varian, Managing Editor
Susan Culligan Creanive Director
Elizabeth A. Upp, Production Editor
Caren Polnex, Desktop Designer

CIRCULATION

Diane Bad ”C;' Lovinye Bosci e

Karhleen Canning, Fulfillment Manager
John Schreiber, Circulation Assistant

M,

MARKETING /ADVERTISING
James Kavetas, Advertising Director
Diane Morancie, Account Executive/Recruitment Saler
Geraldine Schafran, Advertising Sales Assistant

ADMINISTRATION
David Chatterpaul, Accounting
S Wouod Di Conference Manag
Jennifer Fischer, Awistant to the Publisher
Laura Lea Taylor, Administrative Assistant

Margherita R. Monck
General Manager

WSIGS

PUBLICATIONS

Publishers of Journal of Object-Oriented Programming,
Object Magazine, Hotline on Object-Oriented Program-
ming, The C++ Report, The Smalltalk Report, The Inter-
national OOP Directory, and The X Journal

JOOP NOVEMBER/DECEMBER 1991

w1 aworld Class Partner

KSC Guides Your
Development Team
to Effective

00 Solutions

ADVANCED TRAINING

MENTORING

TEAM REQUIREMENTS

JOINT DEVELOPMENT

ENVIRONMEN TS

00 ANALYSIS

00 DESIGN

SOLUTIONS

to guide you.

FRAMEWORKS

To build a first rate development team KSC teams with clients to address Hewlett-Packard
that delivers the maximum benefits of application areas such as: General Electric
object-oriented technology, you want Decision Support Systerns Bell Northern Research
only the most highly qualified experts e Manufacturing Information Systems Texas Instruments

¢ Manufacturing Process Modeling American Airlines
Knowledge Systems Corporation » Financial Transaction Management ~ Boeing Computer Services
offers a cohesive program of object * Financial Trading Systems Northern Telecom
technology training, services, and ¢ Simulation Environments Texaco

* Network Management NCR

products. Our unparalleled years of

¢ Custom GUIs
. SQL Acwss

le. KSC techiical xperts have helped.
' 4 -hmse:devdopmentteamsmd)

| to meet your company’s specific

i | development requirements.

KSC puts you in the forefront of
advanced software development.
We provide time-tested solutions

OO/Smalltalk training and

Knowledge Systems Corporation
Partners in Advanced Software Development

v

114 MacKenan Drive
Cary, NC 27511
(919) 481-4000

Circle 54 on Reader Service Card

New persistent data
based on hyper-objects

internal dj@a objects

data aker

Avoid spaghetti data
Code and debug 3-times faster
Design databases in hours

The only fully supported
persistent data library
Runs with both C and C++

* no run-lime or memory overhead
® generates high quality code
* improves maintenance and debugging

CtoC++
ill get you started

s allows data transf
* easy to use, one d

* on-line help, exte: manual, examples

* interactive data brjiilier

® works with debug and other tools

® accepts external ry management

® stores complete d binary or ASCII

* large royalty free ry: linked lists, trees,
graphs, general hi ies, dynamic

* mostly in source, s can add new

organizations and

Prices start at $295
Zortech), $1195
Sony, VAX, MIPS)
University price $7
Training, first class s¥pport, 24 hour hotline.

(Prices USS, plus taxes, handling & shipping)

persistent data

8 Circle 16 on Reader Service Card

Guest Editorial

Code reuse considered harmful

The advantages of object-oriented programming (OOP) do not come just by using

inheritance. As the first wave of enthusiasm passes by, I see an awareness of the im-

portance of applying some method to what classes and inheritance are used for.
This can be seen both in conference papers and in the quickly growing literature on O-O
methods.

The Scandinavian school of OOP can be characterized by its view on these matters.
The key word here is “modeling,” in short, that programs and class hierarchies should de-
scribe concepts and be understandable in the application domain. An implication of
this point is that subclassing should be used for modeling specialization of concepts in
the same way as Linnaeus used specialization as a method to describe the classification
of plants. The Scandinavian school thus has a very firm view on what subclassing and in-
heritance should be used for and is in contrast to at least two other points of view.

The “type” view concentrates on the signatures of operadons and classes, i.e., on pa-
rameter types and operation names. Two classes are compatible (have the same type) if they
implement operations having the same name and parameters. In the extreme, these types and
the relations between them could be calculated automatically. As an example, consider two
classes: class Rectangle with operations Move and Draw and class Cowboy with operations
Move, Draw, and Shoot. Considering only signatures would lead to the conclusion that
Cowboy is a subtype of Rectangle. From a modeling point of view, this is simply nonsense.
The effect seems related to the “structure equivalence” approach used in very early Pascal im-
plementations where integers representing numbers of apples and pears would be happily
added together in spite of the fact that they were declared as different types by the pro-
grammer. This problem was cured by introducing the notion of “name equivalence.”

A third point of view is to concentrate on code reuse an construct the class hierarchy
to minimize the code volume. I cannot refrain from comparing this with earlier ap-
proaches in the history of our science. In the microscopic scale, goto:s were once (a long
time ago) used to “reuse” fractions of code with well-known problems of “spaghetti
code” as the result. The note “Goto considered harmful” by Dijkstra marks the turning
point in the use of structured algorithmic constructs. Interestingly enough, this sometimes
leads to some repetition of similar code, which is generally accepted.

The same pattern can be seen in the use of procedures, originally only viewed as a means
for saving coding labour — any program fragment that would shorten the program (and
possibly reduce the binary code size) would qualify for being turned into a procedure. Sin-
gling out one contribution, I select the book Structured Programming by Dahl/Dijk-
stra/Hoare to represent the shift in attitude toward using procedures to model algorith-
mic abstractions. It was now acceptable to write procedures that were called only once.

Focusing on using inheritance for code reuse leads to the problems as desctibed above
for statements and procedures. “Spaghetti” inheritance with artificial relations between
classes makes them hard to understand and thus to use. Some inherited methods may not
be used and such conventions have to be understood and obeyed. In the view of the
Scandinavian school, the use of inheritance for code reuse is bad in the same sense as ex-
cessive use of goto:s and code-saving procedures. Here I also must point out that in-
heritance is not the only way to (re)use code. Aggregation and creation of separate ob-
jects to do the job often serve as good alternatives.

Although rarely spelled out in clear, the increasing interest in analysis and design has
resulted in a higher awareness of the importance of how class hierarchies are designed.
It is not surptising thar the Scandinavian school puts emphasis on modeling. The first gen-
eral-purpose object-oriented programming language, Simula 67, was developed in Nor-
way by Kristen Nygaard and Ole-Johan Dahl. The development of Simula was trig-
gered by the construction of simulation models where modeling of real world concepts
and behavior is explicit. Inheritance was thus developed to represent specialization of con-
cepts concepts — no wonder it is for that purpose it works best.

Boris Magnusson
Lund University

JOOP NOVEMBER/DECEMBER 1991

Contravariance for the rest of us

by Warren Harris

Sofiware and Systems Laboratory, Hewlett-Packard Laboratories, 1501 Page Mill Rd, Palo Alts, CA 94303

ECENT RESEARCH HAS DEMONSTRATED that sub-

typing and inheritance are distinct relationships

[Cook90]. Primarily, the difference arises because

of something called contravariance and its effects

on object-oriented programming. Contravariance
is a phenomenon that occurs as an interaction between subtyping
and higher-order functions and has important implications for
object-oriented programming, It affects all object-oriented pro-
gramming languages, including C++, and is usually circumvented
by overloading. However, overloading does not always have the de-
sired effect, which we will illustrate with actual C++ examples.
Finally, we will discuss what a better—more expressive and type
safe—language might look like.

WHAT IS CONTRAVARIANCE?

We all have an intuitive notion of what it means for one type to
be a subtype of another. We would expect that a value of a sub-
type can be used anywhere a value of a supertype is expected.
Values of a subtype, though, can potentially do more, i.e., support
a richer set of operations, than values of the supertype. The dif-
ference between the subtype and supertype reflects the increased
functionality of the values. In some sense, a subtype is more specific
than its supertypes. What does it mean to be more specific?

Let us approach this question intuitively. From an imple-
mentation standpoint, a data structure is more specific if it has all
the fields of its parent but adds additional fields. From an inter-
face standpoint, we would expect a data type to be more specific
if it has all the operations of its parent but adds additional oper-
ations. However, in object-oriented programming it is often nec-
essary not only to add new operations but also to restrict opera-
tions that are inherited. The question then arises: what does it
mean for one operation to be more specific than another?

For simplicity’s sake, we can think of the operations on objects
simply as functions (we will ignore the dispatching aspect of send-

ing a message temporarily). We can now ask what it means forone | ,

function to be more specific than another, The type of a function

is expressed in terms of the types of its arguments (if any) and
the type of its result. We can summarize the subtype relation-
ship between functions as:

The type of a function is a subtype of the type of another
function if (all else being the same) the result type is more
specific, or any of the argument types ate more general.!

Result types ate said to be covariant— they vary in the same
way as the function types. Result types must be more specific for
the function type to be more specific. Argument types are said
to be contravariant — they vary in the opposite way as the func-
tion type. Argument types must be more general for the func-
tion type to be more specific.

This seems counterintuitive. One would expect an operation
defined over employees to be more specific than one defined
over all people. The following example will illustrate why this is
not true.

EXAMPLE

The whole issue of contravariance comes into play when we ma-
nipulate functions from within programs. Functions that ma-
nipulate other functions are called higher order. Higher-order

- functions typically are passed to other functions as arguments

and 4pply the functional argument to some values.2

When a language involves subtyping, we become concerned
about higher-order functions being passed functions thar are sub-
types of the type required. We would like to check that a function’s
type is indeed a subtype of the requited type and thereby verify that
the program will not get runtime etrors from being passed and sub-
sequently invoking an inappropriate function.

This is a simple (contrived) example involving some subtypes

I 'This is also rrue of funcrions thar rerurn no values (void), in which case we sim-

ply ignore resuictions on the results, and in functions that return multiple val-
ues, in which case each of the results must be eicher the same or more specific.
igher-order functions may also obtain a function to apply by other means —
either as a piece of literal data or by retrieving one from an external data structure.

10

JOOP NOVEMBER/DECEMBER 1991

and a higher-order function. Let us define a “person” to have a
“name,” an “employee” to have a “salary” and inherit from per-
son (thereby also having a name), and a “manager” to have some-
one s/he “manages” (to keep it simple, we will make this a single
employee rather than a set) and also inherit from employee
(thereby also having a name and salary). We will use C++ classes
to specify some structural inheritance (i.e., all the fields from a su-
perclass will also be available in a sub-class):

class Person

{
public:
char* name;

I

class Employee : public Person

{
public:
int salary;
| H

class Manager : public Employee
{
public:
Employee* manages;

L

Now, suppose there exists a collection of functions over these
data types. To keep it simple, we will define a set of print func-
tions to print out various fields of the objects. Of course, we
could just as well use member functions (methods) but regular
funcrions will be sufficient to illustrate how contravariance works:

void print_name(Person* p)

{

cout << p->name;

K

void print_salary(Employee* e)
{

cout << e->salary;

L

void print_manages(Manager* m)

{

cout << m->manages->Tame;

)

Now let us define a higher-order function (a function that
takes another function as a parameter and applies it). The higher-
order function do-with-banner could take an operation applica-
ble to Employees (such as one of the print functions) and an in-
stance that was at least of type Employee. It would first print some
banner, then apply the function:

void do_with_banner(void (*action)(Employee*), Employee* employee)
{
print_banner();
(*action)(employee);
I

Suppose there is a single distinguished Employee instance called
employee_of_the_month:

Employee* employee_of_the_month;

A working example of this simple function is:

do_with_banner(print_salary, employee_of_the_month);

Now, one would suspect that the following piece of code
should signal a compile time etror:

do_with_banner(print_manages, employee_of_the_month);

because we have no way of knowing whether the employee of
the month will be a manager or not until runtime (with a specific
Employee instance).

Conversely, the following code should work just fine:

do_with_banner(print_name, employee_of_the_month);

because we know that employee_of_the_month will always at least
be an Employee and, therefore, will always have a name (inher-
ited from the Person class).3

From this example we can see that functions that are accept-
able as arguments to the higher-order function do_with_banner
must themselves take arguments of type Employee, or a more gen-
eral type. The arguments to print_name are more general than
the arguments to print_salary, therefore, the type of the print_name
function is more specific than the type of the print_salary func-
tion. The print_name funcrion can be used anywhere print_salary
can be used. In other words, to be used by do_with_banner, the
function must ¢ least be defined on Employees (i.e., take Employ-
ees or a more specific type as an argumnent). This is contravariance.

Ultimately, contravariance has ramifications for object-
oriented programming. We will examine this in the next section.

HOW IS CONTRAVARIANCE RELEVANT TO
OBJECT-ORIENTED PROGRAMMING?
Object-oriented programming’s message-passing paradigm
inberently involves higher-order functions. Even though the user
may not write higher-order functions directly, messages act as
higher-order functions that invoke individual methods accord-
ing to the particular object involved4 When objects are passed
as arguments or returned as values, their methods are actually
being passed around, too, just as with higher-order functions.
Let us look at the message dispatch process in detail. When an

3 C++, unfortunately, does nor allow this code to pass through the compiler even
though ix really should work. This is because it does not permit function sub-
typing at all. Functions must be of exactly the right type to be passed as
arguments.

4 Whether or not this method lookup is done ar runtime (as with C++ virtual
methods) or ar compile time (as with its regular methods), che higher-order
naure still exists. Contravariance still plays a crucial role in the type checking
of methods.

11

Contravariance for the rest of us

object is sent a message with some arguments, a method that will
handle the message is looked up. This method is associated with
the particular object and is usually fetched from a table that is
accessible from the object. The method is then applied to the ar-
guments and any result retumed from the method is also returned
from the message dispatcher to the caller. Therefore, sending a
message s calling a higher-order function.

Since arguments to a message ultimately become arguments to
the method and since the method is invoked from within the
(higher-order) message dispatcher, method arguments are subject
to contravariance.

Now, when we type check a method of a subclass that overrides
a method of a superclass with the same name we should observe
the contravariance rule. This way we can guarantee that the new
method will apply to everything that the overridden method ap-
plied to and, therefore, the subclass can be used anywhere the
superclass can be used. Basically:

A method of a subclass is more specific than the method it
overrides from a superclass if (all else being the same) its re-
sult type is more specific, or any of the argument types are
more general.

When all the methods of a subclass are equally specific or more
specific than the methods of a superclass, the interface of the sub-
class (the method names and their types) is said to contain the
interface of the superclass [Canni89a). When one interface con-
tains another, instances of that interface can be used wherever instances
of the other interface are required. This noton of containment is ex-
actly the same as the notion of subtyping.

This seems simple so far. However, in practice it is not always
the case that we want the interface of a subclass to contain the in-
terface of a superclass. What is important is to be able to inherit
some methods from the parent class and restrict other methods that
must be overridden to make the new class work. One case of this
restriction is when arguments to methods must be more specific
(be a subtype of the type of the corresponding argument in the par-
ent class) for the new implementation to work properly. Since
method arguments are contravariant, making them more specific
actually causes subclass interface not to contain the interface of the
parent class. In other words, inberitance is not subtyping, at least
In some cases.

Perhaps the most common occurrence of this phenomenon,
where inheriting does not produce subtyping, is when a method
must take an argument that is the same type as self (i.., the type
of this in C++)3 The following example will illustrate:

EXAMPLE

The following example illustrates what we might like to achieve
with some code that implements windows and presenters (win-
dows that display an associated object). For convenience, we will
write this code in C++ although C++ actually behaves a bic dif-

5 In C++, we are not allowed to say “che rype of this, however this may have been
inherited.” The language Eiffel does support this notion via “like Currenc.”

ferently. Later, we will describe this difference and what the pro-
grammer must do to get around it.

class Window

(
public:
virtual void insert(Window*);

IH
class Presenter : public Window

{
public:
virtual void insert(Presenter*);
virtual void layout();

The intention of this example is that Presenter’s insert method
override the method inherited from Window while at the same
time introducing an additional restriction: Presenters can only
have children added to them that are themnselves Presenters. One
might want to do this because insert will invoke another method
(like layout) on each of the inserted children.

A problem arises with this interpretation of the above code
in that the interface to Presenter no longer conzains the interface
to Window. This is because all Windows allow other Windows to be
inserted as children, whereas Presenters only allow other Presenters.
A Presenter cannot be passed to any arbitrary piece of cade that ex-
pects to receive a Window because it may try to add a child window
to it that is a Windows rather than a Presenter:

Window* add_a_child(window* w)
(
Window* child = new Window();
w->insert(child);
retum w;

|§

In some sense, the definition of Presenter has tken away the in-
sert operation inherited from Window. It is not really a subtype
anymotre because of this missing operation. It instead includes a
more specific operation (also called insert) that only applies to
other Presenters.

In acruality, C++ does not take away the inherited operation.
Instead, it overloads the name “insert” and allows both definitions
to exist simulraneously. Even though we read both methods as
insert, the compiler treats them as two separate methods. It is in
this way that C++ guarantees that subclasses satisfy the interface
of the parent.

There is a problem with overloading, however. Even though
the code will not get a runtime etror because a Window was inserted
as a child of a Presenter, what will happen is that the wrong method
will be invoked (the inherited insert method). From within
add_a_child the Window will indeed be inserted, but the layout
method will not be called. Such a maneuver can seriously violate
the intended semantics of the program.

12

JOOP NoOVEMBER/DECEMBER 1991

Are you trying to play Carnegie Hall

If you're developing a simple application,
you'll find that C++ is an adequate object-
oriented language. But if you're
working on a complicated appli-
cation, you'll need a development
' environment that can actually
. handle the job.

Allegro CL® with CLOS

Allegro Common LISP with CLOS
(the Common LISP Object System) automates
many of the tasks you'd have to do manually
with C++ Allegro CL with CLOS has its roots
in the original OOP languages. It has matured
over the years into a powerful development
environment for complex applications.

Allegro CL

withCLOS C+
Multiple Inheritance YES YES
Polymorphism YES YES
Encapsulation YES YES
Interactive YES NO
Incremental Compilation YES NO
Auto. Memory Management YES NO
Meta-level Facility YES NO
Method Combination YES NO
Dynamic Redefinition YES NO
Standard Class Library YES

...with a street corner 1nstrument?

We've also made a recent breakthrough in
delivery of LISP applications. Allegro Presto
is 2 new automatic function loading system
which reduces the runtime size of each
.. LISP application. Functions required
(9. = by the application are loaded
. \ . dynamically; the LISP image is then
- “frozen” for delivery.
Now you can get a fully-functional
OOP environment, the prototyping
power of LISP, and an elegant new way to
deliver your application. Of course, Allegro
CL tools work on all popular UNIX™ plat-
forms, from the 386™ to Cray computers.
True OQOP virtuosity can only be obtained
with the help of the best LISP instruments—
and the support of 2 company devoted to the
success of your application.

FrANzZ INC.

1995 University Avenue, Berkeley, CA 94704
TEL: 415-548-3600 FAX: 415-548-8253

& 1991 Franz inc. Allagro GL 1s a registered trademark of Franz Inc.
Urinis a trademark of AT&T 386 is a lrademark of Intel Corp.

Circle 8 on Reader Service Card

Contravariance for the rest of us

Sometimes it is the case that we really do want to override
a method and restrict its usage. In these cases, the new class
is not really a subtype of the parent.

In such cases, the compiler should not allow subclasses to be
used wherever the superclass is specified. In the above example, the
correctness of the program does in fact depend on Windows 7oz be-
ing inserted as children of Presenters.

WHAT DO C++ PROGRAMMERS REALLY DO?
There are five ways in which C++ programmers typically cir-
cumvent the problem of subclasses not being subtypes and over-
loading not performing what is actually desired:

1. Often in C++, we are unfortunately inclined to loosen type re-
strictions. In this case, we change the argument to Presenter’s
insert method so that the Presenter class becomes:

class Presenter : public Window

{
public:
virtual void insert(Window*);
virtual void layout();

H

The programmer must assume that at runtime insert will in-
deed be called with a Presenter rather than a Window. Then,
if Presenter operations are to be performed on the w pa-
rameter, “casts” must be used to short-circuit the type
checker. As a result, the type checker performs the role of
verifying that the programmer indeed declared what op-
erations s’he was interested in (via casts to classes that sup-
port those operations) rather than verifying that the entire
program hangs together as a consistent whole. This really
nullifies much of the benefit of type checking.6

2. A cleaner solution in this case would be to define a third class
from which Window and Presenter both inherit. This class, Sim-
pleWindow, could provide everything Window provided except
the insert method. Window and Presenter would then be dis-
joint classes, each with their own version of insert, and the
compiler would be able to detect that one is an unacceptable
data type to a routine that expected the other.

This solution is infeasible when we consider that classes like
Window are often contained in libraries and that it is not
possible to repartition its set of methods so that we could in-
herit some and overtide others. A completely usable and
type-correct library would have to consist of a large number
of classes each containing a single method. These classes
would then be combined together with mulriple inheri-

6 In fact, several large C++ applications have been forced into this style of coding
where all variables in the system are basically of the most general type (e.g., the
NIH Class Library of Smalltalk-like classes). The safety of such applications

leaves much to be desired.

tance to form the desired classes. This is highly impractical,
and defeats the primary benefit of object-oriented pro-
gramming — ease of programming through inheritance.

- Rather than trying to split the Window class into two portions

so that we can inherit from the part we need, we could in-
stead use private inheritance:

class Presenter : private Window

{
public:
virtual void insert(Presenter*);
virtual void layout();

Private inheritance allows the implementation of Window to
be used inside the implementation of Presenter, but does no
allow the Window methods to be available to clients of Presen-
ter. Effectively, this makes Presenter inherit from Window but
not be a subtype of it. This is exactly what we want in this
case—with one exception. Although clients of Presenter are
completely protected from inadvertently invoking Window’s
insert methods, the Presenter implementation itself is not. If in-
side one of Presenter’s methods the insert method is invoked,
the problem arises again. This is because Window’s insert
method is still privately available. Programs can thereby type
check but produce the wrong behavior at runtime.

. Another solution that is often used is the encoding of run-

time “type” information into objects. Routines like Presen-
ter’s insert would first check some sort of tag ficld within the
object before proceeding to assume the object actually is a Pre-
senter, even though the compile-time type information de-
clared the object to be only a Window. Such solutions not only
are time-consuming to implement and decrease the perfor-
mance of the running system but they also introduce the ques-
tion of how to recover from type errors at runtime.

. Perhaps the solution used most often is to further overload

methods to keep unwarranted methods from applying, In the
Presenter example, we would define yet another insert method:

class Presenter : public Window

(
public:
virtual void insert(Window*);
virtual void insert(Presenter*);
virtual void layout();

B

The first insert method, insert(Window*), would simply prevent
the Window class’s insert(Window*)from being used. This method
would either ignore the attempt to insert or signal some form
of runtime error. The second insert method, insert(Presenter*),
would actually implement the desired semantics.

14

JOOP NOVEMBER/DECEMRER 1991

This solution seems unsatisfying in that these dummy meth-
ods must be around at runtime simply because the compiler
could not catch at compile time the cases where they would be
invoked. A correct application should never call them. This so-
lution also has problems in that the choice of whether to use
the insert(Window*) method or the insert(Presenter*) is deter-
mined at compile time. This choice is based on the declared
type of arguments at the call sites of insert rather than the ac-
tual type of the arguments at runtime. Since C++ preserves
no type information at runtime, the programmer is forced
into one of the previously mentioned solutions.

‘WHAT ELSE CAN BE DONE?

Some of the problems with C++’s overloading mechanism stems
from the fact that only the object can be used to discriminate
methods at runtime (i.e., virtual methods). The types of all other
arguments are factored away at compile time when the overloaded
names are resolved. Single argument dispatch allows a simple
table to be used for the method lookup process.

The language CLOS [Bobro88] allows any number of argu-
ments to be used in the runtime method lookup process and
terms these multimethods. Multimethods also eliminate the prob-
lem with contravariance (i.e., that subclasses may not be sub-
types) because, like C++, they ovetload message names. Multi-
methods defer the entire lookup process until runtime, not just the
lookup associated with the “first” argument, and therefore permit
many cotrect method invocations that C++ would reject.

Although multimethods are more general, they carry along with
them all the same problems with overloading found in C++. Basi-
cally, if a more general method is not found that corresponds to the
types of the actual parameters (obeying contravariance), a method
from a superclass that is not a supertype may be used instead. As we
have already seen, in most cases this method will not be able to
preserve the intended semantics of an application and, in general,
is always the incorrect method to call. However, rather than im-
mediately generating a “no applicable method” error, subsequent
errors will arise that are much removed from the acual problem (e.g,,
sending a Window a layout message rather than disallowing the call
to insert a Window into a Presenter in the first place).

With each CLOS method invocation, there must always be
some method in the system with every formal parameter at least
as general as each actual parameter in the invocation. Without a
type checker, it is possible to have some actual parameters be
more specific while others are too general and consequently no
method will be found at runtime. Programmers are left to visu-
alize the crossproduct of all possible parameter types, both to en-
sure that some method will exist and to determine exactly which
method will apply in a given situation. The simple conceptual
model of inheriting methods from a class lattice can no longer

be used.

CALL FOR PAPERS

Technical papers are being solicited for two Focus On special
publications from the Journal of Object-Oriented Programming,
to be published in 1992.

Papers will be expert-reviewed and judged on their technical
merit, accuracy, and potential interest to our readership.

Papers should be sent in triplicate and should be under
4,500 words. Include a separate cover sheet including the
paper’s title, author, affiliation, address, phone, and 100-
word abstract.

N JOOP Focus On OODBMS:

PAPERS DUE ACCEPTANCE PUBLISHED
NOTIFICATION
3/20/92 4/2192 5/92

POSSIBLE TOPICS: Integration issues
Case studies
O-O vs. relational DBMSs
SQL issues

JOOP Focus On Applications

PAPERS DUE ACCEPTANCE PUBLISHED
NOTIFICATION
6/17/92 8/1/92 9/92

POSSIBLE TOPICS: Small vs. large projects
Cost/benefit analysis
Reuse statistics
Project management experiences
Training issues
Lessons learned by implementation

SUBMIT PAPERS TO: Dr. Richard Wiener, Editor
joor
2185 Broadmoor Road Circle
Colorado Springs, CO 80907
phone/fax: 719-520-1356

15

Contravariance for the rest of us

WHY HAS CONTRAVARIANCE NOT BEEN A
PROBLEM BEFORE?

For one thing, contravariance only arises when subtyping is in-
volved. Since languages like C do not have subtypes (i.c., the ar-
rangement of types into a generalization/specialization hierar-
chy), contravariance does not come up as a problem.Languages like
Smalltalk [Goldb83] and CLOS do indeed exhibit contravariant
behavior but types are not checked statistically. At runtime, it is
possible to get a type error because the wrong type of function was
passed as an argument. This may not seem to happen in most
working programs, but it is not possible to guarantee that it will
not happen in general without, essentially, type checking. Some-
times certain bugs are not encountered for months or years, simply

because the right combination of data has not been encountered

that would cause a certain portion of code or method body to
be executed. When the faulty code is finally execured, a type error
that could have been caught statistically finally occurs. Also, as a
program becomes larger it becomes increasingly difficult to ensure
that portions of it (possibly written by different programmers)
will work together reliably.

WHAT CAN BE DONE TO MAKE PROGRAMMING
TYPE SAFE?

Research underway at Hewlett-Packard is striving to make ob-

ject-oriented programming type safe without being too restrictive
as are C++ and Simula. In other words, we want to guarantee
that a pice of code will not break at runtime because it was handed
a piece of data of the wrong type. To do this, we are careful to
make a distinction between classes (which specify implementa-
tons) and #ypes (which specify interfaces). By observing the rules

of contravariance (and a few other), we can statistically deter-

mine when a class is an acceptable implementation for a piece of !

code that expects a certain type.

Checking that certain pieces of code are type safe is only half
the problem, though. We also desire that the language be ex-
pressive enough to concisely encode the problem we are trying to
solve. This includes allowing generic code to be stored in libraries
and reused. This is accomplished in two ways. The first is by al-
lowing implementation (class) inheritance to be independent
from interface inheritance (subtyping). The second is through

property of parametric polymorphism. Parametric polymorphism

is the ability to parameterize a piece of code over the types that it
can potentially handle. In some sense, it establishes constraints be-
‘tween the types in a piece of code. Parametric polymorphism can
further be broken down into simple (unquantified) parametric
polymorphism, bounded gquantification, and fbounded
quantification. We will examine each of these features in turn.

Let us reconsider the Window and Presenter types to show how

we can sepatate the subtype and subclass nations:

interface Window
{
methads;
insert(Self) returns Void

15
interface Presenter

(
inherits: Window
methods:
layout() returns Void

L

These interface definitions define the operations available on
the rypes Window and Presenter respectively. Window defines an in-
sert operation (method) that takes another Window as a parameter
and returns nothing. Self indicates that the same type as this in-
terface is required. If the Window intetface is inherited, the type Self
will change to reflect the inheritance. In the case of Presenter, in-
sert will be available but will require another Presenter as an
argument.

At first, the dissention between this and C++ may seem nom-
inal but it allows the type checker to ensure that both the call to
insert one Window into another and to insert one Presenter to an-
other will succeed, whereas attempting to mix the two types will
be caught at compile time. This is because of the contravariant use
of Self in a method signature.

Moreover, the type checker will catch an inadvertent mixing
of the two types even if a Presenter class (a specific implementation
of the Presenter interface) inherits most of the code from a Window
class. The type checker can also determine that the programmer
will have to supply a new insert method for Presenters because of
the contravariant use of Self.

Here is what some working examples of insert might look like:

w1 : Window = make_Simple_Window(...);
w2 : Window = make_Bordered_Window(...);

wl.insert(w2);

p1 : Presenter = make_Column_Presenter(...);
P2 : Presenter = make_Graph_Presenter(graphi, ...);

pl.insert(p2);

As previously mentioned, parametric polymorphism can be
used to parameterize a piece of code over the types that it can
potentially handle. Using parametric polymorphism, we can
rewrite the do_with_banner function as:

function do_with_banner[T : TYPE](fn : T -> Void, arg : T) returns Void
{

print_banner();

tn(arg);

L

This polymorphic function establishes a constraint that the
type of the parameter to the fn argument must be the same as
the type of arg. The square brackets specify the type parameter T,
which is evaluated at compile time. We could use this function as
follows:

16

JOOP NOVEMBER/DECEMBER 1991

The award-winning, easy-to-use TurboCASE was selected
by Computer Language magazine for a 1990 Productivity
Award. “With these awards, Computer Language is publicly
acknowledging thase tools that had significant impact on
improving the way software products are developed.”

Regina Ridley, Computer Language

TurboCASE supports Object Oriented Analysis by adding
behavior modeling to the entity relationship diagram.
TurboCASE supports Object Oriented Design with four new
diagram types: Class Hierarchy, Class Collaboration, Class

Class Definitlan
CLASS NAME graphic-ob)
SUPERCLASSES drawing-ob)
SUBCLASSES line-obj reclangte-ubj, Lrign

FURPOSE Iwhat/why)

FROPERTIES

ABSTRACT? (YES].
RESPONSIB:LIT:ES
manipalatior {rac1ze, mave;

dsplay (draw, prinL}
HETHCDE
reSize
draw [AESTRACT]
ornt [ABSTRACT]
mave
INSTANCE_\AR
localior

s12e i
ITHERS \

T -0

Definition, and Class Design diagrams. As always, the Far the Macintash

dictionary information is never out of sync with the diagram

. . . Find out more!

mforrn:tu:n, and rules checking keeps your models Call for (nformation, or to order
consistent. Demo diskette $15

TurboCASE lets you choose the methodology most StructSoft, Inc.

appropriate to your project and development team, with full 9476 156th Avenue SE
support for structuredsdaghaiaues too. Here is a prexi

Circle 13 on Reader Service Card

Contravariance for the rest of us

do_with_banner[Employee] (print_name, employee_of_the_month);

or, if we knew that in a certain section of code
employee_of_the_month was bound to a Manager:”

do_with_banner[Manager](print_manages, employee_of_the_month);

However, when writing reusable routines it is often neces-
sary not only to specify that two arguments must be the same type
but also to specify that that type must support 4z leasza certain
interface. This is because we know that the argument will be
used in a certain way such as being sent a specific message. The
object had better be able to support that message. This can be
done by what we call bounded quantification. Bounded
quantification is just a way of saying that an object must be at least
a certain type. For example:

function add_a_child[Win : CONTAINS[Window]](w : Win) returns Win

(
child : Window = make_Window();
w.insert(child);
return w;

|

Here, CONTAINS[Window] specifies that the type variable Win
must be at least as specific as the type Window. We may now call
add_a_child to add a child window to any Window or subtype of
Window that contains the Window interface:

w1 : Window = make_Window();
add_a_child[Window] (w1);

w2 : Bordered_Window = make_Bordered_Window();
add_a_child[Bordered_Window](w2);

where the Bordered_Window interface contains the Window inter-
face. We could not, however, write:

P1 : Presenter = make_Presenter();
add_a_child[Presenter](p1);

because, as we have seen in the previous section, Presenter does not
contain the Window interface because its insert method requires an
argument that is too specific.

Interestingly, because of polymorphism this new definition
of add_a_child knows that the result of calling add_a_child will
be the same type as its argument. The C++ definition will only
know that the result is a Window*.

Sometimes, however, it is desirable to write functions that op-
erate over not only all interfaces that contain a given interface, but
also over all interfaces that are recursive in the same way, i.e.,
that inherit one another. In other words, these functions can op-

7 It is possible that the explicit type application (e.g., to Employee or Manager) at the
call site can be eliminated. This is because in most cases it can be inferred from
the arguments given that we know the function’s signarure.

erate on a class and its subclasses, rather than over a type and its
subtypes. For this, we use what we call fbounded quantification
[Canni89b]. F-bounded quantification specifies that any imple-
mentation that was derived from a parent is an acceptable type for
a funcrion:

function foo[Win : INHERITS[Windo]](w1 : Win, w2 : Win) returns Void
(
w1. insert (w2);

k

This function, foo, type checks because wi and w2 will always
have compatible implementations. INHERITS[Window] guarantees
that both variables will either be Windows or Presenters but not
one of each:

foo[Window] (some_window, another_window);
foo[Presenter](some_presenter, another_presenter);

CONCLUSIONS

This article has shown how contravariance affects object-oriented
programming. We have seen that contravariance only comes into
play when subtypes and higher-order functions are involved but
that these are the exact conditions under which all object-ori-
ented programming languages must operate. We have seen how
overloading can be used to alleviate the problems associated with
contravariance, but that it carries its own problems. Finally, it
has been suggested what a better programming language might
look like, one in which parametric polymorphism and the sepa-
ration of implementations and interfaces plays a crucial role.
These ideas can be used to make object-otiented programming
both safer and more expressive. B

REFERENCES

[Bobro88] Bobrow, D., L. DeMitchiel, R. Gabriel, S. Keene, G. Kiczales, and D.
Moon. Common Lisp object system specification, SIGPLAN Notices, Spe-
cial Issue, Seprember 1988,

[Canni89a] Canning, P., W. Cook, W. Hill, and W. Olthoff. Interfaces for
strongly-typed object-oriented programming, OOPSLA ‘89 Proceedings, 1989,
pp. 457—467.

[Canni89b] Canning, P., W. Cook, W. Hill, J. Mitchell, and W. Olchoff. F-
bounded quancification for object-oriented programming, Proceedings of the
Conference on Functional Programming Languages and Computer Architecture,
1989, pp. 273-280.

[Cook90] Cook, W., W. Hill, and P. Canning. Inheritance is not subtyping,
POPL "90 Proceedings, 1990, pp. 125-135.

[Goldb83] Goldberg, A. and D. Robson. Smalltalk-80: the Language and Its Fm-
plementation, Addison-Wesley, Reading MA, 1983.

18

JOOP NOVEMBER/DECEMBER 1991

Multilevel secure object-oriented data
model — issues on noncomposite
objects, composite objects,
and versioning

by Bhavani Thuraisingham

The MITRE Corporation, Burlington Road, Bedford, MA 01730

I. INTRODUCTION

Object-oriented systems are gaining increasing popularity due to
their inherent ability to represent conceptual entities as objects,
which is similar to the way humans view the world. This power
of representation has led to the development of new generation ap-
plications such as computer-aided design/computer-aided mod-
eling (CAD/CAM), multimedia information processing, artificial
intelligence, and process control systems. However, the increas-
ing popularity of object-oriented database management systems
should not obscure the need to maintain security of operation.
That is, it is important that such systems operate securely to over-
come any malicious corruption of data as well as to prohibit unau-
thorized access to and use of dlassified data. For many applications,
it is also important to provide multilevel security. Consequently,
multilevel database management systems are needed to ensure
that users cleared to different security levels access and share a
database with data at different security levels in such a way that
they obtain only the data classified at or below their level.

In a recent article in this joutnal [Thura90a], we discussed the
multilevel security issues of an object-oriented database system
and described a simple multilevel object-oriented data model. Like
this model, most secure object-oriented data models developed
since then (see, for example, [Keefe89, Thura89, Mille90]) have
considered only the simple attributes of an object. For example, the
title, author, publisher, and date of publication are simple at-
tributes of a book. Such attributes can also be easily represented by
a relational model. In contrast, the book cover, preface, intro-
duction, various chapters, and references form the components
of a book and cannot be treated as simple attributes of an object.
The book, consisting of these components, has to be collectively
treated instead as a composite object. This was addressed by Kim et
al. [Kim87, Kim88] in a nonmultilevel secure environment. Com-
posite objects involve the IS-PART-OF relationship-between ob-
jects. This relationship is based on the notion that an object #s
part of another object. Note that it is not possible to treat composite
objects using a relational model without placing a tremendous

burden on the application program to maintain the soructure of the
complex structures, thus conferring upon the object model an-
other advantage over the relational model.

Hypermedia systems, CAD/CAM systems, and knowledge-
based systems are inherently more complex by their very nature
and, therefore, can be handled effectively only if their compo-
nents are treated using composite objects. For example, in
hypermedia systems each document is a collection of text, graph-
ics, images, and voice and needs to be treated as a composite ob-
ject. In a CAD/CAM system, the design of a vehicle consists of de-
signs of its components such as chassis, body, trunk, engine, and
doors. Knowledge-based systems are being applied to a wide va-
riety of applications in medicine, law, engineering, manufactur-
ing, process control, library information systems, and education.
These applications need to process complex structures. There-
fore, support for composite objects in knowledge-based applica-
tions is essential.

In many object-oriented applicarions, such as Hypermedia
systems and CAD/CAM, it is necessary to maintain documents
and designs that evolve over time. In addition, alternate designs
of an entity should also be represented because of the need for
choice. If security has to be provided for these applications, then
some form of version management should be supported by se-
cure database systems. Another advantage to providing version
management In secure applications is the uniform treatment of
polyinstantiation and versioning. Note that for many secure ap-
plications it may be necessary to suppott polyinstanciation where
users at different security levels have different views of the same
entity. Polyinstantiation can be regarded as a type of versioning
that cuts across security levels. Therefore, design of the vetsion
management component of an object-oriented data model can
also be extended to include polyinstantiation.

In this article, we will continue with our investigation on mul-
tilevel security in object-oriented database systems and explore
the issues on noncomposite objects, composite objects, and ver-
sioning. The organization of this paper is as follows: In Section 2

19

Multilevel secure O-O data model

we discuss the issues involved in supporting noncomposite objects |
in a multilevel environment. Issues on composite objects are de-
sctibed in Section 3. Version management is discussed in Sec-
tion 4. The paper is concluded in Section 5.

We assume that the reader is familiar with concepts in object-
oriented database systems. For a discussion on object-oriented
data model concepts such as noncomposite objects, composite
objects, complex objects, IS-A hierarchy, and IS-PART-OF hi-
erarchy, we refer to the ORION data model described in [Baner87,
Kim87]. We also assume that the reader is familiar with concepts
in multilevel secure database management systems (MLS/DBMS).
In an MLS/DBMS, users cleared at different security levels access
and share a database consisting of data at different security levels.
The security levels may be assigned to the data depending on
content, context, aggregation and time. It is generally assurned that
the set of security levels form a partially ordered lartice with Un-
classified < Confidential < Secret < Top Secret. An effective security
policy for an MLS/DBMS should ensure that users only acquire
the information at or below their level. An overview of multi-
level database management systems was given in [Thura90a]. A
useful starting point for concepts in multilevel database man-
agement systems is the Air Force Summer Study Report [AirFo83].

2. NONCOMPOSITE OBJECTS IN MULTILEVEL
DATABASES

Various approaches can be taken to handle noncomposite ob-
jects, which are objects with no composite instance variables. In
this section, we discuss the various issues involved in handling
the noncomposite instance variables of the model at the concep-
tual level. In Section 2.1, we discuss the basic assumprions of the

model and in Section 2.2 we describe how noncomposite variables
may be handled.

2.1 BASIC ASSUMPTIONS OF THE MODEL

The entities of classification in an object-oriented data model are
the objects. That is, the instances, instance variables, methods,
and classes are assigned security levels. The properties C1 to C4
discussed below are the basic security properties that are enforced:

C1. If 0 is an object (either an object-instance, class, instance
variable, or method) then there is a security level Z such that
Level(o) = L.

C2. All basic objects (example, integer, string, boolean, real, etc.)
are classified at system low.

C3. The secutity levels of the instances of a class dominate the se-
curity level of the class.

This property is meaningful because it makes no sense to clas-
sify a document at the Secret level while the document class that
describes the structure of a document is at the Top Secret level.
On the other hand, a Secret document class could have Secret
and Top Secret document instances:

C4. The security level of a subclass must dominate the security
level of its superclass.

This property is meaningful as it does not make sense to clas-
sify all documents as Secret and an English document to be Un-
classified.

We assume thar the following security policy is enforced—
subjects (e.g., processes) and objects (e.g., classes, instances,
instance variables, methods, composite links, etc.) are assigned
security levels:

1. A subject has read access to an object if the subject’s security
level dominates that of the object.

2. A subject has write access to an object if the subject’s secu-
rity is equal to that of the object.

3. A subject can execute a method if the subject’s security level
dominates the security level of the method and that of the ob-
ject with which the method is associated.

4. A method execures at the level of the subject who initiated
the execution.

5. During the execution of a method 1, if another method m2
has to be executed then m2 can execute only if the execution
level of m1 dominates the level of 72 and the object with
which m2 is associated.

6. Reading and writing objects during method execution are
governed by the properties 1. and 2.

2.2 NONCOMPOSITE INSTANCE VARIABLES
In this section, we describe some of the alternare security properties
that may be enforced on the noncomposite instance variables
(composite instance variables are discussed in Section 5). A sim-
ilar argument can also be applied to handling methods. How-
ever, in this article we focus on structural aspects of an object-
otiented data model, only, and not on the operational aspects.
Therefore, we do not discuss methods in this article. Also, note that
any reference to instance variables in this section implies non-
composite instance variables.

Two ways to assigh security levels to instance variables are as
follows:

CS5. The security level of an instance variable of a class is equal to
the security level of the class.

C5*. The security level of an instance variable of a class dominates
the security level of the class.

If C5 is enforced, then it is assumed that the objects are single
level. This is the assumption made in [Thura89a, Mille90] among
others. If C5* is enforced, then it is assumed that an object is mul-
tlevel. This is the assumption made in [Keefe89], among others.
Note thar we consider an object to be multilevel if its properties are
classified at different security levels. We discuss each approach in
the following two subsections. It should be noted that our main fo-
cus is on the representation of the real world entities ac the con-

20

JOOP NOVEMBER/DECEMBER 1991

You’ll get everything that
you get from any other
OOP language...

And that's not all:

SIMULA handles processes with preemptive scheduling, a garbage collector
automatically reclaims unused memory space and maybe best of all — your
applications are portable due to the standardization of SIMULA.

SIMULA, the original OOP languge, has proven its strength in industrial, commercial,
and scientific applications for more than 20 years. This guarantees the quality, stability,
and usability of the language. SIMULA introduced all the important OOP concepts:
classes and objects, inheritance, and dynamic binding.

The LUND SIMULA system
Lund Software House AB in Sweden has developed a SIMULA system that is a set of
high—quality software tools for development of Simula programs.

Conforms to latest SIMULA standard
Efficient compiler

C, Fortran, Pascal, and Assembler call interface
Symbolic Source level Debugger

SIMULA
LUND SIMULA is available on: - the OOP language

When you use SIMULA
* SUN-4/SPARC you will get a language that has:

e SUN-3

e VAX VMS/Unix/Ultrix . S_trong typing .

¢ Macintosh under MPW .st:tl;:l:;:iitgween dynamic and

* Apollo DN3000 * Full standardization - portable applicatlons
e ATARI-ST

* Information hiding through attribute protection
« Sequential and direct-access files
* Processes with non-preemptive scheduling
¢ Garbage collection
* Separate compilation with compile-time checking
*» Extensive simulation facilities

Lunp SorTwaRE HouUsE AB

Box 7056 Phone: int—46-46-13 40 60
S§-220 07 LUND Fax: int—46-—46-13 10 21
Sweden Email: boris@dna.lth.se

Circle 28 on Reader Servica Card

Multilevel secure O-O data model

ceptual level. Therefore, we do not address the issues involved in
the physical representation of the real world entities.

2.2.1 Single-level objects
If security property C5 is enforced, then the objects are assigned
a single level. That is, instance variables have the same security level
as that of the class with which they are associated. Therefore, if a
document class is Unclassified, then its instance variables, say,
title, author, publisher, and publication date are also Unclassified.
Suppose a document also has a sponsor who funded its produc-
tion and the fact that there is such a sponsor must be kept Se-
cret. This means that the document has an additional instance vari-
able that should be Secret. However, the security property C5
will not permit such an instance variable to be associated with a
document. There are two solutions for this scenario. One is to cre-
are a different document class at the Secret level that has title,
author, publisher, publication date, and sponsor as its instance vari-
ables (Fig. 1(a); note that the Secret structures are darkened).
Note that for every document instance of the Unclassified class
there will be a document instance of the Secret document class.
Both instances will have the same values for the attribuces title,
author, publisher, and publication date. The instances of the
Secret document class will have the additional artribute of sponsor.
The second solution is to create a Secret subclass of the Un-
classified document class (Fig. 1(b)). The Secret subclass inherits
all the instance variables of document. It has sponsor as an addi-
tional instance variable. Note that for evety document instance of
the Unclassified superclass there will be a document instance of
the Secret subclass. Both instances will have the same values for
the attributes title, author, publisher, and publication date. The
instance of the subclass will have the additional artribute sponsor.
The instance variables of an object can be regarded as links
emanating from the object. The values pointed to by the links
are also objects. Although the instance variables of a class have
the same security level as that of the class, it does not necessarily
mean that an instance variable of an instance of a class must have
the same security level as that of the class. This is because prop-
erty C3 assumes that the security level of an instance dominates
the security level of the class. Therefore, if the class is Unclassified
and its instance is Secret, then the instance variables associated with
this instance must also be Secret. Note also that it does not make
sense to classify an instance variable of this instance at a Top
Secrec level because a Secret user knows that there is such an in-
stance variable. Note also that the level of the object pointed to by

. @ ke
title Tt X o
u uDOC S$DOC e
e e Chssierres Jommm PUlitRCr
icati - I ication o
publication date |;||4m||;“rum. e
(b)
2B —{unoc Class
mhlh&r?lnilﬁ'g' =] Unclassified
sponsor SDOC Subclaxs
Seent

Figure 1. Class/instance variable classifications.

(a). Simple instance variable.

Listof

(b) Complex instance variable.

Figure 2. Relationship between instance variables and their values.

the instance variable link (i.e., the value of the instance variable)
must be dominated by the level of the link. Therefore, we have the

following security properties on instance variables of objects:

C6,. The level of the instance variable of an object must be the
same as that of the object.

C6;. The level of the value of an instance variable must be dom-
inated by the level of the instance variable.

C6;. If the instance vatiable ¢ of an object is a complex instance
variable, the security level of cis L, and if 01, 02, . . . on are the
objects that form the value of the instance variable ¢, then the
security levels of 01, 02,on, are dominated by Z.

Figure 2(a) illustrates two instances of an Unclassified docu-
ment class. Note that the Secret document’s title and author in-
stance variable values are Secret. The remaining values are Un-
classified. Figure 2(b) shows how complex instance variables may
be modeled.

Next let us examine how polyinstantiation could be handled
(note that by polyinstantiation we mean users at different levels
having different views of the same entity—for a discussion on
polyinstantiation in relational systems we refer to [Stach90]).
Consider the Unclassified document shown in Figure 3(a). This
document is Unclassified. It has instance variables title, author,
publisher, and publication date. The publisher instance variable
link points to NIL because it assumes that an Unclassified user does
not know the publisher's name. Let us assume that a Secret user
knows of the publisher. Also, the Secret subjects know that the real
author of the document is James and not John. There are two
ways to handle polyinstantiation. In the first approach, a new Se-
cret document instance is created with attributes as shown in Fig-
ure 3(b). Note that in addition to the attributes specified, an
attribute such as document-ID will also be necessary to relate the
two objects. In the second approach, the polyinstantiated values
are attached to the Unclassified document instance as shown in
Figure 3(c).

One of the advantages of enforcing the security property C5
is that single-level objects can be mapped into single-level seg-

22

JOOP NOVEMBER/DECEMBER 1991

Figure 3. Polyinstantiated objects.

ments or files in a straightforward manner. As a result, traditional
security policies (such as the Bell and LaPadula security policy
[Bell75]) can be used to control access to the single-level objects.
This way, systerms with higher levels of assurance can be developed
(for a discussion on assurance we refer to [Trust85]). A disad-
vantage with this approach is that the conceptual representation
may not model the real world accurately. This is because in the real
world multilevel objects do exist. That is, there could be indi-
viduals whose properties are classified at different security levels.
A user’s view of the database should usually model the real world
closely.

2.2.2 Multilevel objects

If we enforce the security property C5* instead of C5, then the ob-
jects could be multilevel. That is, the instance variables of the ob-
ject could have different security levels. Note that in this approach
the security level of the instance variables of a class could dominate
the security level of the class. Therefore, the document shown in
Figure 3 could be represented by the structure in Figure 4.

The instances of UDOC could be multilevel objects. For ex-
ample, for each Unclassified document instance the instance vari-
ables title, author, publisher, and publication date are Unclassified.
The instance variable sponsor is Secret. Also, the security level
of the value of an instance variable must dominate the security level
of the instance variable. That is, the following security properties
are enforced:

C6*1. The level of the instance variable of an object dominates
the level of the object.

C6*2, The level of the value of an instance variable must be
dominated by the level of the instance variable.

C63. If the instance variable ¢ of an object is a complex instance

title

UDOC Class [~ authawr
Unclassified publisher
—— publication Jaje
Sponsor

Figure 4. Multilevel instance variables.

Inslance
(Unclassified)

Figure 5. Unclassified and Secret document instances.

variable, the security level of cis L, and if 01, 02, ... on are
the objects that form the value of the instance variable ¢,
then the security levels of 01, 62, ... on, are dominated by L

Figure 5 illustrates Unclassified and Secret documents that
belong to the Unclassified document class of Figure 4. Note that
by an Unclassified document we mean that the structure that
represents the document is Unclassified. It could, however, have
Secret components. Polyinstantiation could be handled either by
creating a new object at a different security level or by polyin-
stantiating the value of an instance variable (see the discussion
associated with Fig. 3).

An advantage of enforcing the security property C5* is that it
models the real world closely. A disadvantage is thar multilevel ob-
jects may have to be decomposed into single-level objects that
could then be stored in single-level segments or files to provide
higher levels of assurance. With such a decomposition, the per-
formance advantages of storing related objects in clusters could be
lost. The issues involved in providing petformance as well as as-
surance need to be investigated further.

3.COMPOSITE OBJECTS IN MULTILEVEL
DATABASES

In this section, we discuss the various issues involved in sup-
porting composite objects in a multilevel environment. In Sec-
tion 3.1, the security properties of composite objects are dis-
cussed. Representations of composite objects are discussed in
Section 3.2. In Section 3.3, some theoretical properties of com-
posite objects are discussed. Composite links connecting a com-
posite object to its components are described in Section 3.3. In
particular, the grouping of composite links and its formal se-
mantics are desctibed.

3.1 SECURITY PROPERTIES OF COMPOSITE INSTANCE
VARIABLES

A composite object has a composite instance variable. Like non-
composite instance variables, composite instance variables are
also assigned security levels. Also, there are two ways to assign
security levels to composite instance variables. They are:

C7. The security level of the composite instance variable is the se-
curity level of the class with which it is associated.

23

Multilevel secure O-O data model

(il title
author unoc - .gl ;e . ;::‘I‘l:’:llrr
) pyhlli;her == ClussUnclassiFied assdecrel ublication dake
e ———{ Comy
Composite Variable
)
litle
author UDOC Clasy
publishey | Unclaxsificd
lication date
Component gl SDOC Subelass]
Composile Variable Secret

Figure 6. Composite instance variable — approach 1.

Titke
—— awhor
UDOC Clays i
i ’__ publisher
Unclassified " publication datc
o g ite istanee

Variable

Figure 7. Composite instance variable — approach 2.

. C7*. The security level of a composite instance variable dominates
the security level of the class with which it is associated.!

Figure 6 illustrates an example of security property C7 being
enforced. Here, the composite instance variable (which describes
the components of an object) of a class is assumed to be Secrer. The
noncomposite instance variables are Unclassified. The solution is
to create an Unclassified class with the noncomposite instance
variables and either create a new Secret class with the noncomposite
as well as the composite instance variables (Fig. 6(a)) or create a
new Sectet subclass of the Unclassified class with the composite
instance variable (Fig. 6(b)). Note that for every instance of the
Unclassified class there is an instance of the Secret class. The
Secret instance has the same values for the noncomposite instance
variables of the Unclassified instance. In addition, the Secret in-
stance will'have a value for the composite instance variable.

Figure 7 illustrates the same example in which the security
property C7* is enforced. That is, only one Unclassified class is cre-
ated. Its composite instance variable is classified at the Secret
level. The noncomposite instance variables are Unclassified. Note
that for each Unclassified instance of this class the noncomposite
instance variables are Unclassified. The composite instance vari-
able is Secret. For a Secret instance of this class, all instance vari-
ables (noncomposite and composite) are Secret.

3.2 REPRESENTATION OF COMPOSITE OBJECTS

3.2.1 Alrernatives

In this section, we discuss the alternative representations of com-
posite objects. These representations are not affected by the security
property enforced on the composite instance variables (i.e., ei-
ther C7 or C7*). However, the following security propetty, which
describes the relationship between the composite instance variable
and the composire links, is enforced:

C8. The security level of a composite instance variable of an ob-
ject is dominated by the security level of the composite links

Sectivn | Sectign 2 Section §

Figure 8(a). Multilevel composite object.

Seaion 2 Section 3 Section 4 Section §

Scction 1

Figure 8(b). Multilevel compasite object—alternate notation.

(or references) from the compeosite instance variable to one of
the components of the composite object.

For example, the composite document instance shown in Fig-
ure 8(a) is Unclassified. It also has an Unclassified composite in-
stance variable. The composite links connecting it to the com-
ponent documents must be either Unclassified or higher. Note chat
had the composite instance variable been Secret (which could be
a possibility if C7* is enforced) then the composite links must
be Secret or higher. This is a reasonable assumption as in the real
world there are cases where Unclassified documents have Secret
components. Secret users can read both the Unclassified and Se-
cret components while the Unclassified users can read only the Un-
classified components of the document.

A simple approach to handling composite objects would be
to assign the same security level to all of the components of such
objects. This is not useful because in the real world an object
(such as a document) may consist of components (such as sec-
tions) at various security levels. If all of the components of a2 com-
posite object are assigned the same security level, then different
documents identifying the same document entity have to be
created at the various security levels. This scenario is illustrated in
Figures 8, 9, and 10. In Figure 8(a), a multilevel document is
represented as it is in the real world. Figure 8(b) shows an alter-
native notation (not an alternative representation) for the same
representation. That is, in Figure 8(b) the composite instance
variable is not shown explicitly. Only the composite links are
shown in this figure. It is implicitly assumed that the security
property C8 is satisfied. This alternative notation is used for con-
venience, and from now on we assume this notarion. In Figure 9,
the Unclassified version of the document is represented. In Fig-

Sedion 1 Sectinn 3 Section 4

Figure 9. Unclassified version of the multilevel composite object.

Dacument
Instance

Section 1 Section 2

I'Note: compare C7 and C7* with the respective properties C5 and C5*.

Figure 10. Secret version of the multilevel composite object.

24

JOOP NOVEMBER/DECEMBER 1991

At last! A “CASE” tool providing full automated support for OOA....

Here’s how OOAToo/™ from Object International can help you drastically
reduce the time and effort you spend analyzing system requirements -
while improving the quality and reliability of every application you build.

Want to automate your Object-Oriented Analysis
and get projects completed a lot faster and more
easily? Then get OOAToo! — the automated sup-
port package for professionals using Object-Ori-
ented Analysis to define and communicate system
requirements.

OOATool is the only software package that
fully automates the industry standard notation
for OOA. OOATool is available now. And
together with its companion tools now in de-
velopment-O0DTool™ and OO0CodeGen™ -
will bring full OOWorkbench™ support across
00A, 00D, and OOP.

Only OOATool provides fotal automated support
for the notations and methodology defined in Peter
Coad’s and Ed Yourdon's best-selling Prentice
Hall book, OBJECT-ORIENTED ANALYSIS —
described by /EEE Software as “a standard for
years to come.”

If you want to do Object-Oriented Analysis on
your microcomputer using the most current OOA
notation from the newly revised second edition of
this book, you need OOATool.

With OOATool, you spend your time much
more productively.

OOAToo! is a full-featured drawing and checking
package that enables you to do Object-Oriented
Analysis on your IBM (with Windows or OS/2),
Macintosh, and Sun Unix (in development). By
automating the OOA diagramming and documen-
tation process, OOAToo! can enhance your per-
sonal productivity and creativity — dramatically.

OO0ATool helps you gain control of complex
systems.

OOATDool has a number of features designed to
help you cope effectively with the complexity of
larger applications.

A scaling feature, for example, lets you determine
the amount of information to be shown in each
subject box. You can collapse the box to show the
subject name only. Or expand it to reveal the
names of the classes and the layers inside.

OOATool! also provides filters that allow you to
custornize the presentation of your model for each
reviewer. Filters also give you the ability to
manage multiple projects as subprojects of one
master “‘super-project.”

Plus, OOAToa! incorporates the latest 5-layer
(Subject, Class-&-Object, Structure, Attribute,
Service) OOA notation. A layering feature gives
you total control over which layers you're working
in, so you can quickly switch between different
levels of abstraction when analyzing system re-
quirements.

Use of O0ATool ensures more consistent, ac-
curate analysis results.

When you use the model critiqgue command,
OOAToo! will automatically check your work and

YES, I want automated support for OOA. Please send me:

copy(ies) of OOATo0/™ Commercial Version at $1995 per copy

copy(ies) of OOATool™ Small Project Version at $95 per copy

3 My check or money order for $ is enclosed
 Pleasechargemy ___ Visa ___ MasterCard
Card no. Exp. date
Signature

3 For the Commercial Version, please bill me. Our purchase order # is

point out where your diagram is inconsistent,
incorrect, incomplete, or overly complex — allow-
ing you to make revisions on the spot.

The OOAToo! contains user-definable project
templates to help you develop a uniform style for
writing system specifications—which in tummakes
your models more understandable. And prevents
you from leaving out required specifications (or
cluttering your model with extraneous material).
Templates are also a handy tool for quickly and
easily capturing support text for attributes and
services, explanations of your analysis, random
thoughts, and other “free-form” text—information
which, at your discretion, can either be included
in... or excluded from... your final model.

What’s more, OOAToo! can generate complete
documentation (text and diagrams) autornatically.
Documentation can be printed on most standard
printers or output as an ASCII file to word process-
ing programs.

Try OOATool for 30 days risk-free.

Two versions of OOAT ool are available. The full-
scale Commercial Versionis $1995 and canhandle
models of any size or complexity. We also have a
Small Project Versionthat is identical to the Com-
mercial Version except the size of each OOA
model is limited to 15 classes.

If you wantto try OOAT ool before spending $1995,
then use the coupon below to order the Small
Project Version. The cost is only $95. What’s
more, if you upgrade to the Commercial Version
within 30 days, we’ll credit the $95 towards its
purchase price — so the Small Project Version will
cost you nothing.

Or, if you're now handling complex projects, go
ahead and order the Commercial Version for $1995.
You risk nothing, since both versions come with
our 30 day, money-back guarentee.

My platform is:
1 Macintosh
< IBM/Windows 3
QIBM/OS/2
1 Sun Unix (in development; planned prices)
planned prices are $3995 and $195)

Mail or fax coupon to:

Object International, Inc.

8140 N. MoPac Expressway 4-200
Austin, TX 78759-8864 USA

Phone (512) 795-0202 or (800) 926-9306
Fax (512) 795-0332

Name Title

Company Phone

Address

City State Zip

Circle 60 on Reader Service Card 0-91

Multilevel secure O-O data model

Figure 11. Sharing among polyinstantiated composite objects.

ure 10, the Secret version of the document is represented (note that
the darkened structures represent the entities classified at the Se-
cret level).

An alternate approach to representing the composite docu-
ment of Figure 8 is shown in Figure 11. In this alternate approach,
the security level of an object dominates the security level of all of
its components. That is, the Sectet version of the Unclassified
document shares the Unclassified sections with the Unclassified
version of the document. The Secret version of the document
consists of some additional Secret sections. Note that the polyin-
stantiated version link between the Unclassified document in-
stance and the Secret document instance can be implemented in
various ways. The important point here is that there is some way
for a Secret user to know that the Secret document instance is
actually a polyinstantiated version of the Unclassified document
instance.

Although the complete duplication of the document at dif-
ferent security levels is avoided in the representation of Figure
11, a new document instance at the Secret level still has to be
created. A third alternative is to represent the document exactly
as it is represented in the real world (see Fig. 8). That is, an Un-
classified document could have Secret as well as Unclassified sec-
tions. The Secret sections are erased from the view of the Un-
classified users. The Secret users can go elsewhere and obtain the
Secret sections only. This way, it is not necessary to create a new
document instance at a different security level.

3.2.2 Object sharing

Object sharing is an important requirement for hypermedia and
CAD/CAM applications. For example, it may be necessary for
various sections and paragraphs to be shared between different
documents. In a multilevel environment, it is possible for differ-
ent documents to be at different security levels but share sections
and paragraphs. This scenario is illustrated in Figure 12. Object
sharing is addressed in more detail in the discussion on compos-
ite links given later.

3.2.3 Polyinstantiation

As described earlier, it is possible for two users at different secu-
rity levels to have different views of the same entity. For example,
it is possible for an Unclassified section of a document to be just

Dacunent 1
(Unclassified) A4

Ducunient 2
(Scrrct)

Sl

Seaim € Section D Searion I

Figure 12. Two documenits at different security levels.

Paragraph 3

Figure 13. Granularity of polyinstantiated object.

4 cover story to a more sensitive version. Polyinstantiation can
occur at different stages. At one extreme, one can have the whole
document polyinstantiated. At the other extreme, one has a word
or a figure polyinstantiated. Figure 13 shows two ways of polyin-
stantiating sections of a document. In the first approach, the Un-
classified section is polyinstantiated at the Secret level (Fig. 13(a)).
In the second approach, the cover story is compared with the ac-
tual version. If possible, the actual version is decomposed into
paragraphs. The sensitive paragraphs are classified at the Secret
level. The remaining paragraphs are Unclassified. If an Unclassified
paragraph contains false information, then it can be polyinstan-
tiated at the Secret level (Fig.13(b)).

To reduce the amount of polyinstantiated objects, the objects
could be decomposed into smaller units, as much as possible,
and the smaller units could be polyinstantiated if necessary. It
should be noted that polyinstantiarion is still 2 research issue in
multilevel database systems. The issues involved in handling
polyinstantiation in object-oriented systems are discussed in
Section 4 where we regard polyinstantiation as a special form of
versioning.

3.3 COMPOSITE LINKS

A composite link is a link that connects a composite object with
one of its components. A composite link is also assigned a security
level. Figure 14 illustrates possible composite links from a com-
posite object O to one of its components M. We assume that the
links are bidirectional. That is, for each link P, there is link P in
the reverse direction. The following security property is enforced:

C9. Let P be a composite link whose reverse link is 2. Then
Level(P) = Level(P').

Some of the cases shown in Figure 14 are not meaningful.
For example, it does not make sense to form an Unclassified link
between a Secret composite object and its Secret component.
Further, supporting all the cases of Figure 14 will make certain
types of links (to be discussed below) difficult to implement.
Therefore, we impose the following security property on the com-
posite objects:

C10. Composite link property

26

JOOP NOVEMBER/DECEMBER 1991

If Pis a composite link between a composite object O and its
component M, then Level(P) > Lu_b.{Level(O), Level(M)}.

We also assume that:
Level(P) = Level(Exist(P))
Level(O) = Level(Exist(O))
Level(M) = Level(Exist(M))

where Level(Exist(e)) is the security level of the existence of an en-
Tty e.

Enforcing the composite link praperty will permit only the
cases illustrated in Figure 14(a) — (e).

In some cases, it may be necessary for composite objects nor to
share their components. In other cases, it may be necessary for the
existence of a component object to be dependent on the exis-
tence of the composite object. These considerations have led ob-
ject-oriented database researchers to define various types of com-
posite links [Kim87]. We review these definitions and discuss
how they may be affected due to multilevel security.

Various types of composite links have been studied in the lit-
erature [Kim87, Kim88]. A composite link from object O to
component M may be either exclusive or shared. If it is an ex-
clusive link, then it is not possible for another composite object
O' 1o have any link to M. If it is shared, then it is possible for other
composite objects to have shared links to M.

The links shown in Figures 14(d) and 14(e) cannor be exclu-
sive or shared. Suppose these links are exclusive. An Unclassified
user can see the object M, but he will not know that Mis a com-
ponent of a composite object. Therefore, he could add an exclu-
sive or shared composite link P' from another Unclassified object
O to M. This second link violates the exclusive link property.
This scenario is shown in Figure 15(a). If the link P is shared,
and if the link P’ is exclusive, the exclusive property link is violated.
This scenario is illustrated in Figure 15(b).

It does not make much sense to make exclusive the links shown
in Figures 14(d) or 14(e). This is because the links shown in Fig-
ures 14(d) and 14(e) can only be specified by a Secret user. If
this user really wants the link to be exclusive, then he could cre-
ate a Secret object replicating M and impose an exclusive link
from O to this new object. However, if the links shown in Figures
14(d) and 14(e) are not allowed to be shared then it will make the
model overly restrictive. A possible solution to overcome this

problem is as follows. Suppose an Unclassified user wants to
define an exdlusive link from Oto M. He can do so only if M does

B

BB IB

Figure 14. Composite links between objects.

dBase File Access
from C, Basic,...

CodeBase 4.5 gives multi-user datebase
management capabilities and dBase, FoxPro
or Clipper file compatibility from C, C++,
Visual Basic or Pascal for Windows. Design
CodeBase Browse/Edit screens using any
resource toolkit.

FULL 90 DAY GUARANTEE

Call for a FREE Brouse/Edit utility

With Source $295.
Call (403) 437-2410 Fax (403) 436-2999

SEQUITER SOFTWARE INC.
#209, 9644 - 54 Ave., Edmonton, AB. T6E 5V1

Circle 46 on Reader Service Card

not already exist. In this case, he can create M and impose an ex-
clusive link from O to M. Now, no other users can have any com-
posite links from any object to M. If M already exists, there is
always a possibility of a higher-level object to have a composite
shared link to M. Therefore, there cannot be an exclusive link
from Oto M. If the Unclassified user wants to impose an exclu-
sive link from Oto M, then he will have to replicate M and spec-
ify the link.

A composite link from an object O to its component M may
be either dependent or independent. If it is dependent, then M
cannot exist without O provided there is no other object O’ that

Figure 15. Invalid links.

27

Multilevel secure O-O data model

Figure 16. Version derivation hierarchy.

has a link to M. If the link from O to its component M is inde-
pendent, then M can exist without O.

Note again that the links shown in Figures 14(d) and 14(e)
cannot be dependent links. For example, consider the link in
Figure 14(e). Suppose this link is dependent. Also assume that no
other object has a link to M. Since the object O is Unclassified, an
Unclassified user can delete this object. Since he does not know
of the existence of P, the object M is not deleted. A Secret user can-
not delete M because it is at a lower level. A different problem
occurs if the link P in Figure 14(d) is made dependent. If, for
some reason, a Secret user wants to delete O, he cannot do so
because of the dependent link from O to M. This is because he
cannot delete the object M either. He will have to wait until M
gets deleted first. Although this situation is not a violation of the
dependent link property, it could cause objects that are not in
use to consume space. Note that in the link shown in Figure
14(c), the dependent link property can still be enforced. For ex-
ample, if an Unclassified user deleted O, since he does not know
of the existence of the link and also since Mis Secret, he will not
delete M. However, a consistency checker which runs at the Secret
level can detect this problem and delete M to preserve the de-
pendent link property.

4 .VERSIONING IN AMULTILEVEL ENVIRONMENT

We first review the model of versions of objects in object-
oriented data models such as ORION [Baner87], and then extend
the concepts to a multilevel environment. The discussion will be
limited to noncomposite objects only. For a discussion on ver-
sioning for composite objects in a multilevel environment, we
refer to [Thura90b].

A class is defined to be versionable if versions of the instances
of the classes can be created. The versions of an instance provide
a hierarchy of versions called the version derivation hierarchy.
Information about the version detivation hierarchy of an object
o is maintained in an object called the generic instance of o.

If the noncomposite instance variable link of an object o'
points to a version instance of another object ¢, then o' is statically
bound to o. If the noncompeosite instance variable link of an ob-
ject o' points to the generic instance of another object o, then o
is dynamically bound to 0. The system could assign a default ver-
sion instance of o to be assigned to this link (see Fig. 16).

Let an object o have an instance variable link to another ob-
ject 0. Suppose a version v of ¢' is obtained. Then the model

should specify as to whether the instance variable link of v should
also point to o, or the link is assigned to some other value (e.g.,
NIL, a generic instance of o, or another version of o).

In a multilevel environment, we identify three types of ver-
sions: historical versions, alternate versions, and polyinstantiated
versions. Historical versions are due to the evolution of objects over
time. Alternate versions store alternate representations of the
same entity. Both the historical versions and alternate versions
can be handled within as well as across security levels. Polyin-
stantiated versions are produced when users at different security
levels have different views of the same entity. They can only be
handled across security levels.

Figure 16 illustrates a version derivation hierarchy of an Un-
classified object. Here, versions are created within and across se-
curity levels. The generic instance has information on the ver-
sion derivation hierarchy. Assuming that there are only tweo
security levels, Unclassified and Secret, the generic instance stores
Unclassified information of the hierarchy ar the Unclassified level
and Secrer information of the hierarchy at the Secret level.

In this figure, the generic instance of object O has an Un-
classified version instance V1. V2is a polyinstantiated version of
VI at the Secret level. V3, V5, and V7 are historical versions of VI,
V2, and V3, respectively. V4and V6 are alternate versions of V3
and V4, respectively. V8 could be either a historical or a poly-
instantiated version of V4 at the Secret level.

The following are possible security properties for versions of
noncomposite objects:

C11. Let vbe a version instance of the object 0. Then Level(z) >
Level(o).

C12. Let gbe the generic instance of an object o. Then Level(g)

= Level(a).

C13. Let o' have an instance variable link to version v of object

0. Then Level(s') 2 Level(2).
Cl14.

Let o' have an instance variable link to generic instance g of
object 0. Then Level(o') 2 Level(g).

Let o' have an instance variable link to an object 0. Let v/ be
a version instance of ¢'. Then the instance variable link of
v points to one of the following:

1. NIL,
2. o, provided Level(¢') 2 Level(o),

3. generic instance g of o, provided Level(v') 2 Level(g),
and

4. a version instance v of g, provided Level(2) = Level(s).

C15.

§. CONCLUSION

In this article, we reviewed the developments of security in object-
oriented systems and discussed the alternate ways that nancom-
posite objects could be handled in a multilevel environment. We
then focussed on the issues that must be handled in order o pro-

28

JOOP NOVEMBER/DECEMBER 1991

Booch Components
for Rapid C++ Development

Rational Consulting introduces the
C++ Booch Components®, a domain-
independent class library offering the
latest in C++ technology: flexibility,
extensibility, rapid prototyping, and
development.

The C++ Booch Components utilize
templates, as defined in the C++
Annotated Reference Manual (ARM),
to provide maximum versatility. A
template preprocessor is included for
AT&T C++ version 2.0 compatibility.

The Booch Components are fully
supported by Rational Consulting.
They are delivered in source code,
complete with documentation and
test programs.

Features

= Simple inheritance lattice of
independent structures

Multiple storage forms
Multiple concurrency forms
Exception handling

Compatibility with other class
libraries

Rational Consulting

® Assists management in under-
standing and adopting advanced
software-engineering approaches
to improve organizational effec-
tiveness

= Offers consultative problem
solving by combining a manage-
ment perspective with engineering
expertise in applying advanced
software technologies to real-
world software projects

= Provides educational programs for
all levels of experience

s Provides software tools in addition
to the Booch Components

Bags
Dequeues
Maps
Monolithic Queues
Rings
Sets
Stacks

Strings

Structures

Graphs
Lists

Trees

Reusable
software
components

Polylithic <

Filters

Pattern matching

4

Tools Searching

Sorting
Utilities

Subsystemns

Organization of the C++ Booch Components

For more information, contact Brock
Peterson at:

Rational Consulting
3320 Scott Boulevard
Santa Clara, CA 95054-3197

Telephone: (408) 496-3700
FAX: (408) 496-3636
Email: blp@Rational. COM

RATIONAL

Object-Oriented
Software

Engineering

Circle 43 on Reader Service Card

Multilevel secure O-O data model

vide support for composite objects in a multilevel environment.
In particular, the security propetties of composite objects, rep-
resentation of composite objects, and composite links were de-
scribed. We then discussed issues on version management for a
multilevel secure object-oriented database system.

Future research in this area will include the development of a
multilevel secure object-oriented data model to support non-
composite objects, composite objects, object sharing, and ver-
sioning, The issues discussed in this paper will aid the development
of such a model. Another important issue that has not been ad-
dressed in this paper is a model for concurrency control. Locking
as a concurrency control mechanism for object-oriented database
systems was proposed in [Kim88]. However, it is well known
that the locking technique causes a covert channel. For example,
two users at the Secret and Unclassified levels could request a
read lock and a write lock, respectively, to an Unclassified dara ob-
ject. If the Secret user already has obtained the read lock, then the
write lock will not be given to the Unclassified user. If the Se-
cret user does not have a read lock then the write lock is given to
the Unclassified user. If the Secret and Undlassified users collude,
then they can synchronize a series of requests to the Unclassified
data object in such a way that from the pattern observed by the
granting/denial of the requests to the Unclassified user, infor-
mation can be covertly passed by the Secret user to the Un-
classified user. It has also been argued that the traditional ap-
proaches to concurrency control could cause a performance
bottleneck. This is because the transactions in object-oriented
applications are of very long durations [Kort88]. Therefore, novel
concurrency control techniques need to be developed. A prelim-
inary investigation on concutrency control in multilevel object-
oriented systemns is reported in [Thura90b].

Once a data model has been developed, the next step will be
to focus on the security policy and implementation issues. The ob-
jects could be multilevel at the conceprual stage and could be de-
composed and stored physically in single-level segments (or files)
to obtain higher levels of assurance. However, such an approach
loses the advantages of storing composite objects in clusters (which
has been strongly recommended for operation in a nonmultilevel
environment). Storing a composite object together with its com-
ponents in clusters gready enhances the performance of darabase
systems [Kim87]. Therefore, it is important to conduct research
on the issues involved in enhancing the performance of the sys-
tern, but at the same time provide higher levels of assurance.

Finally, the design of a multilevel secure object-oriented
database system should be based on the data model and security
policy that was developed. Such a design should provide the sup-
port for query processing, schema management, dynamic schema
evolution, update processing, and transaction management and
should handle integrity as well as security constraints. Many of
these functions are still research topics in object-oriented database
systems. Therefore, much remains to be done before multilevel ob-
ject-oriented database management systems can be developed. B

ACKNOWLEDGMENT

The authors gratefully acknowledge the Rome Air Develsp-
ment Center (RADC) for sponsoring this work under contract
F19628-89-C-0001. We thank Joe Giordano of RADC for bis
support and encouragement throughout this project. We thank
John Faust of RADC for monitoring the project. We thank
Maureen Cheheyl for her comments.

REFERENCES

[AirFo83] Air Force Studies Board, Committee on Multilevel Dara Management
Security, Multilevel Data Management Security, National Academy Press,
1983.

[Baner87] Banerjee, J. et al. Dara model issues for object-oriented applications,
ACM Transactions on Office Information Systems, 5(1), 1987,

[Bell75] Bell, D. and L. LaPadula. Secure Compurer Systems: Unified Exposition and
Multics Interpretation, Technical Report No: ESD-TR-75-306, Hanscom Air
Force Base, Bedford, MA, 1975.

[KeefeB89] Keefe, T., W. T. Tsai, and M. B. Thuraisingham. SODA—a secure ob-
jecr-oriented database system, Computers and Security, 8(5), 1989.

[Kim87] Kim, W. et al. Composite object support in an object-oriented database
system, Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications, Orlando, FL, October 1987.

(Kim88] Kim, W. et al. Composite Object Revisited, MCC Technical Report,
ACA-ST-387-88, 1988.

[Kort88] Kort, H. et al. On long-duration CAD wansactions, /nformation Sciences,
46, 73-107, 1988

[Mille90] Millen, J. and T. Lunt. Security for knowledge-based systems, Pro-
ceedings of the Workshop on Object-Oriented Database Security, Karlstuhe,
West Germany, April 1990.

[Stach90] Stachour, P. and M. B. Thuraisingham. Design of LDV-—a multi-
level secure database management system, JEEE Transaction on Knowledge
and Data Engineering, 2(2), 1990.

[TrustBS) Trusted Computer Systems Evaluation Criteria, Deparument of Defense
Document 5200.28-STD, 1985.

(ThuraB9] Thuraisingham, M. B. Mandatory security in objecr-oriented database
management systems, Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), New Orleans,
October 1989.

[Thura90a] Thuraisingham, M. B. Security in object-oriented database systems,
Journal of Object-Oriented Programming, 2(6), 18-25, 1990.

[Thura90b] Thuraisingham, M. B. fisues on Developing a Multilevel Secure O-O
Data Model, Technical Report , The MITRE Corporation, Bedford, MA,
1990.

30

JOOP NOVEMBER/DECEMBER 1991

Delegation in C++

by Ralph E. Johnson and Jonathan M. Zweig

Depa of Computer Science, Uni

ity of Winois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL 61801

ELEGATION IS OFTEN VIEWED as a language feature
that replaces inheritance. However, it can also
be viewed as a relationship between objects that
can be implemented in any object-oriented lan-
guage. It is a useful programming technique that
ought to be in the toolbox of every object-oriented programmer.
This article shows an example of how to use delegation in C++.

DELEGATION AS A LANGUAGE FEATURE
A few object-oriented programming languages replace class in-
heritance with delegation between objects [Licbe86, Ungar87].

This is usually part of a language design that eliminates classes, fo- |

cusing instead on concrete objects. Delegation provides the power
of inheritance but also makes it possible to inherit state as well as
behavior and to change the behavior of an object dynamically,
which is equivalent to changing the object’s class.

Languages based on delegation implement method lookup
differently than languages based on inheritance. For example,
sending a message to a Smalltalk object causes a search for a
method in the class of the object. If it is not found, the search is
resumed in the class’s superclass, and then the superclass’s su-

perclass, etc. The method-lookup algorithm results in subclasses |

inheriting methods from their superclasses.

On the other hand, a delegation-based language like Self [Un-
gar87, Chamb89] has no classes, and methods can be stored in
each object. Each object can delegate messages to other objects so
if method lookup does not find the definition of a message in
the receiver then it will look in the objects that the receiver del-
egates to, in the objects that they delegate to, etc. Thus, an object
“inherits” the methods of objects to which it delegates messages.

Inheriting state proceeds analogously. When an object ac-
cesses an instance variable, a similar search through the delegatees
can be performed in the event that the object does not have such
an instance variable itself. Another way of accomplishing this
(the one used in Self) is to use messages to access state, allowing
the message-delegation semantics to provide state inheritance.

Delegation has a number of advantages over inheritance. Some
of these fall into the category of simplifying the programming
model. For example, it eliminates the complexity of metaclasses
without eliminating the power [Borni86]. It makes it easier to
implement one-of-a-kind objects and makes programming more
concrete. However, the advantage that we are most concerned
with is that delegation makes it easier for objects to change their
behavior. This is because a class makes many assumptions about
the representation in memory of its instances while a delegatee does
not make assumptions about the representation of its delegator.
Since it is dangerous to change the class of an object, most object-
oriented languages do not allow it but it is easy to change the
delegatee of an object. Moreover, a language with static type-
checking, such as C++, can ensure that a delegatee will under-
stand all the messages delegated to it.

Delegation provides the power of
inheritance but also makes it
possible to inherit state as well as
behavior and to change the
behavior of an object dynamically,
which is equivalent to changing the
object’s class.

Although inheritance and delegation are usually described as
alternatives in the design of an object-oriented language, we pre-
fer to think of delegation as a way to implement inheritance when

31

Delegation in C++

an object needs to be able to change its class. Thus, delegation be-

comes a programming technique, not necessarily a language fea- '

ture. An important part of the design of an object-oriented system
is deciding the relationships between objects [Wirfs89]. There
are a number of different ways that objects can collaborate. One
is the whole/part relationship [Blake87]. Another is double dis-
patching [Hebel90]. We propose delegation as another standard
way for abjects to collaborate.

Delegation is powerful enough to
simulate inheritance while simply
forwarding a message does not
simulate self properly.

DELEGATION VS. FORWARDING

Object-oriented programmers often talk of one object delegating a
message to another, bur they usually do not mean delegating in the
sense used here. It is common for one object to have to collaborate
with another to carry out one of its responsibilities. For examnple, read-
ing a file may require reading data from the disk and displaying a
complex picture may require displaying each of its components. In
both these examples, an object may have to forward a message to one
of its components and this is often mistakenly called delegation.

Delegation is more than just forwarding a message to another
object [Liebe86]. Delegation is powerful enough to simulate in-
heritance while simply forwarding a message does not simulate self
properly. (The receiver of a message is called self in Smalltalk and
this in C++). When a method in a superclass sends a message to
self, message lookup starts in the class of the receiver. Similarly,
when a delegatee sends a message to self it must use the original
delegator as the receiver.

For example, consider a class Car with a superclass Vehicle.
Each vehicle has fuel and is able to calculate how much fuel it
needs to move a particular distance. In C++, fuelToMove would be
a virtual function of Vehicle so that each of its subclasses can have
its own function for calculating fuel loss. Vehicle might have a
moveTo(Location) method (function) such as:

Vehicle::moveTo(Location aLocation) {
distanceToMove = distanceBetween(alocation, currentLocation);
fuelNeeded = this->fuelToMove(distanceToMave);
if (fuel >= fuelNeeded) {
currentLocation = location;
fuel = fuel - fuelNeeded;
)
}

Sending the moveTo message to a Car will call the function
defined in Vehicle. When Vehicle sends the fuelToMove message to
itself, it calls the fuelToMove function that is defined in class Car.

Thus, a function defined in a superclass will call a function in a
subclass.

Suppose that this were implemented by giving each Car an in-
stance variable with a pointer to a Vehicle. Then the Car could re-
spond to the moveTo message by forwarding it to the Vehicle.
However, the Vehicle would have to send the message fuelToMove
back to the particular Car that forwarded the moveTo message. In
fact, the Vehicle would have to send all messages overridden by sub-
classes to the original receiver of the message, which in this case
is the Car, Delegation differs from just forwarding a message in that
the delegator continues to play the role of the receiver even after
it delegates the message. Thus, messages that the delegatee sends
to itself are received by the original delegator, which is likely to del-
egate them back to the delegatee. Of course, the delegatee can
delegate messages to another object just as a class can inherit
methods that are inherited from it.

Delegation is implemented by including the original receiver
as an extra argument to each delegared message. An original mes-
sage sets this argument to the receiver of the message, but delegated
message sends do not change the argument. This is similar to the
way languages like C++ implement virtual function calls, where
this is an invisible argument to each method and sending a mes-
sage (i.e., calling a virtual function) binds this to the receiver of the
message. Languages based upon delegation, such as Self, will im-
plement this extra argument automatically and invisibly. However,
it is possible to implement delegation in any language by using a
particular set of programming conventions.

Languages based on delegation usually emphasize flexibility
and so rely on runtime type checking rather than static type-
checking. However, delegation itself is quite compatible with
static type checking. We will show how to implement delegation
in C++, one of the least dynamic (and most efficient) of the ob-
ject-oriented programming languages. This is important because
it shows that delegation is a design technique that can be used
with any object-oriented language including ones that are statically

typed.

DELEGATION IN C++
Our example is taken from an implementation of the Department

Listing 1. The class TCPConnectionDescriptor delegates many
of its operations.

class TCPConnectionDescriptor

protected:
TCPConduit * myCarrier; // Conduit responsible for this connection
TCPState * current,_state;

public:
Returmn_Code
Return_Code
Return_Code
Return_Code
Return_Code

openConnection();
closeConnection();
abortConnection();
processIncomingMessage(TCPMessage * msg);
processOutgoingMessage(TCPMessage * msg);

32

JOOP NOVEMBER/DECEMBER 1991

of Defense (DoD) TCP/IP protacol suite for the Choices op-
erating system [Zweig90]. A TCP network connection can be in
one of several states: closed, listening, established, closing, etc. Its
behavior, in the sense both of how it responds to incoming net-
work packets and how it interacts with its user, depends on the
state it is in. In fact, the behavior of a connection changes so
radically depending on its state that it makes sense to think of its
class as changing when its state changes. Thus, we could think of
a class ClosedConnection, another class EstablishedConnection, etc.
Instead of changing its state, a connection object would change
its class. Since C++ does not ler an object change its class, this al-
ternative is ruled out and another must be used. Although it is
hard to change an object’s class, it is easy to change the delega-
tee of an object since the delegatee is determined by a single
pointer. Changing an object’s delegatee has the same effect as
changing its class because the object will now invoke different
functions in response to the same messages. Moreover, a delegated
function invocation can cost the same as an ordinary virtual
function invocation.

The objects responsible for interpteting and delivering net-
work messages are called conduits. Conduits can be connected
together in a manner somewhat akin to AT&T UNIX System
V Streamns processing modules. A conduit can call the function to
insert messages into another conduit to which it is connected
and can call ather functions on it when necessary. For example,
an application will open a network connection by obtaining a
conduit from the system that is connected to the system’s TCP
conduit. This conduit may then request that a TCP connection
be opened on its behalf. The TCP conduit responds to this request
by obtaining a connection descriptor, initializing it with infor-
mation describing the TCP socket with which the application
wishes to connect, and calling the openConnection function on it.

Listing 1 shows an excetpt from the definition of the class
TCPConnectionDescriptor, which defines the object that contains
all state information abour a single network connection. The
TCP conduit will respond to user requests to manipulate the
connection by calling the openConnection, closeConnection, and
abortConnection functions of the connection descriptor. A user
sends a nerwork message by calling the appropriate connection de-
scriptor’s processQutgoingMessage function. When a TCP con-
duit receives a message from the network (via the IP conduit), it

Listing 2. The delegatee is an extra argument to delegated functions.

class TCPState {
public:
virtual Retum_Code openConnection(
TCPConnectionDescriptor * cd);
virtual Return_Code closeConnection(

TCPConnectionDescriptor * cd);
processIncomingMessage(

TCPConnectonDescriptor * cd,

TCPMessage * msg);

virtual Return_Code

Listing 3. The definitions of delegated functions are all trivial.
The delegatee must refer to the delegator instead of THIS.

Return_Code
TCPConnectionDescriptor::processIncomingMessage(TCPMessage * msq)
(

}

retumn current,_state->processIncomingMessage(this, msq);

Return_Code
TCPState::processIncomingMessage(
TCPMessage * msg)

TCPConnectionDescriptor * cd,

{
msg->del();
cd->increment ErrorCount();
return{ ERROR);

)

determines which connection the message is intended for and
calls processIncomingMessage on the connection’s connection
descriptor.

Since the behavior of a connection depends on its state, the con-
nection descriptor delegates these operations to a TCP state ob-
ject. The state object will need to call functions on the connection
descripror to determine things like sequence numbers, buffers,
and so forth. In fact, each TCP state object behaves as though it
isa connection-descriptor — except that it sends messages to cd
in every case where it would send messages to self in a delega-
tion-based language. Listing 2 shows an excerpt from the defini-
tion of the class TCPState.

Listing 3 shows the code for the connection descriptor’s pro-
cessIncomingMessage function, which simply delegates to the ap-
propriate state object. It also shows the default behavior for this
function on the part of a TCP state object. Any subclasses of TCP-
State (such as TCPEstablishedState) that are able to accept incom-
ing messages must reimplement this function. States that do not
accept messages from other hosts, such as TCPClosedState, will in-
herit this default behavior, which rejects the message and returns
an error code.

PERFORMANCE
Delegation in C++ is fast, involving no more than two funcrion
calls. The first is the operation on the delegator and the second is
the operation on the delegatee. The second operation is always a
vircual function call. If the first operation is a virtual function
call, then delegation has twice the cost of a virtual function call.
However, the first operation does not have to be a virtual function
call. In our example, all connection descriptors implement pro-
cessIncomingMessage by delegating it—any subclasses would as
well — so the processIncomingMessage function can be imple-
mented inline. Thus, delegation can cost the same as a virtual
function call plus the time to dereference one pointer.

Since each TCP state object has no local state (insrance vari-
ables), it is just used to hold a pointer to a virtual function table.
It would be nice not to have to pay the penalty for the indirection

33

Delegation in C++

through the current_state pointer to access this pointer. This

might be accomplished by making current_state be an instance |

of a TCP state object (rather than a pointer to one), which would
get overwrirten when the connection’s state changes. This does not
worle, hawever, since in C++ operations on objects dedlared locally
are never virtual — they are statically assigned at compile time
since the exact class of such an object is visible to the compiler. It
is conceivable that the compiler might recognize that each TCP
state object consists only of a pointer to a virtual function table and
petform this optimization though we know of no C++ compilers

that will.

EASE OF PROGRAMMING

Since C++ is based on class inheritance, delegation requires more
work on the part of the programmer than it does in a delegation-
based language like Self. The extra work is required in two places:
in defining the delegator and in defining the delegatee.

In Self, adding a method to a delegatee automatically makes it
available to the delegator but this is not true in C++. Because we
are implementing delegation “by hand,” we must write a funcrion
in the delegator for each operation that it needs to delegate. The
function definitions are all trivial just like the definition in List-
ing 3. However, this is an overhead for the programmer not pre-
sent in delegation-based languages.

The overhead is smaller in the delegatee. The operations in
the delegatee class musr all have an extra parameter to refer to
the delegator. Instead of performing operations on self, the del-
egatee must petform operations on the delegator. These rules are
simple, bur imply that any class designed to be reused by inher-
itance must be modified before it can be reused by delegation.

Another problem with this way of implementing delegation is
that classes reused by delegation are specialized only for that pur-
pose. In contrast, classes that are reused by inheritance are often
useful components on their own. This problem does not occur in
a language, such as Self, designed to support delegation.

In general, to inherit state the delegatee must send messages to
itself (i.e., the delegator) rather than accessing instance variables
directly. Compiler optimizations could remove the performance
penalty in most cases, however, since the messages that access in-
stance variables might not need to be virtual functions.

CONCLUSION

It is possible that delegation-based languages will replace class
inherirance-based languages as the standard in object-oriented
programming. However, it is by no means certain. Classes are
very useful in structuring large systems and delegation-based sys-
tems need programming environment support to simulate classes.
Thus, it is not clear whether it is bettet in the long run to base a
language on delegation and simulate classes or to base a language
on classes and simulate delegation.

Regardless of which programming style dominates in the long
run, most existing object-oriented languages are based on classes.
Programmers using class-based languages should leatn how to
implement delegation. Delegation may not be needed often, but

| itis easy to implement and should be one of the techniques avail-

able to every object-otiented programmer. B

ACKNOWLEDGMENTS

The second author was supported in this work by a Ph.D. Fel-
lowship from ATST Bell Laboratories. Both authors thank
Brian Marick and Bill Opdyke, who read and commented
on earlier drafis of this paper.

REFERENCES

[BlakeB7] Blake E. and S. Cook. On including part hierarchies in objecr-ori-
ented languages, with an implementation in Smalltalk, Proceedings of the
1987 European Conference on Object-Oriented Programming (ECOOP), LNCS
276, Springer Verlag, New York, 1987.

[BorniB6] Borning, A.H. Classes versus prototypes in object-oriented languages,
Fall Joint Computer Conference (ACM/IEEE), 1986 Proceedings, Dallas, Novem-
ber 2-6, 1986, pp. 36-40.

[ChambB89] Chambers, C., D. Ungar, and E. Lee. An efficient implementation
of SELF, Object-Oriented Programming: Systemns, Languages and Applications
(OOPSLA) ‘89 Proceedings, New Orleans, October 1-6, 1989, pp. 49-70.

[Hebel90] Hebel, K.J. and R.E. Johnson. Arichmetic and double dispacching in
Smalltalk, Journal of Object-Oriented Programming, 2(6), 40-44, 1990.

[Lieb86] Lieberman. H. Using protypical abjects to implementc shared behav-
ior, Object-Oriented Programming: Systems, Languages and Applications (OOP-
SLA) '86 Proceedings, Pordand, OR, September 29—October 2, 1986, pp.
214-223.

[Ungar87] Ungar, D. and R.B. Smith. Self: the power of simplicity. Object-Ori-
ented Programming: Systems, Languages and Applications (OOPSLA) ‘87 Pro-
ceedings, Orlando, October 4-8, 1987, pp. 227-242.

[Wirfs89] Wirfs-Brock, R. and B. Wilkerson. Object-oriented design: a respon-
sibility-driven approach, Object-Oriented Programming: Systems, Languages
and Applications (OOPSLA) ‘89 Proceedings, New Orleans, October 1-6,
1989, pp- 71-76.

[Zweig90] Zweig, .M. and R.E. Johnson. The conduit: a communicarcion ab-

straction in C++, Proceedings of the Second USENIX C++ Conference, San
Francisco, April 9-11, 1990, pp. 191-204.

34

JOOP NOVEMBER/DECEMBER 1991

Real-world reuse

by Mark Lorenz

IBM, Box 60000, Cary, NC 27511

BJECT-ORIENTED (O-O) developers currently
spend much of their time thinking about and

working with the hierarchical structure of the !

classes in the system. Their views of this hierar-
chy may be through a variety of means including
paper- and computer-based presentations.

This article takes a look at how application developers cur-
rently work with and view their application classes; how this re-
lates to analysis, design, and the class hierarchy; and how appli-
cation development can be more effective in the future.

The examples used in this article are based on Smallralle/V
PM, but the concepts apply to all O-O development.

A LOOK AT THE HIERARCHY

Class hierarchies are typically wide and shallow (Fig. 1), which is
indicative of the fact that subclassing only goes so far. Further
extensions to the system are usually subclasses of classes that are
at relatively close proximity to the root (the Object class, shown at
level 0).

The system that Figure 1 is based on has over 500 classes
defined (Smalltallk/V PM comes with over 100 classes initially).
The system has a PersistentObject framework class under Object
and application framework classes as shown in Figure 2. These
frameworks provide basic implementation functions that can be
inherited. For example, a window class subclassed under the ap-
plication framework class(es) would potentially have menubars
with items such as “File” on them already. Some of the pulldown
actions, such as “Open...,” would be functional up to a point. It
is then up to the new subclass to fill in the blanks for the task at
hand. Similarly, the persistent object framework would provide
functions to allow objects to exist across developer sessions.

In this system, persistent object classes and application windows
are subclasses of these framework classes. So, a large number of the
new classes defined in the system start 2—4 levels of nesting within
the hierarchy (classes that come with the Smalltalk system are
concentrated at levels 1-3). As the chart shows, the number of

Number
of
Classes

0 1 2 3 4 5 6 7 8 9

Levels of Nesting

Figure 1.

classes nested deeper than this drops off dramatically. In developing
the classes in this hierarchy, efforts were put forward to use ab-
stractions where possible. There have obviously been some ab-
stractions found and used in the system, but the vast majority of
the classes were located off of the “framework root.”

= ADP allo d e 0 APp 400 e
File Edit Classes Variables Methods View Options Help
CUAWindow r] #instance add Customer: L]
=GraphicsWindaw O class close
==Cusl tsFolder - Name
B currenlObject hd 8
-TehtualWinEh_vw fillerBy rrjopenOn:with:
s selected Objects
~ JviewType + 1

TextualWindow subclass: #CustoinerRecordEntryWindow
instanceVarlableNames: *
classVarlableNames:
poolDicllonaries: "

_—l =

Figure 2, Application framework class structure.

35

Real-world reuse

Looking at the Smalltalk system classes, including abstractions
such as Collection and Magnitude, and the classes developed in this
system, there appears to be a significant limit to the amount of
abstractions that can be developed. I have talked to other groups
about the depth of their hierarchies with similar conclusions.

ANALYSIS AND DESIGN OF APPLICATIONS

A variety of O-O analysis and design methodologies and nota-
tions exist today, including [Booch90, Coad90, Jacob90, Witfs90]
These techniques focus on the objects needed to model the ap-
plication’s problem domain. The notations typically have differ-
ent types of relationships between the application classes, such as:

1. has-a — a container relationship to facilitate collaboration.

2. is-a— a hierarchical relationship for subclassing within an
application.

3. protocol message — application-level messaging.

However, there has been very little written to help the devel-
oper decide where to locate classes that are identified. Class po-
sitioning has been largely ad hoc, with developers subclassing the
root (e.g., Object) or a class perceived as similar to the new class.

APPLICATION
An application could be defined as: # group of classes that work together
to provide some user function, accessible through a public protocol.

This is the unit of work that an application developer works on
at any one time. Treated as a black box object itself the applica-
tion can be documented and packaged as a salable unit. This
could take forms such as source code or executable or dynamic link
library (DLL) files.

In Smallealk/V PM, the user sees classes through the class hi-
erarchy browser (Fig. 3). All classes in the system are listed in hi-
erarchical order in the top left pane. This view focuses attention
on the inheritance structure of the reusable classes defined in the
system and not the classes in the application itself.

= allta era Browse v|a
File Edit Smalltalk Classes Variables Methods
GraphicsTool +] & Instance bulld: b
TextTool... O class Fail Al:with:
InputEvent rail T [input
Magnitude... first match:
Menu input match:index
Message matchBlock matchBlock:
NolificationManager state resel
PMHandle... Object - 1 3
K
Objecl subclass: #Pattern
instanceVariableNames:
‘input fail stale matchBlock firsl *
classVariableNanies:
‘WildcardChar *
poolDictionaries: *
+*
- -

Figure 3. Smalltalk/VV PM class hierarchy browser.

The classes in an application are drawn from various places
throughout the hierarchy (Fig. 4). These classes collaborate to
accomplish the purpose of the application through messages.
Usually, the classes hold other classes as instance variables that
give them handles to the objects.

An alternative view of classes would show only the applica-
tion’s classes (Fig. 5). In the future, application views will begin
to show more information about the structure of applications
and how they solve end user requirements. Ivar Jacobson's method-
ology, e.g., allows the developer to view an end user functional
“thread” (called a “use-case” by Jacobson) as it relates to the classes

and behaviors of an applicarion.

ABSTRACTION OF SUBHIERARCHIES

During application development, an attempt should be made to
create abstractions. For example, in a banking application the
analyst may identify a need for SavingsAccount and CheckingAccount
classes. The designer may recognize common behaviors needed for
these classes and create an abstract Account class (Fig. 6).

This creation of hierarchical relationships between classes is
important to the architecture of the application and has benefits
in inherited behavior and ease of maintenance. However, place-
ment of this “mini-hierarchy” within the overall hierarchy is rarely
a fundamental decision for the application itself but instead relates
to implementation decisions that are best put off until later or
handled by the system.

POSITIONING CLASSES IN THE HIERARCHY

So where do the application classes go in the hierarchy? There
are typically a few basic choices made by the designer/program-
mer in deciding the location of classes:

1. Is this a view object (e.g., a window)? If so, the class should
probably be a subclass of the user interface framework classes.
In Smalltalk\V' PM, these are usually ApplicationWindow, Di-
alogBox, SubPane, or a development shop’s application frame-

AN\ N

Real World “l'llil.'E

Class

Application
Hierarchy R

View

yYr74

Figure 4.

36

JOOP NOVEMBER/DECEMBER 1991

Take Control of Your Appl|cat|ons with

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for Smalltalk/V. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalltalk/V
application projects.

Applications port easuly across platforms

Price List Automatic Documentation
DOS V $150 Hevisio_n history f_or each method.
DOS V/286 $395 Analysmi and design reportq. »
Macintosh V/Mac $385 Customizeable documentation template
0S/2 VIPM 5475
Site Licenses CALL Source Control
‘5&%&%‘% Integrate work of several users. "
e New Productivity Tools | *Save and browse multiple revisions easily.
Unioad **Check-in, check-out, and lock source code
Windows 3.0 Customize code templates. '
VMWindows $475 Develop in‘a LAN environment.
| g:s;iec?;::::ﬁ: o Drw?;zi Deliver applications without AM/ST.
e . - :Ls;;:’:]yem 1f§§§ * Static Analysis Tools
Application consistency reports.
C SoftPert Systems Division Graphical views of hierarchies.
00 erS One Main Street Cross-reference of variable and method usage

&Ly rand Cambridge, MA 02142 Up-to-date method index.
(617) 621 3670 or (617) 621 3671 Fax

. Dnamlc Analsus Tools

“With AM/ST. Smalltalk’V is a leader in serious multi-person development.”)
David Ornstein, Sage Software

"Gave me a real edge in Design and Analysis”

Hal Hildebrand. Anamet Labs

Circle 28 on Reader Service Card
work. A framework could involve a number of generic func- the same behavior as a SavingsAccount, with the exception of
tion classes (as was shown in Fig. 2). withdrawal penalties. So, a CDAccount could be a subclass of Sav-

Y ingsAccount iding the “withdraw” behavior.
2. Does this object persist outside my image (e.g., an instance of a ingsAccount overriding the “withdraw” behavior

checking account)? If so, the class should probably be a sub- The first two cases focus on inheriting behavior, and are O-O
class of the persistent object framework class(es). design/programming concerns. The desire is to inherit basic func-
tional capabilities such as window or persistence services. These

3. Does the class have characteristics that match an existing class . . .
are important concerns, but they are also implementation con-

very closely or is a superset of the behavior of an existing class? If
so, subclassing is probably called for. An example of this would
be CDAccount, as shown in Figure 6. A CDAccount has most of

Real Wnrld Ill.'lm

A\ \

=| AccouniManagement Applicatlon ~]a |
File Edit Classes Varlables Methods View Options Help \
Account tl &instance cancelBution ks \
=CheckingAccount O class ok Bulton \
=SavingsAccount account FfopenOn:
==CDAccount cancelled & Y
==MoneyMarketAccount O B . i
AccounlCreationWindow m:]nalogﬂmt Savings Checking | 3
ountDefello Dialog [l i Account Account | i
Teller P j :

cam

DialogBox subclass: ¥AccountDeletlonVerifyDlalog
instanceVariable Names:
‘account cancelled ’
classVariableNames:
‘ltemlids *
poaolDictionarles:

‘Character Cons.lants PMConstanls * ‘SI‘

cb
Account

Figure 5. Application browser, Figure 6.

37

Real-world reuse

fnghad

announcing...

CodelMAGER"
for VPM & VWindows

The premler Smalttalk/V
application manager Is now avaliable
for Windows and Presentation Manager.

s Put related classes and methods
into a single task-oriented object
called an application.

o Browse what the application sees
yet easily move code between it
and the external snvironment.

s Automatically document code via
modifiable, executable, templates.

F'“c“ » Keep a hlstory of previous versions;

-

i restore them with a lew keystrokes.
add| = View class hierarchy as graph or list.

kc « Print an application in a formatted
opyri repon, paginated and commented.

« Flls code into applications and

| merge applications together.
o . lications are unaffected by
v change log compression.

and many other features |

}rwummmmw.mmummuammc«p

Send me [l copies of CodeIMAGER™

formVv286m VMac m VPM mVWindows.

CodeIMAGER V286, VMac $129.95, VPM. VWIindows $229.95.
Shipping & handiling: [J $13 mall,[J $20 UPS per copy. 48 hr
order turnaround. Fax or phone for quickest handling.

SIATE P} POST

() ()

TELEPHONE Fa

Ochg Qvisa O AmEx O MasterCard
Diskette: [J 3 V2 (154 "

- ExpiryDate: __/__/
tEj= SixGraph Computing Ltd.
Formely ZUNIQ DATA Corp.

XGM 2035 Céte de Liesse, suite 201

Montreal, Que., Canada H4N 2M5

&_.—-—-""' Tel: (514) 332-1331 Fax: (514) 956-1032

Circle 7 on Reader Service Card

Associate all of the following tags
with the selected objects:

T Tomlaa: B e .1k
r Applicallon Scope User-Defined Tags
® Publi :

Public : |PersistentObject !
O Private ! |EndOfMonthBllling
“ |AccounlCrealion

Internal Scope

o Public :

| [Geterng] [vasiet]
[ox] [cancel] [nei)

® Private

Figure 7. Associating keyword 1ags to objects.

cerns. They are relationships of convenience (and productivity!).
They have little to do with the business’ problem domain.

The last case focuses on zypes of business objects and their ab-
stractions, and is an O-O analysis concern. The desire is to cre-
ate reusable class architectures that model the characteristics of the
business. So, the fact that a CDAccount exists and that it acts like
a SavingsAccount is fundamental to a bank’s business. In fact, the
way it goes about this behavior is what gives the Bank its com-
petitive edge.!

If none of the listed conditions are met, the class can usually
be a subclass of the root class such as Object in Smalltalk/V PM.

TOOLS FOR POSITIONING CLASSES

Categorizing tags and informational descriptions can be captured
and used by the system to help the developer find possible classes
to subclass. The simplest case is to ask the user the types of ques-
tions listed above, A more involved case is to usc informational tags
necessary for categorization and retrieval of reusable objects to
help position classes at implementation time.

By allowing the developer to specify categorization information
about classes, the system could suggest the optimal location within
the hierarchy withour requiring the user to focus on this structure.
Figure 7 shows an example dialog to allow the user to tag objects
with system- and user-defined keywords.

New objects that are of type window or persistent object are
obvious candidates as a subclass of the appropriate framework.
The more difficult positioning concerns relate to matching char-
acteristics. Aids in this positioning can be based on:

1. Similarity of public protocols (methods).

For example, if the new CDAccount class discussed earlier
fulfills roles such as “withdraw” and “deposit” it matches
these characteristics of the SavingsAccount class and would
be supgested as a possible position in the hierarchy.

2. Keyword tags.

1Note that this is also the way thar frameworks come into existence—data pro-
cessing abstractions such as TreeGraph, Collection, and Magnitude are created
and leveraged by future developers. These are just as important during design and
implementation as the business abstractions are during analysis.

38

JOOP NOVEMBER/DECEMBER 1991

Circle 2 on Reader Service Card lor Hewlett-Packard

For example, if the CDAccount class is tagged by keywords
such as “banking,” “account,” and “savings” it will closely
match the user-defined characteristics of a SavingsAccount.
The system could certainly provide views of existing key-
words and searches of objects tagged by related keywords
to help the developer.

SUMMARY AND RECOMMENDATIONS
Subclassing and inheritance are important, but perhaps overem-
phasized, aspects of an O-O system. Developers will tend, over
time, to focus more on application and less on implementation
concerns.

Systems need to include services to capture and utilize devel-
oper information about classes to recommend class locations
within the hierarchy. B

ACKNOWLEDGMENTS

The author thanks Pete Dimitrios and Bill Haynes for their
comments on the article.

REFERENCES
[Booch90] Booch, G. Object-Oriented Design with Applicasions, Benjamin/Cum-
mings, Redwood Cicy, CA, 1990.

[Coad90] Coad, P. and E. Yourdan. Object-Oriented Analysis, Prentice Hall, En-
glewood Cliffs, NJ, 1990.

[Jacob90] Jacobson, 1. Object-Oriented Development in an Industrial Environ-
ment, Objective Systems SF AB, Kista, Sweden, 1990.

[Wirfs90] Wirfs-Brock, R et al. Designing Object-Oriensed Sofiware, Prentice
Hall, Englewood Cliffs, NJ, 1990.

For free, fast
information on the
products and services
advertised in this
issue, consult the
advertiser index
on page 66.

Houw To
BROUWSE AND ED
N C++
ATTHE SAME TIME

You need the only fully-integrated editor/
browser on the market today. €p BRIEF and
BRIEFor C++. € BRIEF is the worldclass
programmer's editor.. BRIEFor C++ is the C++
class browser that works seamlessly with
BRIEF. €« While you edit in BRIEF, BRIEFor C++
waits in the background. When you want to
browse, click to bring it forward. When you're
done, click again. You're in BRIEF. It's that
fast. € You'll also find BRIEFor C++'s view
filters, comprehensive reporting, and editable
class definition templates big-time time-savers.
Add BRIEF's legendary editing power and
flexibility and watch your productivity soar.
Navigating through your code has never been
faster or easier. € BRIEF and BRIEFor C++.

Call tolHree for a BRIEF demo:
1-800-677-0001

For more information, call SolutionFax from a
fax machine or fax-board equipped PC:
617-740-0089.

Solutionsystems

THE PHYSICS OF PROGRAMMING

©1991, Solution Syslema. All rights raserved, BRIEF reguires IBM PC or compalible with hard disk drive
and 2564 RAM minimum. BRIEFor C++ requires BRIEF and Borand C++ 2.0. BRIEF 1s a registered
trademarh of SDC Software F arinerg, Lid., C++ is a redemark of Barlend, Inc. Solulion Systems. 372
‘Washinglon Sireel, Wellasiey, MA 02181

Circle 25 on Reader Service Card

Understanding constructor

C++

initializers in C++

HAT DOES THAT

funny syntax with

the colon mean?”

Every time [

have taught a C++

class, at least one person has asked that
question. This is often true even affer [
have explained the answer. For some rea-

son, people seem to have a particularly hard

time understanding this specific detail. I
don’t know why; it’s not particularly
difficulr or counterintuitive. Perhaps it is
because this is one of the places that C++
carefully distinguishes between things that
C does not. I suppose somethinghas to be
the most commonly misunderstood part
of C++, and this just happens to be it.

I am talking, of course, about con-
structor initializers. For example:

class Complex (
public:
Complex(double x, double y):
re(x), im(y) { }

private:
double re, im;

B

Whenever I show an audience this ex-
ample, someone is sure to ask me about
the purpose of the re(x) and im(y) parts of
the constructor and will want to know why
I didn’t just say:

Complex(double x, double y) {
re=x;
im=y

)

Of course, if I do use the second form,

someone is sure to ask me why I don’t use
the first!

The answers to these questions are all

tied up in the difference between assign-
ment and initialization, as well as the dif-
ferent kinds of constructors one can have
for a class. To make it all clear, we will have
to go over these things in detail. Please be
patient if you've seen some of this before.

CONSTRUCTORS

A constructor is a member of a class that
is executed to create an object of that class.
Strictly speaking, objects of built-in types,
such as int, do not have constructors.
However, the following presentation will
be easier if we pretend they do. Let’s pre-
tend, therefore, that objects of built-in type
have “constructors” that automatically ini-
tialize such objects to zero if they are of
static storage class (or part of an object of
static storage class) and to an undefined
value otherwise. With this generalization,
it is possible to state a rule:

* Every object is created by executing a
constructor!

Here is a simple example:
#include <stream.h>
int x;
main()
{
inty;
static int z;

cout << A << “ “ <<y << ¥ ¥ <<z << “\n";

}

This program creates three variables

by Andrew Koenig

named x, %, and zand prints their values.
What does it print?

Each of these variables is of type int so
the value of each is determined by the “con-
structor” associated with that type. Because
x and z are of static storage class (global
variables are always of static storage class
although that is not stated explicitly), their
“constructors” give them initial values of
0. The initial value of y, on the other hand,
is undefined.

COPY CONSTRUCTORS AND

" ASSIGNMENT

If every object is created by executing a
constructor, what about this?

main()

(
intx=7;
inty=x;

x=y;
}

The variables x and y are each creared
and simultaneously given an explicit ini-
tial value. The declarations of x and y are
requests to copy existing values into new
objects. Because these are new abjects, our
previous rule says that cthey must be cre-
ated by executing constructors. Evidently,
then, there must be some kind of con-
structor that can create an object that is a
copy of some existing object; we call that
a copy constructor. As before, we can sim-
plify the presentation by pretending that
even built-in types like int have copy
constructors.

In the example above, then, the object
X is created by executing its “copy con-

40

JOOP NOVEMBER/DECEMBER 1991

THE ONLY C++
You‘LL EVER NEED.

C++ VERSIONS 2.1, 2.0,
AND 1.2

You can use your existing C++ code
and take advantage of new features
without creating compatibility issues
because Green Hills C++ is source code compatible

with AT&T cfront versions 2.1, 2.0 and 1.2. Also compati-
ble with commercial C++ class libraries, Green Hills C++
has been validated using the Perennial C++ test suites.

THREE COMPILERS IN ONE! C++, ANSI C,
K&R C

Simplify your development environment with one compil-
er for your C++ and C sources. Preserve your investment
in existing C applications by calling C modules from C++
modules. Take advantage of the power of the C++ lan-
guage by using multiple inheritance, operator overloading
and data abstraction.

X WINDOWED C++ SOURCE-LEVEL DEBUGGING
Use our Multi C++ debugger featuring multi-language
support (C++, C, FORTRAN, Pascal), multi-process
debugging, and expression evaluation. Display intermixed
or separate source & assembly windows, variable, class,
and reference windows. Set breakpoints on overloaded or
member functions. Automatic name mangling/de-man-
gling and inheritance tracking are also included.

A"
-r‘ﬂ:

y & 'y ¥ \

A o 4 4 . _d

. - A =

1 Cranberry Hill » Lexington, MA 02173 ~em

TOMORROW’S SOLUTIONS TODAY

Circle 10 on Reader Service Card

1,

AVAILABLE ON MAJOR
UNIX HosTts

Green Hills C++ is available on Sun-4
SPARC, DECstations, and IBM RS/6000. More
ports are in process; call us for the complete list.

DEvVELOP BOTH NATIVE AND

CrOsS/EMBEDDED C++ APPLICATIONS
Reduce the cost of complex embedded applications by

using object oriented technology. Green Hills Cross C++
fully supports 680x0™, 88000™, and i860™ targets.

Reduce your maintenance costs by developing more
robust, reusable code using Green Hills C++.

For C++ ON ALL YOUR
UNIX WORKSTATIONS,

CALL (617) 862-2002
Fax (617) 863-2633

Worldwide Support: Belgium Retime 02-376-5142 France Real Time Software 01-6986-1958
Germany Xcc 0721-616474 Netherlands Computing & Systems Consultant 040-434957 Isracel
Ankor Compuling Ltd. (03-5447356 Ilaly Instrumatic 02-353-8041 Japan MCM Japan Litd
033-487-8477 Scandinavia Traco AB 0893-0000 Spain CIDISA 01-563-3649 Switzerland Zuhlke
Engincering AG 01-730-7055 UK Real Time Products 021-236-8070. UNIX is a trademark of
AT&T,i860 is a trademark of Intel Corp. All other trademarks are acknowledged to their
respeclive companies.

— C++ —

structor,” which gives it an initial value of
7, and the object y is created by executing
its “copy constructor” to give it an initial
value that is a copy of the value of x.

Now let’s look at the last statement in
the example. That statement says to set the
value of x equal to the present value of y.
Of course, they happen already to be equal,
but that doesn’t matter. This involves (po-
tentially) changing the value of the object
X, but it does not create any new objects!
Because no objects are created, no con-
structors are called. This operation is there-
fore fundamentally different from the pre-
vious two even though the same symbol is
used to represent it. The act of giving a new
value to an object is called assignment.

Ifyou are ever uncertain whether a piece
of C++ code involves assignment or con-
struction, ask yourself “Is a new object be-
ing created here?” If the answer is “yes,”
then a constructor is involved. Ifit’s “no,”
then constructors are not involved.

part. For example, it must be possible to
say things like this:

struct Point [
intx,v;

)
Point zero; // x=0, y=0

main()

{
Point p, q;
px=3;
py=7;
q=p

}

To preserve C behavior, C++ causes
some things to happen automatically:

* A class with no explicit constructors gets
an empty constructor automatically.

* A class without an explicit copy con-
structor gets one automatically.

If you are ever uncertain whether a piece of
C++ code involves assignment or construction,
ask yourself “Is a new object being created
here?” If the answer is “yes,” then a constructor
is involved. If it’s “no,” then constructors
are not involved.

DEFAULT CONSTRUCTORS
AND ASSIGNMENT FOR
CLASSES

Suppose we write a simple class:

struct Point {
intx y;

IH

This class is so simple that it has no pri-
vate data ac all. That explains the choice
of struct rather than class to introduce it.
Indeed, as written, it is nothing more than
a C structure. For that reason, it had bet-

ter behave the same way as its C counter- |

* A class without an explicit assignment
operator gets one automatically.

* These funcrions, if automatically gen-
erated, are recursively defined in terms
of the corresponding functions for the
members and base classes.

This seems like quite a mouthful but is
actually quite simple. In the case of our
Point class, e.g., it tells us that we can con-
struct, copy, and assign Point objects and
that the meaning of doing so is defined re-
cursively in terms of the corresponding op-
erations for x and y. This is, of course, ex-

actly what happens in C. Thus, in the ex-
ample above zero.x and zero.y are both ini-
tialized to 0 by the automatically gener-
ated constructor for the Point class, which
is recursively defined in terms of the
“constructors” for the members x and y.
Similarly, the members of p and q are re-
cursively initialized by their “constructors”
to undefined values.

One useful consequence of having au-
tomatic constructors of this sort is that it
makes it much easier to build simple data
structures out of classes others have defined.
For example:

struet Person {
String name;
String address;
int id;

¥

One can easily imagine some kind of
recordkeeping system with a data struc-
ture like this to keep track of people. Such
a data structure might reasonably use a
String class taken from some library to store
names and addresses. Here’s a simple
example:

main()
(

Person p;

getrecord(inputfile, p); //Read into p
Person q = p;

/-
)

‘What is the effect of the declaration of
p? What initial value does p have? Because
the object p is created here, we must exe-
cute a constructor, but the Person class
doesn’t have one. A constructor is there-
fore created for us by using the String con-
structor twice and the int “construcror”
once. The effect will therefore be to ini-
tialize p.name and p.address to whatever
the default value is for the String class and
leave p.id undefined (because the “con-
structor”’ for int says that’s the right thing
to do).

Similarly, the declaration of g creates
an object so it must execute a constructor.
Because it is creating an object from an-
other of the same class, the constructor to

42

JOOP NOVEMBER/DECEMBER 1991

— C++ —

use is evidently the copy constructor.
Because the Person class has no explicit
copy constructor, one is generated auto-
matically. That constructor executes the
String copy constructor twice (for the name
and address members) and the int “copy
constructor”’ once (for the id member).
The result is exacdy what one might ex-
pect: copying p into g has the effect of copy-
ing each member of p into the corre-
sponding member of q.

OVERRIDING THE DEFAULTS
Our Person class is a bit of a nuisance to
use: every time we create a Person object,

we must eventually give a value to each of

its members. For example:

Person s;

s.name = "Santa Claus";
s.address = "North Pole";
s.id = 31415927;

We would like instead to be able to
write:

Person 5("Santa Claus", "North Pole", 31415927);

The way to do that, of course, is to give
the Person class an explicit constructor,
which is most straightforwardly written
this way:

// furst try: not quite right
struct Person {
String name;
String address;
int id;
Person(String n, String a, int i) {
name =n,
address = a;
id=1i;
}

b

This will indeed make possible the sec-
ond declaration of s shown above.
However, this is not quite the right way
to go about this for reasons we are about
to uncover.

The first problem can be seen by look-
ing again at the rules for default con-
structors: a class without any explicit con-
structors gets an empty constructor. We
have taken our Person class, which did not
have an explicit constructor before, and
given it one. That means that the empty
constructor it formerly had is no longer

there, which in turn means that we can no
longer say:

Person p;

at all' That would be fine were that what
we had in mind, but in this case we do not
wish to give up the old behavior to acquire
the new behavior.

We must therefore explicitly insert the
constructor that is no longer being created
for us:

// second try: still not quite right
struct Person {
String name;
String address;
int id;
Person(String n, String a, int i) {
name = n;
address = a;
d=i;
}
Person() (1.
¥

We have inserted a constructor that
does nothing ar all. Does that mean that
when we say:

Person p;

we are foregoing initialization of p.name
and p.address? That would be a disaster!
After all, we know nothing of the work-
ings of the String class. Its author could be
counting on all objects of that class being
initialized appropriately. To be sure that
happens, C++ has another rule:

* If a constructor doesn’t say explicitly
how to initialize the members or base
classes of its class, the default con-
structors for those members or base
classes are used automatically.

That means that the constructor we just
added to the Person class:

Person() (}

actually does three things: it uses the String
constructors to initialize the name and ad-
dress members and the int “constructor”
to initialize the id member. This is, of
course, exactly the right thing in this case:
it gives us an easy way of saying “please

Why Object-Oriented
Programming?

o Fasier software development:
via rapid prototyping, use of standard
objects, and reuse of proven code
components

o Easier maintenante: due o compact,
optimized code--and, modular software
takes less time to debug

¢ Adapiability: by adding objects
without rebuilding the entire program

Why Oregon C++?

o True compiler and source-lovel
debugger

o Conforms to System V R4 ABI
(& AP])

¢ Adheres 1o language siandards
s Cfront compatibility

o Stricter type checking than €

* Multiple inheritance

o Lint-like chedking

o Optional Rogue Wave, Dyad and
other duss libraries

« Very competitive pricing

Why Oregon Software?

¢ The tedhnology leaders with
more experience . . . since 1977

o Providing PASCAL-2 and C++
optimizing native compilers and
PASCAL-2 cross-compilers

o Voting members of the ANSI C++
tommittee

o Superior technical support and
customer service

Platform families:

SPARC, MIPS (DECstation),
680X0, 386,/486,
VAX/VMS and ULTRIX

To receive our free white paper

on Objecl-Oriented Programmi
«all today at 1-800-874-8501]

Circle 6 on Reader Service Card

— C++ —

presetve the default behavior even though
this class has an explicit constructor.”

But this analysis exposes a problem in
the other constructor:

Person(String n, String a, int i) (
name =n;
address = a;
id=1i;

}

value xto member yat the time that mem-
ber is constructed.” The syntax for that

looks like this:

Person(String n, String a, int i):
name(n),
address(a),
id(i) {)

The constructor’s list of formal pa-
rameters is followed by a colon and then

... when writing a constructor we need some
way to say ‘give value x to member y at the
time that member is constructed.”

Look again at the last rule. This con-
structor never says anything about how to
initialize name, address, or id. The state-
ments in the constructor are assignments,
not initializations, because they do not
construct any objects! By the time the con-
structor begins execution, the name, ad-
dress, and id members of its object must
therefore already exist. Because objects
come into existence only through con-
structors, that means that their construc-
tors have already been executed.

In other words, the effect of the Person
constructor above is to construct name and
address, “construct” id, and then to assign
new values toname, address, and id as shown
in the constructor body itself. The differ-
ence is precisely the difference between:

String s = "Santa Claus";

and

String s;
s = "Santa Claus";

The first of these forms is clearly prefer-
able because it gives s the desired value im-
mediately instead of giving it the wrong
value first and then correcting it.

CONSTRUCTOR INITIALIZERS
Because of all this, when writing a con-
structor we need some way to say “give

a list of initializers separated by commas.
Each initializer is the name of a member
or a base class followed by a parenthesized
list of expressions to be used to initialize
that member or base class.

One might, therefore, read the exam-
ple above as “To construct a Person from
two Strings called n and a and an int called
i, construct the Person’s name member from
n, its address member from a, and its id
member from i, and then do nothing.”
The “do nothing” part corresponds to the
emprty body of the constructor proper: this
particular constructor now does all its work
in its initializers.

The entire class definition now looks

like this:

// third try: this is how to do it
struct Person {
String name;
String address;
int id;
Person(String n, String a, Int i):
name(n),
address(a),
id@) (}
Person() {)
JH

To confirm our understanding, we can
add an explicit copy constructor and as-
signment operator to the Person class that
does exactly what the default ones do:

44

JOOP NOVEMBER/DECEMBER 1991

Putting
ODbjects
To
WYork!

As a recognized leader in the practical
application of object-oriented technology,
Instantiations is ready to put its decades of
object experience to work for you...

Technology Adoption Services
Technology Fit Assessment
Expert Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes
Custom Engineering Services & Support

Training & Team Building

Smalitalk Programming Classes:
Objectworks Smalitalk Release 4
Smalitalk V/Windows V/PM V/Mac
Building Applications Using Smalltalk

Object-Oriented Design Classes:
‘Designing Object-Oriented Software:
An Introduction”
“Designing Object-Oriented Systems
Using Smalltalk”

Mentoring:
Project-focused team and individual

learning experiences.

Development Tools

Convergence Team Engineering Envionment™
Powerful muttruser/shared repository development
environment for teams creating production-quality

Smalitalk applications.

Convergence Application Organizer Plus™
Code modularity and version management

tools for individual Smalitalk developers.

Instantlatlons Inc.

921 SW Washington
Suite 312

Portland, OR 97205
(503) 242-0725

Circle 4 on Reader Service Card

The Measure of
a Great Program.

PC-METRIC™: The Measurement Tool For Serious Developers.

LANGUAGE

PRODUCTIVITY

AWARD

1990

PC-METRIC is the software measurement tool
that measures your code and identifies its most
complex parts 5o you can spend your time
working in the areas most likely to cause
problems.

PC-METRIC is fast, user-configurable, and
includes a wide array of commonly accepted
measurement standards.

Plus, versions of PC-METRIC are available to

support virtually every popular programming
language.

A Great Value By Any Measure.

PC-METRIC's price is only $199, and it comes
with a 30-day money-back guarantee. Multiple
user discounts are available, as well as site
licenses and complete source code.

Order Now! Call (503) 829-7123.

SET LABORATORIES, INC.
*Quality Tools For Software Craftsmen”
P.O. Box 868
Mulino, OR 97042
Phone: (503) 829-7123
FAX: (503) 829-7220

Circle 56 on Reader Service Card

// fourth try: equivalent to the third
// but with everything written out explicitly
struct Person {

String name;

String address;

int id;

Person(String n, String a, int i:
name(n),
address(a),
id(®) ()

Person() { }

Person(const Person& p):
name(p_name),
address(p.address),

id(p.id) ()

Person& operator=(const Person& p) (
name = p.name;
address = p.address;

id =p.id;
return *this;

)

IE

Note how the Person copy constructor
makes use of the String copy constructor
for the name and address members and the
int “copy constructor” for the id member.
Note also that the Person assignment op-

erator does not use constructors at all be-
cause no new objects are being constructed.

CONCLUSION

It should now be possible to understand
the difference between our first two ex-
amples. If we write:

Complex(double x, double y):
re(x), im(y) { }

we are being formally correct by saying
that a Complex object should be constructed
by constructing its real and imaginary parts,
after which we’re done. If instead we write:

Complex(double x, doubley) {
re=x;
m=y

}

we are first constructing re and im with
their default values (which, because they
are of built-in types, are undefined), and
then assigning x and y to them.

Because x and y are of built-in types,

the conceptual difference between these .

— C++ —

forms does not translate itself into a prac-
tical difference and indeed many compil-
ers are likely to generate identical machine
code for both. For that reason, many peo-
ple (including me) are apt to be careless
about distinguishing between assighment
and initialization in simple cases like this
and that surely doesn’t make it any easier
o understand when encountering such
things for the first time.

The important thing is to be completely
clear about the difference between assign-
ment and initialization and to realize that
they are expressed differently—especially
in constructors.

Andrew Koenig is a Distinguished Member of the

Technical Staff at ATST Bell Labs in Warren,
NJ. He is working on C++ tools in a department
dedicated to veducing the cost of software devel-
opment. He is also an enthusiastic musician and
an insirument-rated private pilot. Koenig can be
contacted at Room 4N-R12, AT&T Bell
Laborasories, 184 Liberty Corner Rd., Warren,
NJ 07059, or through email at attmaillark or
ark@europa.ait.com.

46

JOOP NOVEMBER/DECEMBER 1991

The only other way to get
C++ updates is to
call the man who created it.

Get the inside story on C++ development from P

Bjarne Stroustrup and other experts such as:

Stan Lippman, Mike Tiemann, Bruce Eckel, Rob Murray, Grady Booch, -~
Jim Waldo, Dmitry Lenkov, and Tom Cargill. /

Filled with crisp, easy-to-follow articles and tutorials.
Plus, book reviews, product reviews, software news,
Best of comp.lang.c++, The C++ Puzzle, and
“What They’re Saying about C++.”

A sampling of not-to-be-missed features:

* Designing and managing C++ libraries
* Debugging C++

* Using C++ class libraries

* Using an O-O database management system
* A survey of the C++ user community ~
* Designing libraries for reuse e

* Implementing multiple inheritance
* Effectively managing C++ projects
* Moving a project from C to C++

* ANSI C++ standardization updates
* Analysis and design techniques

¢ Using C++ effectively

* C++ traps and pitfalls

* Using templates in Release 3.0

» Using application frameworks with C++
* Climbing the C++ learning tree

* Storage management techniques

* Tips on increasing reusability

* Designing container classes

X WRITTEN FOR BOTH BEGINNER AND ADVANCED USERS d‘(& ., 7 . .
e) . "y C T g .
:;-;::-\‘\::3§s§ \\ Now IN ITs THIRD YEAR WITH 10,000 READERS IN 42 COUNTRIES ‘gf' ‘,{9’ .{;}%
AR RO ™ &" / TS,
\\\‘\ \‘{\,‘::\ » If/ . vf\”f/.‘e

........ B T 4 Subscription Order Coupon B T TV PTI PN

EIYes, plug me into the insiders network of C++. Enter my subscription and rush me the current issue.
If not satisfied, | may cancel at any time and receive a prompt refund of the unused portion.

No questions asked.
Name

1 year (10 issues) d Domestic (US) $69

U Foreign & Canada $94 Company Title
(Includes air service) Div./Dept.
Method of Payment
Q) Check enclosed (payable to The C++ Reﬁmrt) Address
Foreign orders must be prepaid in US dollars on a US bank. City State Zip
U Bill me
Purchase Order number Country Phone
QCharge my Qvisa MasterCard Return to: The C++ Report
Card # E Subscriber Services, Dept. CPR
ar Xp- PO Box 3000
Signature Denville, NJ 07834 or Fax 212.274.0646

Circle 33 on Reader Service Card DiLA

Modeling & Design

The evolution of bugs and

systems

N WRITING THIS SERIES of columns,
I hope to show the value of an ab-
ject-oriented analysis and design
methodology and how to apply it to
the solution of problems. I want to
show that object-oriented technology is
more than just programming and languages.
For the most part, I intend to give exam-
ples that illustrate various aspects of analy-
sis and design as [have found that a single
concrete example is often more illuminat-
ing than a broad but abstract theoretical
presentation. In presenting these examples,
I will use the object modeling technique
(OMT) methodology and notation devel-
oped by my colleagues and me and described
in the book Object-Oriented Modeling and
Design published recently by Prentice Hall
[Rumba91]. In the process, our philosophy
of design should become clear as will both
similarities and differences in outlook be-
tween us and other authors. Keep in mind
that developing software (or anything else)
is a complex creative task and there is no
one best way to do it. Neither our method-
ology nor any of the others is the final word;
they will all evolve as new ideas and new
combinations of old ideas are developed.
My goal is to get you to use some method-
ology of analysis and design rather than just
sitting down and starting to program.
Object-oriented development provides
a seamless path from analysis through de-
sign and implementation. You don’t have
to change notation at each stage of devel-
opment but this doesn’t mean tha all stages
of development are the same or differ just
in the amount of detail. The different stages
focus on different aspects of a problem and
emphasize different object-oriented con-

cerns. In this column, T will illustrate ob-
ject-oriented analysis using a simple ex-
ample. Other stages of the process will be
discussed in future columns.

CREEPING BUGS

We will consider an evolution simulation
based on a Scientific American “Mathe-
matical Recreations” column [89]. The
goal is to simulate the evolution of “bugs”
in a simple two-dimensional world. The
world contains bugs and bacteria, which
the bugs eat. The bacteria are “manna from
heaven.” They appear at random and per-
sist at fixed locations until they are eaten.
Bacteria do not spread, age, or reproduce.
Bugs move around the world randomly
under the control of motion genes. Each
bug has a variable position and orienta-
tion within the world. For simplicity, time
is divided into uniform time steps. During
each step, each bug rotates randomly to a
new orientation, then moves one unit for-
ward in its new direction. Rotation is con-
trolled by the motion gene, which codes
for a probability distribution of rotating
by an arbitrary angle from the previous
orientation. Initially, the disttibution is
uniform so a bug petforms a random walk.
For simplicity, we divide the world into
uniform cells with a finite number of an-
gles such as a hexagonal grid with six pos-
sible angles. A bug eats any bacteria it finds
within its cell, gaining a fixed amount of
weight for each meal. Each time step the
bug loses a fixed amount of weight to main-
tain its metabolism. If its weight becomes
zero, the bug starves. If its weight exceeds
a certain “strong” value, then the bug re-
produces by splitting itself into two iden-

by James Rumbaugh

tical bugs each with half the original weight.
Each new bug suffers a single mutation in
its motion gene modifying the probabil-
ity distribution.

If you program this simulation and
choose appropriate values for the various
parameters so that all the bugs do not die
out quickly, over time you observe a kind
of evolution. At first the bugs jiter about
randomly, but over time they evolve so
that they move more or less in straight lines
with an occasional turn to the left or right
(bur not both for any one bug). The ex-
planation is that bugs that move randomly
tend to eat up the food supply in one place
and starve while bugs that move in lines
have a better chance to find new food but
they must turn occasionally to avoid get-
ting stuck against the edges of the world.

This problem is well-suited to an ob-
ject-oriented approach and is fairly simple
to program. There is some ambiguity in
the specification and many possible ex-
tensions can be considered such as car-
nivorous bugs. I will illustrate my solution
to it using the OMT notation, I cannot
show all the details that would accompany
a full solution of the problem but I hope
to touch on the major points, at least.

STAGES OF DEVELOPMENT

To solve a problem, you must identify a
problem, describe what you need to do
about it, decide how to do it, and then go
and do it. These steps are the development
stages of conceptualizarion, analysis, design,
and implementation. Other things you
might do include verifying that you actu-
ally solved the problem and carefully de-
scribing your solution so that someone else

48

JOOP NOVEMBER/DECEMBER 1991

— Modeling & Design —

could repeat it. These steps correspond to |
testing and documentation.

Of necessity, methodology books (in-
cluding ours) lay out the development pro-
cess as a sequence of steps. This pedagogical
need has been misinterpreted as the infa-
mous “waterfall diagram” showing devel-
opment as a one-way flow of information
through well-defined stages. In practice, the
distinction among the stages is not always
clear-cut because software development is a
creative act that requires some judgment
from the practitioner. More importantly,
the development of any real system involves
a lot of iteration within and among stages,
more of a “whirlpool” than a waterfall.

Analysis, design, and implementation
could be called “synthetic” stages of de-
velopment. During these stages, the de-
signer must synthesize a system out of a
jumble of potential requiremnents and parts
striving for a result that is both under-
standable and efficient while solving the
problem. During synthesis, it is useful to
have a well-defined notation to specify ex-
actly what has been created at any step in
the process. The development noration
should flow easily from stage to stage so
that work will not be lost, ignored, or re-
peated as the design process proceeds, We
claim that an object-oriented modeling
notation can be used throughout the de-
velopment process without a change in no-
tation or reentry of information.

Today I will focus on analysis. The anal-
ysis model forms the framework on which
the entire design is built and fleshed out.

ANALYSIS

During analysis we identify what must be
done without saying how it will be done.
During analysis, we identify the object
classes in the problem domain, their
significant attributes, and the relationships
among objects. We capture this informa-
tion in an object diagram. The object dia-
gram describes a snapshot of information
at a point in time.

The first step is to identify object classes
and describe them briefly. Table 1 is a data
dictionary in which we have identified five
object classes from the problem deserip-
tion: Bug, Gene, Bacterium, Cell, and Grid. |

Table 1. Data dictionary.

An organism that inhabits a
cell, moves under control of a
motion gene, eats bacteria it
finds, and reproduces by fission
under suitable conditions. The
bug dies if it doesn’t eat

enough.

A set of discrete values that
codes for the probabilistic mo-
tion of a bug. Genes are copied
and mutated during bug re-
production.

Bug

Gene

A discrete location within the
grid world that conmins (pos-
sibly multiple) bugs and bac-
teria. The cells are uniformly
spaced within the grid.

Cell

Bacterium Food for bugs. Each bacterium

is worth a specified amount of |

weight when eaten. Bacteria
are created randomly on the
grid and persist on the same
cell until they are eaten.

A ressellated world inhabited
by bugs and bacteria. Bugs can
move to neighboring cells. The
edges of the grid block modon.

Grid

You should always prepare a data dictio-
nary containing a brief description of ev-
ery class, atiribute, operation, relationship,
or other element of 2 model. A simple name
by itself has too many interpretations.

focdValue:Welghl

Bug Call

weighl:Waight

sirong:Weight

age:Time

direclion:Angle

i posilion:Poinl
Gene Grid
rotationFaclor: Array of Integer boundary:Palygon

Figure 1.

OBJECT MODEL

Figure 1 shows an object diagram for the
Bugs simulation. An object diagram is a
graphic representation of the classes in a
problem together with their relationships,
attributes, and operations. Each class is
shown as a box with the name of the class
in the top part, an optional list of attributes
in the second part, and an optional list of
operations in the third part. We have omit-
ted operations from the first diagram.

Each bug has a weight and an age, a di-
rection of movement, and a weight at which
it is “strong” enough to reproduce, These
attributes have been pulled directly from
the problem statement. Similarly, each bac-
terium has a food value. A gene contains
an array of rotation factors, each an inte-
ger. We want rotation factors to be dis-
crete values subject to quantum mutations;
therefore, we have represented them as in-
tegets but we have not yet said how a fac-
tor value maps into a probability; we must
specify this mapping during design. Finally,
we have called the world Grid to capture
its discrete nature within our simulation.
The boundary of the grid is a polygon al-
though in the first version of this program
it will likely be a simple rectangle.

More important even than the attributes
of an object are its relationships to other ob-
jects. Relationships indicate how objects in-
teract, how information flows among them,
and how objects can be assembled into a
complete system. Relationships affect the
organization of the entire system while at-
tributes (and operations) are often used by
only a single class. Relationships include as-
sociation, aggregation, and generalization.

Association is any relationship among
the instances of two classes. In most cases,
binary asseciations are sufficient. A binary
association is indicated by a line between
two classes (o a loop on a single class) with
a multiplicity symbol at each end to indi-
cate how many of each class may be re-
lated to an object of the other class. For
example, each cell may contain zero or
more bugs and zero or more bacteria. The
line between Cell and Bug indicates an as-
sociation; the black dot next to Bug shows
that “many” (zero or more) bugs may be
associated with a given cell; the lack of 2

49

— Modeling & Design —

symbol next to Cell indicates that exactly
one cell is associated with a given bug. An
association and its two ends may have
names but they may be omitted if there is
no ambiguity.

Aggregation is a special kind of associ-
ation indicating a part-to-whole relation-
ship. For example, a gene is part of a bug.
The diamond next to Bug on the line from
Gene indicates that Bug is the aggregate and
Gene is the part. The lack of a multiplic-
ity symbol on either end indicates that each
bug contains exactly one gene and each
gene is part of exactly one bug. In the case
of a one-to-one relationship such as Gene
is part of Bug, the two classes could be
merged into a single class containing all
the attributes, but we choose to distinguish
Gene and Bug because they have distinct
names in the application domain and a
clear separation of properties.

Why bother to even have a Grid class?
After all, the gtid is unique within the prob-
lem and it seemns wasteful to represent as-
sociations to fixed global objects. Don't fall
for this reasoning. If you build unique global
objects into your problem, you will often
find that you evenrually want to extend the
problem to accommodate multiple instances
of the “unique” object. Therefore, define
a class for each object in the system, even
those that you think are unique, and define
associations between those classes and other
classes that depend on them.

This completes the basic object dia-
gram. It defines a snapshot of a system at
a moment in time in terms of objects, their
attribuces, and their relationships. The goal
is to include enough information, and just
enough information, to fully define the
state of the system and the objects in it
without redundancy. Don’t show redun-

The real essence of an object-oriented analysis is
not inheritance but thinking in terms of objects.
An object-oriented model is object oriented
because the potential to add inheritance to the
model is always present.

A grid is composed of many cells as
shown by the aggregation line between Cell
and Grid. Each cell has a unique position
within the grid that distinguishes it from
all other cells. The position is not really an
attribute of Cell; rather, it is an attribute of
the Cell-6rid association since it defines the
position of the cell uniquely with respect
to the grid. The association line between
Cell and Grid with the box next to Grid is a
qualified association. The qualifier in the
little box indicates an index value unique
within the qualified class. A grid and a po-
sition determine a unique cell; a cell cor-
responds to a grid and a position. There
is a one-to-many relationship between Grid
and Cell; there is a one-to-one relationship
between the pair (Grid, Point) and Cell.

dant attributes during analysis. For exam-
ple, we could replace age by birthDate but
we would not show both at once because
to do so would indicate more freedom than
is actually present in the system. Don’t
show attributes or associations that are
derivable from other attributes or associ-
ations. For example, don’t indicate posi-
tion as an attribute of Bug; a unique posi-
tion value can be derived by navigation
from Bug to Cell to Grid. Don’t show asso-
ciations between classes as attribute val-
ues. For example, we could have an at-
tribute gene within Bug and an attribute
bug within Gene, but this again would in-
dicate that the two values could be set in-
dependently, which they cannot.
Associations should always be used for

showing relationships between objects be-
cause they are inherently bidirectional;
pointers (attribute values referencing other
objects) are inherently an implementation
concept and do not belong in analysis.

What is not present in this analysis ob-
ject diagram? Fitst of all, this diagram con-
tains no inheritance (or generalization, as
the relationship between the classes is
called). Some readers will be shocked that
I dare to desctibe an object-oriented prob-
lem without using inheritance. It is true
that an object-oriented language or nota-
tion needs the concept of inheritance to
be fully object-oriented. But that doesn’t
mean that you have to use inheritance on
every problem. The real essence of an ob-
ject-oriented analysis is not inheritance but
thinking in terms of objects, An object-
oriented model is object-oriented because
the potential to add inheritance to the
model is always present. For example, we
could specialize Bug into Herbivore and
Carnivore subclasses in the future.
Inheritance may or may not be necessary
in the analysis of a particular problem;
don’t think you have to use it all the time.

What else is missing from the analysis
mode!? You might note the absence of
methods. Although some authors would
disagree, we feel that identification of ap-
plication-domain objects should come
first. The object diagram defines the uni-
verse of discourse on which behavior op-
erates. It is important to define what some-
thing #s before describing whar it does.
Once the objects and their structural re-
lationships are identified, you can describe
whar they do. Operations can then be
added to the model.

The analysis model does not attempt
to encapsulate information. The analyst
should take a “God’s eye” view of the prob-
lem and capture all the information avail-
able. Accessing attributes and traversing
associations are legitimate sources of in-
formation that do not require any special
dispensation. How can you make a good
design if you conceal information from
yourself? Encapsulation is a design con-
struct intended to limit the effect of changes
within an implementation; it is not an anal-
ysis construct.

50

JOOP NOVEMBER/DECEMBER 1991

— Modeling & Design —

[weight = 0]

clock lick/step [weight > strong]

Aeproducing

do: rep!

Figure 2.

DYNAMIC MODEL
The object model specifies the structure of
the objects in the Bugs simulation. During
analysis, you must, of course, define the
behavior that you want your system to
have. Behavior can be specified by the in-
teractions that occur between objects and
the transformations that objects undergo.
In the OMT methodology, interactions
are specified by the dynamic model and
transformations by the functional model.
The dynamic model specifies the exter-
nal interactions of the system with outside
agents. The dynamic model is represented
graphically by state diagrams: one for each
dlass with dynamic behavior. Figure 2 shows
a state diagram for class Bug, The state di-
agram shows the life history of a bug, Each
rounded box is a different state. The be-
havior of a bug is very simple. It only has
one state, Alive, during much of its life. The
other states are initialtzation or termina-
tion states. An arrow between states shows
a state transition in response to an event,
which is an interaction between objects.

age ———— age’
»{(growOider

The open circle labeled “bitth” points to
the initial state of the object, the state Alive.

The only event a bug responds to is
clock tick, i.e., the passage of a unit of time.
The passage of time may be regarded as an
event from the universe to an object. When
an event occurs, the object takes a transi-
tion from the current state labeled by the
event, When a transition occurs, an object
may perform an operation and transition
to a new state. When clock tick occurs, the
bug performs operation step and returns
to the Alive state. The bug also responds
to two possible conditions shown as tran-
sition labels in brackets. A transition oc-
curs whenever one of the conditions be-
comes true. If the bug starves (weight = 0),
then it transitions to state Dead, where it
performs operation die and then ceases to
exist (shown by the bull’s eye). If the bug
gets fat enough (weight > strong), then it
transitions to state Reproducing where it
performs operation reproduce, which cre-
ates two new bugs to take its place. The
original bug then ceases to exist. (We could
have drawn the state diagram so a repro-
ducing bug made a single copy of itself and
continued to exist but the way I have drawn
the diagram is more symmetric.)

The event clock tick affects every bug, In
what order do the various bugs perform
their operations? For this simulation, it
doesn’t much marter so we don’t specify it.
Objects are inherently concurrent. Since all
the major object-oriented languages are se-
quential, during design we must serialize
the execution of Bug operations but during
analysis a concurrent viewpoint is just fine.

N—

location, direction micaﬁon‘.direclion'
I»{ MOVe

This state diagram completely defines
the behavior of the system. All operations
are ultimately initiated by clock ticks. But
where do we specify the effect of an oper-
ation? That is done in the functional model.

FUNCTIONAL MODEL

The functional model specifies the effect
of operations on data values. It is expressed
by data flow diagrams, one per nontrivial
operation. Figure 3 shows the step opera-
tion on Bug that is performed every clock
tick. In the diagram, boxes represent ob-
jects, ovals represent functions, and arrows
represent the flow of data values.

The diagram for step shows there are
three independent computations within
the operation: updating of age, weight, and
spatial parameters. For example, the arrow
leaving Bug labeled “age” represents the
age artribute of Bug. The growOlder func-
tion takes an age as input and yields a new
age as output (most likely a simple incre-
ment). The arrow from growOlder to Bug'
labeled age' represents updating the age at-
tribute of Bug. The prime symbols are in-
cluded merely to distinguish original and
updated values. They could be omitted but
the diagram is easier to read if old and new
values are visually distinguished.

Operations growOlder, metabolize, and
eat are all simple operations that can be
described by formulas. For example,
growOlder might be age' = age + 1 and eat
might be weight" = weight' + foodValue.

The find operation is a simple data ac-
cess within the object diagram. Its inputs
are the location attribute of a bug and the

weighl'

waight”

loodValue

Iocalion lind

N

Figure 3.

direction’ Incation’
@

direction’

Figure 4.

51

— Modeling & Design —

Figure 5.

grid itself. Its output is the bacterium (if
any) found at the location within the grid.
However, we don’t want the bacterium it-
self but its food value as input to the eat
function. The solid arrowhead on the out-
put of the find operation indicates a shift
in viewpoint about the data value, look-
ing at it as an object rather than just a value.
We can then pull the attribute foodValue
out of the Bacterium object.

Operation move from Figure 3 has been
expanded into an entire data flow diagram
in Figure 4. This operation updates two
attributes simultaneously.

Figure 5 shows the reproduce operation
on Bug. In this diagram, two new bugs are
created from scratch and their attributes
initialized from the actributes of the orig-
inal bug. The age of the new bugs is set to
the value 0, however.

THREE MODELS

The analysis is now complete and described
by three separate but related models. The
object model describes the information
structures of the system. The dynamic
model describes the external stimuli that
initiate activity on objects and the opera-
tions that are invoked. The functional
model describes the computations on val-
ues performed by each operation. Together,
all three models desctibe what a system
does with minimal constraints on how it
must be implemented.

Asa final step of analysis, you may sum-
matize operations from the dynamic and
functional models onto the object model.
Figure 6 shows the Bugs object diagram
with operations allocated to object classes.
Operations that update attributes have

been allocated to the class owning the at- |

tributes. For example, growOlder and me-
tabolize have been assigned to Bug.
We can use the analysis model to an-

swer all kinds of questions about the sys-
tem we are building. We can ask and an-
swer queries about the state of the system,
the response of the system to stimuli, and
how values are computed. We can execute
the simulation to a certain level of detail.
We cannot completely execute the model
because we left some details open such as
the mapping of the gene rotation factors
into probability vectors. We omitted these
details because we did not care exactly how
they are implemented.

This example is briefand I do not have
the space to explain it in full detail. There
are details in the diagrams that you can
puzzle out on your own. In future columns,
I will follow the problem through the de-
sign and implementation stages.

During design, we must resolve any

open issues and expand the details of any !

loosely specified operations. We must
also transform and optimize the analysis
model so that it is efficient enough for
implementation. During implementa-
tion, we must map the design into a

foodValue:Weight

I "

weighl:Weight
strong:Waighi
age:Tima
diraction:Angle

step()
dia() pasilion:Point
eal()

growOlder() Grd
move()
reproduce()
elale(by:Angle)
melabolize()
offsel{by:Poinl)

=

Gena

boundary:Polygon

rolationFactor:Array of Inleger

mutale()
randombDirection():Angle

Figure 6.

specific programming language and sat-
isfy all of the rules and conventions of
the chosen language.

OF MODELS AND COLUMNS

In future columns, I hope to look at dif-
ferent aspects of modeling and design some-
times taking a high-level view of a broad
area and sometimes exploring some inter-
esting nartow issue in detail. I do not in-
tend to recapitulate the material in our
book in detail but I will touch on some of
it in passing and also bring up some new
issues. We are still learning from others
and we hope they will learn from us so you
may see changes and inconsistencies over
time. That's life, real and artificial.
Methodologies as well as bugs and designs
must evolve, so I would welcome feedback
from readers.

ACKNOWLEDGMENT

This month's column includes mate-
rial from the Object-Oriented
Modeling and Design Tutorial &y
James Rumbaugh et al. Used by per-
mission of the authors.

REFERENCES

[Dewtn89] Dewtney, A.K. Mathematical recreations,
Scientific American, 260, 5, 1989.

[Rumba91] Rumbaugh, J., M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modkrling and Design, Prentice Hall, Englewood
Cliffs, NJ, 1991.

James Rumbaugh is a computer scientist at General
Electric Research and Development Center in
Schenectady, NY. Dr. Rumbaugh has been active
in object-oriented technology for many years. He
developed the object-oriented language DSM, the
OMT methodology, and the OMTool graphic ed-
itor. He is author (with Michael Blaha, William
Premerlani, Fredervick Eddy, and William
Lorensen) of Object-Oriented Modeling and
Design by Prentice Hall. He can be reached at
GE R&D Center, Bldg K1-5B424, PO Box 8,
Schenectady, NY 12301, by phone at (518)387-
6358, or by email at rumbaugh@crd. ge.com.

52

JOOP NOVEMBER/DECEMBER 1991

Making inferences about

objects

Tools

by Paul Harmon

N MY LAST COLUMN, I discussed
some of advantages that could be
gained by combining the features
of frames, a concept derived from
the Al world, with the class/instance
approach found in the world of object-ori-
ented programming, The mixture of frames
and objects, as exemplified by the best of
the current expert system-building tools,
offers greater power and Aexibility. In mak-
ing that argument, I relied on the features
that frames bring to objects including de-
faults and constraints on the values of at-
tributes, class-specific attributes, and the
ability to control inheritance in various
ways. In this column, I want to consider
the additional power that can be gained
when you combine object-oriented sys-
tems with inference/rule-based systems.

I propose to describe a scheduling prob-
lem that I call the Trucks & Drivers prob-
lem. It provides a modest but interesting
example of how one can combine an in-
ference-based set of rules with an object-
oriented system to solve a problem much

mote efficiently than either technology

could by itself.

The Trucks & Drivers problem is sim- |

ple: we want to develop a truck schedul-
ing system that will identify pairs of trucks
and drivers that are available at the same
location and ready to be disparched.
Rather than just pairing any truck with
any available driver, we will also need to
apply some criteria to assure that we use
the “best” available driver at any point in
time.

We will need to create three classes, one
to describe drivers, one to describe trucks,
and one to describe successful matches be-

tween the two. Our classes take the form :

shown in Table 1.

We will describe the uses of the slots |

and methods in a moment. Note first, how-
ever, that this application assumes an ex-
pert system tool that can auromatically link
with various relational databases. In this
case, we include a dBASE method in both
the Truck and Driver class. (This is a pre-
specified method available in the tool.)
This method will automatically generate
and execute the code necessary to obtain
information from records in database files
on trucks and drivers. In other words, the
Truck and Driver classes will be instantiated
by drawing on values stored in records in
Truck and Driver database files.

In addition to the three classes, we will
wrirte a single rule that will be manipulated
by an inference engine. (An “inference en-
gine” is simply an algorithm for searching
for rules and evaluating them. The use of
an inference engine assures that the appli-
cation will use dynamic binding just as an
object-oriented application that incorpo-

rates virrual methods makes certain deci- !
. sions at runtime.) We could, of course,
write an inference engine from scratch but
. instance. This index is held in memory so

that wouldn’t be very efficient. It makes a
lot more sense to acquire an expert system-
building tool, develop our objects and rules
within that tool, and then embed thar tools’
inference engine in the final application
when it is compiled.

To solve our scheduling problem, we
will need the following rule:

If orderby (Driver?.Score)
and Driver?.Return_Status = available
and Truck?.Return_Status = available

and Truck? and Driver? with
Truck?.In_City = Driver?.In_City

Then send (Make_Unavailable to Driver?)

send (Make_Unavailable to Truck?)
send (Create_Result, Truck_License
and Driver_Name to class (Results))

This rule is a pattern-matching rule be-
cause it does not refer to any specific in-
stance of either Truck or Driver. Instead, the
inference engine automatically seeks out
instances of trucks and drivers and suc-
cessively binds them with this rule to de-
termine if there are one or more success-
ful implementations of this rule.

To make this rule even more powerful,
we have included an orderby command in
the rule. The orderby command evokes the
A* algorithm, an Al search technique that
will prioritize any list of drivers according
to some set of criteria. In this specific case,
the orderby command sends a message to
a method, Driver.Score. That method, in
turn, applies a formula to the values of the
Seniority, Safety_Record, and Layover slots
associated with each instance of the Driver
class and creates an index that orders the
drivers according to a score assigned to each

it can be reused. The instance of Driver with
the highest score is returned to the rule.
Each time the rule is reinstantiated the in-
stance of Driver with the next highest score
is returned. This continues until the entire
list of Driver instances is exhausted.
Driver? indicates that the rule will ex-
amine instances of the Driver class. As each
instance is identified, it will be bound with
Driver? (e.g. Driver1, Driver?, etc.) and sub-
stituted into the rule wherever Driver? oc-

53

— Tools —

Table 1.

Class: Driver

Class: Truck

Class: Results

slots:

methods:

slots:

methods:

slots:

Name (any name)

Status (available/unavailable)

City (SF, LA, NY, InRoute)

Seniority (no. of years with firm)

Safety_Record (no. of accidents)

Layover (number of days that the driver has had off
since last trip)

Retumn_status (returns value for status slot)
In_City (returns value for city slot)
Driver_Name (returns value of Driver_Name)
Make_Unavailable (changes value of status slot fo unavaiable)
Score (returns a value derived by applying a formula to
the values associated with the seniority slot, the safety
record siot and the layover slot)

dBASE (automatically generates code to obtain record
information from database)

License (License number)
Status (available/unavailable)
City (SF, LA, NY, InRoute)

Return_Status (relurns value for status slot)

In_City (relurns value for city slot)

Make_Unavailable (changes value of status slot to unavailable)
License_Num (returns value of License)

dBASE (automatically generates code to obtain record
information from database)

Truck (licenss)
Driver (name)

methods:

Create_Result (creates an instance of results class)

Truck_License (places value of truck license in the new

instance)

Driver_Name (places value of driver in the new instance

curs. Next, the inference engine will iden-
tify an instance of the Truck class and bind
it with the term Truck?. By binding and
unbinding instances of Truck and Driver,
the rule will be used over and over again.

The clause: Driver?.Return_Status = avail-
able sends a message to the bound instance
of Driver to fire a method called
Return_Status. This method, in turn, checks
the slot of the Driver instance called Status
and returns its value. If the value of the
Driver1.Status slot is available, this clause
succeeds and the inference engine moves
on to the next clause of the rule.

In a similar manner, the rule initiates a

message to the Truck instance (e.g,, Truck1)
that has been bound to determine if the
truck is available. Assuming the value of the
Truck1.Status slot” = available, the inference
engine proceeds to check the next clause.
The fourth clause sends messages to both
the Truck and the Driver instances to deter-
mine whar city each instance is in. If they
are in the same city, the rule proceeds.
Whenever a match is found, the infer-
ence engine proceeds to the Then portion
of the rule and sets the value of each of the
instances’ Status slots to unavailable. Next,
it creates an instance of the Results class
and assigns the driver’s name and the

truck’s license to the new instance. (The
entire application is controlled by an Agenda
that began by initiating the forward chain-
ing rule. When the rule has fired as many
times as it can, the second item on the
Agenda, which calls for a printed list of all
instances of the Results object, is triggered
and the application is complete.)

Figure 1 illustrates the status of our
Truck & Driver application at the point when
the system has successfully fired the rule
once and identified one match. The in-
ference engine has now reinstantiated the
rule with new instances of Truck and Driver
and is now ready to try for a second match.
(Note that the second rule will fail since
Truck? is in a different city than Driver2.)

Ifyou think of an instance as similar to
a relational database record, and you con-
sider the instances of different classes (files)
as records belonging to different files, then
our pattern-matching rule is doing what a
database programmer would call “joins.”
In most cases, however, pattern-matching
rules are much more efficient than database
joins since the inference engine dynami-
cally sets successful matches to “unavail-
able” thereby successively reducing the set
of available trucks and drivers that must
be checked during each successive round
of search. In addition, the use of the A* al-
gorithm assures that the search will be pri-
oritized. In other words, the use of infer-
encing, pattern-matching rules, and classes
that can be instantiated from a database
provides developers with a much more
efficient way to handle complex configu-
ration, planning and scheduling problems
that either rules or objects, by themselves,
could provide. (It is exactly these types of
problems that have led all major expert
system tool vendors to add object-oriented
capabilities to their tools.)

In addition, since an inference engine
examines whatever rules it finds in the
knowledge base when the application is
run we could easily modify our program
by adding additional rules to the knowl-
edge base. We could add rules to handle
exceptions. Similarly, in some emergency,
we could add or modify rules to handle
special situations. All the arguments that
can be made for the advantages of the mod-

54

JOOP NoOvVeMBER/DECEMBER 1991

— Tools —

Second instantiation of pattern matching rule:

If orderby (Driver2.Score)
and Driver2.Return_Status = available
and Truck2.Return_Status = available
and Truck? and Driver2 with

Truck2..In_City = Driver2.In_City

Then
send (Make_Unavailable to Driver2)
send (Make_Unavailable to Truck2)

send (Create_Result, Truck_License and

Driver_Name to class (Results))

B

tatus

City

Seniority
Safety_Record
Layaver

Class:
Driver

Available
In_City

Driver_Name

Make_Unavailabl

Truck_License Score
Driver_Name “BASE
Class:
Results Create_Result
Truck_License
e Unavailable
Driver_Name SF
]
Tnstance: Truck_License 1234 Layoverk M5]
(Reator
= T — L
Status Available |
* Instance: City Hsr]
Driver2 - Seniority 3
e Safety_Record | 1-A
Layover 4]

ularity inherit in object-oriented pro-
gramming can also be made for the use of
inferencing and rules. The two techniques
combined, each representing a slightdy dif-

ferent type of modularity, are much more |

powerful than either by itself.

There are certainly simpler problems
for which languages like Smalltalk and C++
are well suited. When you consider inte-
graring object-oriented programming ca-
pabilities into a CASE tool to facilitate the
development of large, complex commer-
cial applications, however, it's hard to imag-
ine that users aren’t going to want the ad-
vanced object-oriented features that result
from combining frames and objects. They
will also want the additional capabilities
that can only be obuained by combining
objects with inferencing and rules.

Several popular expert system-building

tools could come close to the solution I
have reviewed. As far as I know, however,
only Aion Corporation’s ADS tool has the
capability of combining the inferencing

and pattern-matching capabilities illus-
trated with message passing and the full
encapsulation that is illustrated. (Most ex-

pert system tool vendors are still in the pro- !

cess of adding message passing and figur-
ing out how to enforce encapsulation while
still running efficiently in mainframe en-
vironments.) When you consider that
Aion’s ADS is written in C, runs on main-
frames in environments like IMS and
CICS, and accesses all the mainframe
databases, you realize why I believe that
the most powerful and practical object-
otiented programming environments are
being sold by expert systems vendors. B

PRODUCT INFORMATION

AION DEVELOPMENT SYSTEM (ADS)
AION CORp.

101 UNIVERSITY AVE.

PaLo ALTo, CA 94301
(415)328-9595, fax (415)321-7728.

1 Status l
City |

Return_Status

Make_Unavailablg

Hi234 |

Figure 1. The Trucks & Drivers situation after one rule has fired.

tatus Unavailabl]
City SF |
Instance: License | 4567]
Driver2 Status HAvailable]
' City HIA]
ACKNOWLEDGMENTS

The author wishes to acknowledge the
help received from Jan Aikins and
Bernaderte Kowalski of Aion
Corporation in setting up and testing
this problem. The syntax of the rule
and the classes listed in this article,
however, are not from Aion’s ADS.
Aion’s syntax is more elegant, but
would require more information about
how an inference engine works. I
modified the syntax to make it easier
to describe the Trucks & Drivers appli-
cation in such a short space.

Paul Harmon is the editor of two newsletters:
Object-Oriented Strategies and Intelligent
Software Strategies. He is the coauthor of three
popular beoks on expert systems and the CEO of
ObjectCraft Inc. He can be reached at Harmon
Associates, 151 Collingwood, San Francisco, CA
94114, by phone at (415)861-1660, or by fax
ar (415)861-5398.

55

Combining modal and
nonmodal components to
build a picture viewer

Smalltalk

by Wilf LaLonde & John Pugh

VER THE PAST several

months, we watched a

colleague develop an ap-

plication interface that

had a requirement for

large numbers of iconic buttons and static

pictures. A great deal of his time was spent

importing color pictures from a Microsoft

Windows paint program through the clip-

board, finding that minor variations were

needed, moving them back to the paint
program, and repeating the cycle.

There were several annoyances in this

cycle. Since thete were many dictionaries

of such pictures, the picture to be updated !
had to be located, often by inspecting suc- |

cessive candidates and displaying them by
sending each an explicit display message
to get a visual check. Next, care had to be
taken to place a copy of the pictute on the
clipboard because the operation that ac-
tually moves the bits into the clipboard ul-
timately destroys (releases) the picture when

Library Plcture

| LI L
|Ganadian Flag i

Figure 1. The picture viewer.

a new picture is placed in the clipboard.
Of course, if you could be guaranteed that
the transfer was actually going to be suc-
cessful you could avoid making a copy.
When the clipboard picture was success-
fully pasted into the paint program, it was
necessary to come back to Smalltalk to ex-

plicitly release the original picture because '

Smalltalk/V Windows keeps handles into
operating system memory where the bits
are actually kept. Coming back the other
way is much simpler because a new pic-
ture is created in the process.

What makes the process painful is that
you have to continually execute bits and
pieces of code that are kept, say, in a spe-
cial workspace. Every now and then, this

code is discarded, sometimes deliberately

and sometimes accidentally, and must be
regenerated.

What was needed was a simple picture
browser (Fig. 1) that supported these op-
erations transparently. The browser we de-
scribe is based on an original design by
Wayne Beaton but has undergone sub-

- stantial modifications. In particular, the

new design subscribes to the usual editing

paradigm whereby a user is always edicing .
a copy rather than the original. It also makes -

use of modal dialog boxes for opening and
saving information. The modal dialog
boxes and the browser, which we call the
picture viewer, were all developed with

Acumen’s Window Builder for Smalltall/V

* Windows. It may be a surprise to some of

you that dialog box funcrionality is already
supported by the builder; i.e., there is no
need for an external dialog box ediror.

DESIGNING THE PICTURE
VIEWER

The picture viewer is designed to keep track
of a number of different picture libraries
that it maintains in a class variable called
PictureLibraries — a dictionary in which
the key is the name of the library and the
value is another dictonary of pictures keyed
by the picture name. We can also file out
the libraries but we won’t focus on that is-
sue here.

In a typical session with the viewer, a
user might open an existing library using
Open... in the Library menu (Fig. 2). Next,
he might look at the pictures it conrains
by clicking on the Next (or Previous) but-
tons. The name of the picture is displayed
in the combo box while its extent is dis-
played to the right. It is also possible to go
directly to a specific picture by selecting
the appropriate name in the combo box.

To copy a picture into the clipboard or
paste the clipboard over an existing pic-
tute, the Copy or Paste operation, re-
spectively, in the Picture menu can be used
(Fig. 3). Menu command New... requires
a prompt for the name of the picture; it
produces an empty picture that can sub-
sequently be pasted over.

New Ctri+N

Open... Cirl+0
Save Ctri+S
SaveAs... Cirl+A
Delete Curl+D

Figure 2. The Library menu.

56

JOOP NOVEMBER/DECEMBER 1991

— Smalltalk —

Listing 1. Class ListQueryDialog.

class ListQueryDialog
i superclass WBTopPane
instance variables result listPane list

class methods
extamples

examplel
"ListQueryDialog example1"
~ListQueryDialog new
label: 'Choose a color’;
openOn: #('red’ 'qreen’ blue')

instance methods
generated by builder

addSubpanesTo: aPane
~ g@Pane
owner: self;
when: #opened perform: #opened:;

addSubpane: (
Button new
| owner: aPane;
I setStyle: #defaultPushButton;

contents: ‘'0K';

framingBlock: (23 @ 152
rightBottor: 128 @ 180);

yourself);

addSubpane: (
Button new
owner: aPane;

conttents: 'Cancel’;
framingBlock: (139 @ 152

rightBottom: 244 @ 180);
yourzelf);

addSubpane: (
listPane := ListBox new

owner: aPane;

nameForInsgtVar: listPane';

when: #doubleClickSelect
perform: #selectListEntry:;

framingBlodk: (22 @ 23
rightBottom: 244 @ 137);

yourself)

when: #clicked perform: #ok:;

when: #dicled perfiorm: #cancel:;

buildMenuBarFor: aPane
“Nothing”

defaultFrameStyle
Smalltalk isRunTime
ifFalse: [
~(WinConstants at 'WsOverlapped") |
(WinConstants at: WsClipchildren') |
(WinConstants at: 'WsCaption')]
ifTrue: [*46137344]

initWindowExtent
~270 @ 218

builder override

isModal
“rue

label
~abel

opening and dosing

openOn: aCollection
list := aCollection.
“self gpen

result
~result

top pane event handling

opened: aPane
listPane
comtents: list;
selectindex: (list isEmpty
ifTrue: [0]
ifFalse: [1]);
setFocus

list pane event handling

selectListEntry: aPane
"Assumes the list entry is already selected."
self ol nil

button pane event handling

cancel: ignore
result := nil
self closeWindow.

ok: ignore
result := listPane selecteditemn.
self closeWindow.

Copy
Cut

Paste

Delete
Rename...

Figure 3. The Picture menu.

DESIGNING AND IMPLEMENT-
ING APPROPRIATE MODAL
DIALOG BOXES
The original implementation of the pic-
ture viewer used simple prompters for re-
acting to Open... and SaveAs... in the Li-
brary menu. To improve on this, we used
the Window Builder to design two dialog
boxes as shown in Figures 4 and 5.
Initially, these dialog boxes were
specifically designed for the picture viewer
but it quickly became apparent that little
work had to be done to make them more
generally useful. We called them List-
QueryDialog (for picking and choosing an

- arbitrary element of a list) and ListExten-

sionDialog (for picking and choosing as
before but also permitting the new element
to be supplied by typing it). See the cor-
responding example class methods in List-
ings 1 and 2 for how they might be used.

The dialog box was designed to respond

to four events:

» the top pane’s #opened event, which
has to place the list of items in the list
Pane.

* the list pane’s #doubleClickSelect event
that doubles for a click on the OK button.

s the OK and Cancel burtons’ #clicked

event that, respectively, set the value of

Library1

Library3

Figure 4. The Open... dialog box.

57

— Smalltalk —

m

Library Name

Libraryl
Llbra

Figure 5. The SaveAs... dialog box..

the result instance variable to the item
selected in the list pane or nil.

We had to browse the Smalltalk library
to find out that modal dialog boxes send
the message result to obtain the value to
be returned (an Acumen extension).

When designing the dialog box in the

Window Builder, no option or switch was

located that enabled us to specify whether
or not the resulting window was to be
modal. A modal window prevents users
from carrying on in an application until a
response is provided. Making a window
modal is simply a marter of clicking a switch
in the builder.

There was, however, one problem that
was caused by the builder. We needed to
be able to supply an arbitrary title. Nor-
mally, this is done by sending the message
fabel: aString to the window. This causes
the window to redisplay the string it ob-
tains by sending itself the message label.
However, the builder insists on changing
the code for this method to ~abel:=user-
SuppliedStringConstant, which causes any
label changes to be ignored. What the
builder should have done is add the re-
quired label: aString message in the gen-
erated pane construction method addSub-
panesTo:. We simply replaced the problem
method with the correct version that ex-
ists in a superclass.

Listing 2. Class ListExtensionDialog.

The dialog box for class ListExtension-
Dialog was obrained by editing the List-
QueryDialog window to add two more
panes: a static text pane (referenced by in-
stance variable subtitlePane) and an entry
field (referenced by instance variable
namePane). The static text pane’s contents
could be supplied by the user by sending
the window the message subtitle: aString.
The entry field permits an element not in
the list to be supplied.

An additional handler, method click-
ListEntry:, for event #select in the list pane
was added to ensure that the selected list
element was inserted into the entry field.
Selecting an element didn’t require a han-
dler in the previous dialog box because the
selected element was rettieved only when
the OK burton was pressed. Of course,
even though there was no handler, the list
element was still selected as a user clicked
on it in the list pane.

The only other complication involves
the subtitle: aString message. Normally, a

superclass ListQueryDialog
class methods
egamples
oamplei
"ListExtensionDialog example1"
~ListExtensionDialog new

label: 'Choose a color’;
subtitle: 'Color name';
openOn: #('red' 'green’ 'blue’)

instance methods

generated by builder

addSabpanesTo: aPane
.. similar to Listing 1 except for ...

addSubpane: (
subtitiePane -= StaticText new
owner: aPane;
nameForInstVar: 'subtitlePane';
contents: ‘untitled';
framingBlock: (22 @ 29
rightBottom: 116 @ 57);
yourself);

addSubpane: (
listPane := ListBox new
owner: aPane;
nameForInstVar: listPane';
when: #select
perform: #clickListEntry:;
when: #doubleClickSelect
perform: #selectListEntry:;
framingBlock: (21 @ 79
rightBottom: 243 @ 193);
yourself);

addSubpane: (
namePane := EntryField new
owner: aPane;
nameForInstVar: ‘mamePane’;
framingBlock: (125 @ 27
rightBottom: 243 @ 51);
yourself)

initWindowExtent
267 @ 282

dialog box initialization

subtitle: aSting
subtitle := aString.
subtitlePane 1sNfl
ifFalse: [subtitlePane
contents: aString]

top pane event handling

opened: aPane
namePane contents: (list isEmpty
ifTrue: ["] ifFalse: [list first]).
self subtitle: subtitle.
super opened: aPane.

list pane event handling

clickListEntry: aPane
"Assumes the list entry is already selected.”
namePane contents: listPane
selecteditemn

selectListEntry: aPane
"Assumes the list entry is already selected "
namePane contents: listPane
selectedItem.
self ole: nil,

button pane event handling
ak: ignore

result := namePane contents.
self closeWindow.

58

JOOP NOVEMBER/DECEMBER 1991

— Smalltalk —

user would supply the subtitle (see “Library
Name” in Fig. 5) before the window is
opened. At that time, the subtitle pane
doesn’t extist so the subtitle must be stored
in a local variable (subtitle). When the win-
dow is opened, the #opened event handler
can place the string in the subtitle pane. Of
course, users might want to dynamically
change this subtitle. The short (but never-
theless complex) implementation of method
subtitle: handles these possible scenarios.

SMALLTALK/V WINDOWS
EXTENSIONS TO SUPPORT
THE PICTURE VIEWER

To support the manipulation of the pic-
tures conveniently, it was necessary to add
obviously missing methods to class Bitmap,
e.g., deep and shallow copy operations as
shown in Listing 3.

More fundamental and problematic was
that fact that halfway through our imple-
mentation we discovered thar copy oper-
ations for dictionaries were incorrectly im-

plemented. We were taking deep copies of :

libraries (dictionaries of bitmaps) and find-
ing that releasing the bitmaps in the copy
destroyed the originals, too. Our initial re-
action was to implement our own private
method that performed the copy correctly
but we ultimately decided that a proper
solution required a change to the system.

The problem stems from the fact that
the original implementets provided an im-
plementer’s view of the solution rather than

Listing 3. Extensions to class Bitmap.

class Bitmap

instance methods
copying

deepCopy

| bitmap |

bitmap := self class
screenBxtent: self extent.

bitmap pen
copyBitmap: self
from: self boundingBox
at: 0@0.

~bitmap

ghallowCopy
~self deepCopy

a user’s view. Intuitively, a shallow copy
of an array provides a user with a new ar-

ray sharing the elements of the old. More- -
over, changes to the new array don’t affect !

the original. Similarly, a shallow copy of
a dictionary should provide a user with a
new dictionary sharing the keys and val-
ues of the old. Changes to the new dic-
tionary should not affect the old (which
was not the case). A deep copy is similar
except that a shallow copy of the elements
is made in the case of an array (a shallow
copy of the keys and values in the case of
a dictionary). Consequently, users expect
to be able to change the elements (keys
and values) in the deep copy without af-
fecting the corresponding elements (keys
and values) of the original. As implemented,
neither the shallow or deep copy opera-
tion for dictionaries makes copies of the
keys and value. The revised methods are
shown in Listing 4.

IMPLEMENTING THE PICTURE
VIEWER

The picture viewer maintains two instance
variables, libraryName and pictureName

Listing 4. Extensions to class Dictionary.

class Dictionary
instance methods
copying

shallowCopy
"Answer a copy of the receiver which
shares the receiver keys and values
(but not the same association
objects)."
| answer |
answer := self species new.
self associationsDo: [:element |
answer add: element shallowCopy].
~answer

deepCopy
"Answer a copy of the receiver with

shallow copies of the keys and values
(which requires a deep copy of the
association objects)."
| answer |
answer := self species new.
self associationsDo: {zelement |
answer add: element deepCopy].
“answer

‘Editor Enhancements
for

Smalltalk/V 286

Multi-function editing for
Smalltalk/V, consistent with the
standard editor and adding over
200 user accessable commands,

including;

» Text Status Pane

e Online Help

e Key Customization

e Command Completion

¢ Enhanced Cut/Paste
(with multiple copies
viewable in placegj

e Copy Ring Processing

¢ Place Marking

* Macro Facility

* Easy-to-use Enhanced
Search and Replace

¢ Text Transposition

e Case Alteration

e Text Fill and Margin
Settings

e Abbreviation Facility

* Non-printing Character
insertion and value
report

e Programming Support

* User Preferences

e Miscellaneous Goodies

US $75.00 + $10.00 shipping.
Refund if not satislied

VISA and MasterCard Accepted.
Ordering / further detafls from:
Object Orchard Ltd.
9 Fettes Row,

Edinburgh,

Scotland, UK.

PHONE: +44 31 558 1815
FAX: +44315562718

E3 for Smalltalk/V Windows
available July 1991.

Circle 30 on Reader Service Card

— Smalltalk —

Listing 5. Class PictureViewer,

class PictureViewer

superclass WBTopPane

instance variables library libraryChanged
libraryName pictureName
picturePane pictureNames
Pane pictureSizePane

class variables PictureLibraries

class methods

examples

examplel
"PictureViewer example1"
PictureViewer new open

class initialization

initialize
"PictureViewer initialize"
(PictureLibraries isKindOf: Dictionary)
iffrue: [self release].
PictureLibraries := Dictionary new

release
"PictureViewer release”
PictureLibraries do: [:library |
library do: [:picture | picture release]]

Iibrary access and modification

libraries
"PictureViewer libraries"
APictureLibraries

libraries: aDictionary
self initialize.
PictureLibraries := aDictionary

instance methods
generated by builder

addSubpanesTo: aPane

~ aPane
owner: self;
when: #opened perform: #opened:;
when: #close perform: #closed:;

addSubpane: (
StaticBox new
owner: aPane;
setStyle: #blackFrame;
framingBlock: (166 @ 189
rightBottom: 257 @ 214);
yourself);

addSubpane: (
Button new
owner: aPane;
when: #clicked
perform: #clickedNext:;
contents: 'Next';
framingBlock: (175 @ 224
rightBottom: 251 @ 248);
yourself);

addSubpane: (
picturePane := GraphPane new
owner: aPane;
nameForInstVar:'picturePane’;
framingBlock: (14 @ 14
rightBottom: 257 @ 180);
yourself);

addSubpane: (
Button new
owner: aPane;
when: #clicked
perform: #clickedPrevious:;
contents: Previous’;
framingBlock: (26 @ 224
rightBottom: 102 @ 248);
yourself);

addSubpane: (
pictureNamesPane := ComboBox new
owner: aPane;
nameForinstVar:
‘pictureNamesPane’;
setStyle: #dropDownList;
when: #select
perform: #selectPichireNarne:;
when: #doubleClickSelect
pexform: #selectPictureName:;
framingBlock: (15 @ 189
rightBottor: 157 @ 293);
yourself);

addSubpane: (

pictureSizePane := StaticText new
owner: aPane;
nameFarinstVar: ‘pichmeSizePane';
setStyle: #centered;
contents: '32@32';
framingBlock: (168 @ 193

rightBottom: 255 @ 212);

yourself)

buildMenuBarFor: aPane
... code not shown ...

defaultFrameStyle
Smalltalk isRunTime

ifFalse: [
~(WinConstants at: 'WsOverlapped') |
(WinConstants at: 'WsClipchildren') |
(WinConstarts at: 'WsCaption') |
(WinConstants at: ‘WsSysmenn') |
(WinConstants at: 'WsMaximizebox') |
(WinConstants at: 'WsMinimizebox') |
(WinConstants at: WsThickframe')]

#True: [~47120384]

initWindowBxtent
282 @ 307

isModal
“alse

builder override

label
~abel

library menu commands

libraryNew
self promptForSavelfChanged.
self privateClearLibrary: library.
\ibraryName := pictureName := nil.
libraryChanged ;= false.
self update

libraryOpen
| mame keys |
self promptForSavelfChanged.
name := ListQueryDialog new
label: 'Choose a picture library’;
openOn: PictureLibraries keys
asSortedCollection.
name isNil ifTrue: [*self]. "User cancelled.”
self privateClearLibrary: library.
library := (PictureLibraries at: name)
deepCopy.
libraryName := name.
keys := library keys asSortedCollection.
pictureName := keys isEmpty
ifTrue: [nil]
ifFalse: [keys first].
libraryChanged := false.
self update

librarySave

libraryName isNfl
ifTrue: [“self librarySaveAs).

self privateClearLibrary: (PictureLibraries
at: libraryName).

Picturelibraries at: libraryName
put: library deepCopy.

libraryChanged := false

60

JOOP NOVEMBER/DECEMBER 1991

Class Libraries -

~ sEffectively Managing Multiprogrammer
Smalltalk Projects

*Metrics for Measuring
Smalltalk Systems

*Organizing Your Smalltalk
Development Team

*Metalevel Programming
eSmalltalk in the MIS World

eSmalltalk as a Vehicle for Real-Time
and Embedded Systems

sTeaching Smalltalk to
COBOL Programmers

e Interfacing Smalltalk to a
SQL Database

sRealizing Reusability

Not-to-be missed columns:

GUI Interfaces: Greg Hendley and

Eric Smith, Knowledge Systems Corp.
Getting Real: Juanita Ewing,
Instantiations, Inc.

Design: Rebecca Wirfs-Brock,
Tektronix

Smalltalk with Style: Ed Klimas,
Allen-Bradley, and Suzanne Skublics
from Object Technology International

Plus:

eHard-hitting product reviews
*Book and conference reviews
eLab reviews

s Best of Smalltalk Bulletin Board
e Personality Profile

If you're programming in Smalltalk, you should be reading THe SmaLLTAaLk ReporT. Become a Charter Subscriber!

e GRACGGT Subscription Form -

Q Yes, enter my Charter Subscription at the terms indicated. =~ Name
Q1 year (9 issues) Q 2 years (18 issues) Title
Domestic $65 $120 C
Foreign $90 $170 ompany
Method of Payment Afidress]
0O Check enclosed (payable to Tre SmaLLTALK REPORT) City State Zip
foreign orders must be prepaid in US dollars drawn on a US bank Cou ntry Phone
Q Bill me Mail to: THe SmaLLTaLK REPORT
Q Charge my Q Visa Q MasterCard Subscriber Services, Dept. SML
Card # Exp. Date PO Box 3000, Denville, N) 07834
. or Fax: 212-274-0646
Signature

Circle 49 on Reader Service Card D1LA

— Smalltalk —

Listing 5. Class PictureViewer (continued).

librarySaveAs

| name |
name := ListExtensionDialog new
label: Name new picture library';
subtitle: 'Library Name';
openOn: PictureLibraries keys
asSortedCollection.
name 1sNil ifTrue: [*self]. "User cancelled."
self privateClearLibrary: (PictureLibraries
at name ifAbsent: [Dictionary new]).
Picturelibraries at: name
put: library deepCopy.
libraryName := name.
libraryChanged := false.
self updateLabel

libraryDelete

libraryName isNil ifTrue: [*self].
(MessageBox confirm: Delete library ',
libraryName)
ifFalse: [*self].
self privateClearLibrary: (PictureLibraries
at: libraryName).
PictureLibraries removeKey: libraryName.
self privateClearLibrary: library.
libraryName := pictureName := nil.
self update

picture menu commands

pictureNew

| name picture |
name ;= self promptForName: ‘picture’
in: library.
name 1sNil
#True: [*nil]. "User changed his mind."
picture := Bitmap screenExtent: 0@0.
library at name put: picture.
pictureName := name,
libraryChanged := true.
self updatePictureNames; updatePicture

pictureCopy

| picture |
(picture := self picture) isNil ifTrue: [~self].
Clipboard setBitmap: picture copy

pictureCut

~self pictureCopy; pirtureDelete

picturePaste

pictureName isNil ifTrue: [“self].

(library at: pictureName) release.

library atz pictureName put
Clipboard getBitmap.

libraryChanged := true.

self updatePicture

pictureDelete
| names namelndex |
pictureName isNil ifTrue: ["self],
(library at: pictureName) release.
library removeKey: pictureName.
names ;= pictureNamesPane contents.
namelIndex := pictureNamesPane
selectedIndex.
pictureName := namelIndex > 1
iffrue: [names at: nameIndex - 1]
ifFalse: [names size > 1
ifTrue: [names at: 2]
ifFalse: [nil]].
libraryChanged := true.
self updatePictureNames; updatePicture

pictureRename
| name picture |
pictureName isNil ifTrue: [*self].
name := self promptForName: 'new picture'
in: library.
picture :=library at: pictureName.
library removeKey: pictureName.
library at: name put: picture.
pictureName := name.
libraryChanged := true.
self updatePictureNames; updatePicture

top pane event handling

opened: aPane
library := Dictionary new,
libraryName := pictureName := nil.
libraryChanged := false.
self update

closed: aPane
self promptForSavelfChanged.
self privateClearLibrary: library.
~super close

list pane event handling

selectPictureName: aPane
pictureName := aPane selectedltem.

self updatePlcture

button pane event handling

clickedNext: aPane
self privateMovePictureByOffset: 1

clickedPrevious: aPane
self privateMovePictureByOffset: -1

support operations

picture
Mibrary at: pictureName ifAbsent: [nil]

promptForName: title in: aDictionary
| name |
name := Prompter
prompt: 'Enter ', title,
' name or nothing to cancel'
default:".
(name isNil or: [name isEmpty])
ifTrue: [*nil]. "User changed his mind."
(aDictionary keys includes; name)
ifTrue: [
(MessageBox confirm:
'Name already exists. Try again.')
ifFalse: [*nil].
~self promptForName: title
in: aDictionary)
ifFalse: [*name]

promptForSavelfChanged
| name |
libraryChanged ifFalse: ["self].
name := libraryName isNil
ifTrue: []
ifFalse: [' ', libraryName].
(MessageBox confirm: 'Changes made, ',
'Save Library’, name, '?)
ifFalse: [~self].
self librarySave

updating

update
self
updateLabel;
updatePictnreNames;
updatePicture

updateLabel
self label: 'Picture Library ',
(libraryName isNil
ifTrue: [Untitled’]
ifFalse: [lihraryName])

updatePicinreNames
pictureNamesPane contents: library keys
asSortedCollection.
pictureNamesPane selectItem: pictureName

62

JOOP NOVEMBER/DECEMBER 1991

— Smalltalk —

Listing 5. Class PictureViewer (continued).

updatePicture
| picture offset |
picturePane pen
deleteAllSegments; erase.
pictureSizePane contents: ".
pictureName isNil ifTrue: ["self].
picture := self picture.
offset = (picturePane extent - picture
edernt)
/2
picturePane pen
drawRetainPicture: [
picturePane pen
copyBitmap: picture
from: picture boundingBox
at: offset].
pictureSizePane contents: picture extent

private

privateClearLibrary: aDictionary
aDictionary
do: [:picture | picture release];
initialize: aDictionary size + 10.

privateMovePictureByOffset: anInteger
| names nameIndex newIndex |
names := pictureNamesPane contents.
nameIndex := pictureNamesPane

selectedIndex.
nameIndex isNil
fTrue: [namelndex := aninteger
it
ifTruae: [0]

ifFalse: [names size + 1]].
newIndex := nameIndex + anInteger.
(newIndex between: 1 and: names size)

ifFalse: ["self].
pictureName := names at: newIndex.
self npdatePictureNames;
updatePicture

(see Listing 5), for keeping track of the
cutrent library and picture names (either
can be nil) and an instance variable library
for maintaining a copy of the library being
edited — a library is a picture dictionary.
By working on a copy, arbitrary changes
can be made without fear of undoable
changes. The update operation can redis-
play the complete user interface from these
three variables. Instance variable li-
braryChanged ensures that we don’t prompt
the user for a save if no changes have been
made. The remaining instance variables
provide access to the important panes.

The picture viewer is similar to the
modal dialog boxes in terms of the com-
plexity of the panes and their interractions.
‘What differentiates it from the dialog boxes
is the extensive Library and Picture oper-
ations. To provide a favor for the imple-
mentation, let’s consider one sample from
each group, say method libraryOpen and
picturePaste.

Method libraryOpen begins by prompt-
ing the user to save the current library if
changes were made. If the library name is
nil, a librarySaveAs message is sent (which
prompts for a new name); otherwise, a li-
brarySave message is sent. Next, a dialog
box is created to obtain the new library
name from the user. If the user doesn’t
cancel (the name is nil if he does), the ex-
isting library (the working copy) must be
discarded by explicitly releasing each
bitmap. The working library must be re-
placed by a copy of the library specified by
the user. If there are pictures in the library,
the name of the first picture in the sorted
list is recorded; otherwise, nil is recorded.
Once instance variables libraryName and
pictureName are set, the update method
can display all the required information in
the user interface.

Method picturePaste implements the
code that permits a user to paste over an ex-
isting picture. Ifa new picture is needed, the
user should have performed a New... opet-
ation prior to the paste. The implementa-
tion begins by making sure that there exists
a selected picture for modification. Next,

' the old picture must be explicitly released

before a new one can be obtained from the

. clipboard. The fact that the working library

has been changed is recorded and the sub-
set of the user interface affected is updated
(in this case, just the picture portion).

In general, the most worrisome prob-
lems with this specific application have o
do with making sure bitmaps are released

when they are no longer needed and mak-
ing sure that proper working copies of li- °
braries are obtained; i.e., copies that prop-

erly duplicate the bitmaps. Placing bitmaps
in the dlipboard also requires a copy because
clipboard operation setBitmap: ultimately
releases the bitmap when a new bitmap is
added via a subsequent setBitmap: message.

CONCLUSIONS

Smalltalk programmers (ourselves included)
have a tendency to be forever building new
tools. With the aid of a window builder,
such diversions can be easily justified since
they don’t take very much time and often
end up saving time in the long run.

Also, it should be clear that there is lit-
tle difference between designing a dialog box
and designing a nonmodal window since
the same tool can be used for designing both.

Tools that eliminate the problems in-
herent with the need for releasing bitmaps
are a step in making it easier to avoid
mistakes. Il

ACKNOWLEDGMENT

This article owes a great deal to Wayne
Beaton, who produced the first proto-
type. His interractive demonstration
convinced us of the utility and sim-
plicity of a picture viewer.

Wilf R. LaLonde and John Pugh are Proféssors of
Computer Science at Carleron University in Ot-
tawa, Canada. Their research interests include
object-oriented systems, connectionist systems, vi-
sual programming and user interfaces. They are
co-authors of Inside Smalltalk: Volumes 1 and
2; two books that survey the entire Smalltalk sys-
tem including the complete window classes. Pugh
is Coeditor of The Smalltalk Report.

They are cafounders of The Object People In.
specializing in introductory and advanced courses
in Smalltalk, object-oriented programming, and
object-oriented design.

Professors LaLonde and Pugh can be contacted
at the School of Computer Science, Carleton Uni-
versity, Ottawa, Ontario K15 5B6, Canada, by
phone at (613)788-4330, or by email (bitnet:)
at jpugh@carleton.ca.

63

Book Review

EIFFEL, THE LANGUAGE

Dr. Bertrand Meyer
Prentice Hall, Englewood Cliffs, NJ, 1991

N 1887, THE FRENCH engineer Gus-

tave Eiffel defended himself against |

the Parisian artists who protested his
creation of a huge iron tower in the
center of the city. In response to their
petition he stated: “Must it be assummed that
because we are engineers beauty is not our

concern, and that while we make our con- .

structions robust and durable we do not
also strive to make them elegant ? ... Is it
not true that the genuine conditions of
strength always comply with the secret con-
ditions of harmony ?” Eiffel boldly defended
the premise that perfection in design was
the quintessential combination of beauty,
elegance, robustness, strength, harmony,
and purpose. This was an admirable goal
for Eiffel, the engineer, and the application
of these conceprs to software design is the

equally admirable goal of Eiffel, the lan- .

guage, developed by Dr. Bertrand Meyer.

Dr. Meyer is well known to the object-
otiented software community. His first
book, Object-Oriented Software Construc-
tion, is a principal work in the field- His
language, Eiffel, embodies several impor-
tant software engineering concepts. Some
were taken from earlier languages includ-
ing Simula, Smalltalk, Algol, Ada, and
CLU. But, regardless of their origin, the
concepts behind Eiffel have influenced the
software community as a whole. Dr.
Meyer’s new book is titled Eiffel: The Lan-
guage and is intended to be the definitive
reference for both users and implementors.
It is an extensive rewrite of the language
reference provided with the Eiffel distri-
bution from Interactive Software Engi-

The book is intended to be as ingenious
as the language itself. It implements this
uniqueness through the its structure. While
frequently adding to the text’s usefulness
as a reference, the unconventional organi-
zation sometimes detracts from its read-
ability. Dr. Meyer dislikes traditional lan-
guage documentation in which software
engineers must search through volumes of
books for answers to simple questions. So,
instead of writing several books he inte-
grates his user’s guide, tutorial, reference
book, and philosophical statement into a
single contiguous unit. His goal is to pro-
vide a complete reference book for anyone
using, studying, or implementing tools for
the language. Itis extremely difficult to sat-
isfy such a diverse intended readership and
Dr. Meyer should be commended for his
success. The biggest problem for his read-
ers will lie in acclimating themselves to his
system for maneuvering through the book.

The navigation system involves “road
signs” placed in the left margin of the page.
It is quite workable but initially a bit con-
fusing. The reader is led through the book

by eleven different road signs. Two of these !

indicate that the text is either a preview of
coming ideas or a reminder of previously ex-
plored ones. The other nine denote that the
text cavers either a feature’s purpose, exam-
ples, syntax, semantics, rules, comments,

methodology, caveats, or ways of shortcut- !

ing the book. The concept is excellent but
Meyer is addressing so many different au-
diences that moving through the text is
slightly flustering and takes some practice.

The book is divided into five parts cov-

neering. The book was published in | ering syntactic and semantic conventions,

September, 1991, by Prentice Hall.

linguistic organization and architecture, in-

Reviewed by Steven C. Bilow

ternals, a description of the kernel library,
and ten appendices. Each section contains
between two and twelve chapters. This is
not light reading, but its author has set him-
selfa very specific goal and reminds us that
his book is designed to be “against all odds,
not TOO boring.” In this, he has succeeded
unconditionally.

It is necessary to stress that while the
book is certainly not boring it is rather com-
plex reading. The manuscript provided for
this review numbers 594 pages plus thirty-
five pages of preface. Those who desire only
an overview of the language will require
proficient mastery of the “sign post” nota-
tion. Those wishing to actually use or im-
plement Eiffel will have an easier time since
they will neither need, nor want, to cir-
cumvent the extensive detail. Regardless of
the reader’s level of expertise, the book pro-
vides significant insights and much new
knowledge. But, like many of the best things
in life, reading it will require work.

The baok begins with a brief introduc-
tion to the language and desctibes its prin-
ciple features, Unique concepts such as as-
sertions, exception handling, contracting,
and genericity are introduced as well as the
more established ones like inhetitance, poly-
morphism, and data abstraction. These
form the first section of the book and lead
into the subsequent, and more substantial,
chapters. Readers who desire only a basic
overview of Eiffel may actually find this
section alone sufficient.

The second section deals primarily with
the structure of the language. It presents
concepts, syntax, and examples for each
major linguistic element. Eiffel is based on
a very extensive concept of class. An Eiffel

64

JOOP NOVEMBER/DECEMBER 1991

— Book Review —

class is much more than simply an abstract
data type: it is the primal form from which
all else is derived. Rather than limiting a
class definition to data and functions, Eif-
fel classes consist of constructs for index-
ing, genericity, specific inheritance rela-
tions, instance creation, data and functions
(collectively called fearures), invariants, and
even the specific indication of obsolescence.
Many of these constructs are optional but
are provided for flexibility.

Among the primary class components
are the group of constructs called features.
These are similar to what Smalltalk groups
into methods and instance variables or C++
calls data membersand member functions. In
Eiffe], the client-level distinction between
data and algorithm is purposely clouded. An
account balance in a banking application is
the same to the outside world regardless of
whether it is computed or simply stored
away. Thus, to a dlient it is unnecessary for
asupplier to distinguish between a function
that returns the balance and a variable that
simply stores it. On the level of supplier in-
ternals, however, there must remain differ-
entiation. Eiffel implements this through
four types of features: variables, constants,
procedures (which do not return results),
and functions (which do return results).

These are detailed in Chapter 5 and ex- -
! does not have an explicit inheritance clause

will be a child of ANY. While the object ori-
entation of the language does not extend .

panded throughout the book.

Progressing to deeper levels of detail we
are presented with extensive descriptions
of every aspect of the language. In Chap-
ter 6, inheritance is discussed in both its
usage as a module extension mechanism
and its use in type creation. The client/sup-
plier relationship, and its provisions for
“design by contract,” is coveted in Chap-
ter 7. Chapters 8 through 13 complete the
section with extensive discussions of rou-
tines, correctness, feature adaptation, re-
peated inheritance, types, and conformance.

Internals and libraries are the subjects
of the third and fourth parts of the book.
The third deals primarily wich the inter-
nals of classes, control constructs, external
language interfaces, and lexical details. This
is what Dr. Meyer refers to as the meat of
Eiffel. We are introduced to many of the
elements that make the writing of programs

possible including mechanisms such as se-

quencing, branch instructions, loops, and
rescue clauses for exception handling. Ob-
ject creation, duplication, and comparison
are also discussed, as are feature calls and
type checking.

The final section covers an aspect of Eif-

fel that is not, per se, part of the language. |
This is the basic set of class libraries. These

Chapters discuss only the libraries that make

up the basic Eiffel system. A future book,

Eiffel: The Libraries, will discuss this aspect
of the language in greater detail. The pre-
sent book limits its discussion to those
classes required by every implementation
of the language.

Within the seven chapters that com-
prise this section many aspects of the Eif-
fel philosophy are revealed. Most notable
are the discussion of the universal class,
called ANY, and the descriptions of the
classes for I/0, strings, arrays, and arith-
metic. The section also includes a discus-
sion of a set of classes called persistence
classes that provide a secondary storage
mechanism.

The discussion of Class ANY is among
the more insightful aspects of the book.
This class is a child of the class PLATFORM
and a grandchild of the class GENERAL. The
resulting hierarchy establishes the back-
bone of the class structure. Any class that

to the minute level present in Smalltalk or
SELF, its inherent object structure does
come close to that which the designers and
users of those languages desire. Unfortu-
nately, the chapter that discusses this im-
portant aspect of the language is limited to
five pages and, while it is one of the rare
succinct discussions in the book, a more
extensive treatment would have given some
significant insight into Dr. Meyer's con-
cept of the language.

The final chapters discuss classes that
are slightly less unique but just as essential.
These include input/outpur, exception han-
dling, arrays and strings, and the arithmetic
classes like integers, reals, and doubles. For
simplicity, there are a limited number of
basic classes and redundancy is minimized.
The book discusses these classes in the same

concise manner as before only this time the
brevity is refreshing,

Eiffel: The Language concludes with a
set of appendices that discuss such elements
of the language as style, history, references,
and the development environment. Also
included are summaries of such items as
reserved words and syntax. Among the more
useful appendices are those that assist the
reader in migrating from Version 2.3 to
Version 3 and vice versa. Each appendix is
well focused and well written.

Eiffel is a unique and rigorous language
and Dr. Meyer’s book maintains those traits.
The book is distinctive in its structure and
hence requires a special approach on the
part of the reader. While intended to be
read from cover to cover, doing so may
prove somewhat tedious unless one desires
tremendous detail. Dr Meyer realizes this
and has provided several methods for more
general readers to circumvent the techni-
calities. His navigation system is a bit com-
plex but adequately accomplishes his goal.
The book is relarively difficult reading but
those who tackle it will ind much en-
lightenment. There is no question that this
publication is a tremendously significant
conwribution to the literature and it comes
highly recommended. It provides a defini-
tive description of every aspect of the lan-
guage. In comparison to similar language
references, it is quite readable and Dr. Meyer
should be applauded for his novel approach.
Just as Gustave Eiffel promoted elegance,
rigor, and robustness in architecture,
Bertrand Meyer’s Eiffel carries those char-
acteristics into the world of software. I rec-
ommend the book to anyone interested in
Eiffel, object-oriented design, or rigorous
software engineering methods. I also rec-

ommend patience.

Steven C. Bilow is presently a Senior Technical
Support Specialist for the Computer Graphics
Group at Tektronix, Inc. in Wilsonville, Oregon,
and an independant consultant in computer graph-
ics software. His intevests are in the areas of math-
ematical surface rendering and object-oriented ar-
chitectures for graphics systems.

65

Circle 50 on Reader Service Card

INTERNATI 1
ONAL — Advertiser Index —
Page# Circle
The One Compleie Source for
Object-Oriented Programiming
Related Informadion 72 ettt Ascent Logic (Recruitment)
(7 59, cireceeees Berard Software Engineering, Inc.
[O S— [Borland International
L 120 e, CenterLine Software
. IO 16....c.veeeee. Code Farms
47 i) T C++ Across America
V£ TR 48 C++ at Work
{O9 NE— T S Digitalk
13..ccceeee. . S, Franz
Z: S) E—. General Electric
ST TR it TRIAR C3....cece b Y Glockenspiel
This handy 425-page sourcebook
contains everything you need to Insert.....ccvne.. p Hewlett-Packard
make an OOP-related purchasing 45, Lerereresrenen, Instantiations
decision:
LTI 1) IR International OOP Directory
*Qver 200 companies 7 2O Lee Johnson International (Recruitment)
sNearly 300 products)]
eConsultants & services (> I P T JOOP Focus on Analysis & Design
*Reprints of landmark articles v S &7 oo, JOOP Video: “Choosing O-O Methods”
eBibliography by author/article
sConferences & seminars /ST b7 S Knowledge Systems Corp.
Cross-referenced by languages 21 26.ccieeenenne Lund Software House
& systems supported T) L0 Oasys
Have A to the Entire 0-O K TR | 7 S Object Design
Technology Spectrum at Your b T L1 F— Object International
Fingertips
9 59.ciienns 30 e Object Orchard
e e memmmsececmmemmmemanan—-
$63 Domestic ~ $71 Forelgn 43 [T Oregon Software
Q Check enclosed (payable to OOP Direc- 29 L% T Rational Consulting
tory; foreign orders must be prepaid in US
dollars drawn on US bank) 27 i T Sequiter Software
2;21rge my QVisa Q l\gr:cp_ 46............ 56 uctieeneenns Ser Laboratories
Signature 1. R y ZE Six Graph Computing Ltd.
Name (Y — 49...eeeeerrnes The Smalltalk Report
Company
Address Ky 28 SoftPert Division, Coopers & Lybrand
City State .
ZIP Country. 39t b T Solution Systems
Phone v E I StructSoft
Return to: The international OOP Directory,
Subscriber Services, .0, Box 3000, Dept. DIR, Y4 T 39.cciiiernnae The X Journal
Denville, NJ 07834, or order by phone (212) 274-
0640 or FAX (212) 274-0646 D1LA

66

Object-Oriented Software Engineering

=3=3\D
AR

Consulting In

Training In Obi - Products

o O ject-Oriented
Object-Oriented Technology | Object.
—Software Engineering ___Technical Oriented
—Requirements Analysis - Management I\Plllgg\%cger
—Design :

—On-Going Support __ Obi
— ' ' ect-
Domain Analysis __ Real Time Ori]ented

—Software Testing L MIS Modeler

Berard Software Engineering meets the needs of its
clients with a comprehensive approach that covers
more than just definitions and references. Understand-
ing the procedural, cultural, political, and competitive
aspects of object-oriented technology is equally impor-
tant for the success of any project.

The company’s founder has been heavily involved in
object-oriented software engineering technology since
1982. During this time, he has:

. conceived of, and managed the devel-
opment of over 1,000,000 lines of ob-
ject-oriented software,

. researched and documented many key
aspects of object-oriented software en-
gineering,

. trained thousands of individuals in ob-

ject-oriented software engineering, and

. provided consulting for specific object-
oriented software engineering problems
for more than 50 clients in the U.S.,
Canada, Europe, and Japan.

For more information, contact Dan Montgomery at Berard Software Engineering, Inc.,
101 Lakeforest Boulevard, Suite 360, Gaithersburg, Maryland 20877
Phone: (301) 417-9884 — FAX: (301) 417-0021 — E-Mail: dan@bse.com

Circle 59 on Reader Service Card

Product News

What’s new?

ObjectCraft announced new version
of object-oriented CASE tool

On November 15, ObjectCraft, Inc. !

will begin shipping Version 2.0 of its C++
CASE tool, ObjectCraft. Version 2.0 in-
corporates several significant improvements
to the existing product that have been re-
quested by the users. The major new fea-
tures include the ability to import existing
C++ files into the ObjectCraft environ-
ment, print ObjectCraft diagrams, and
write C++ methods inside ObjectCraft.
ObjectCraft is a PC-based productivity tool
that lets programmers develop object-
oriented programs visually.
For further information, contact ObjectCrafl,
Inc., 2124 Kittredge St., Ste. 118, Berkeley, CA
94704, (415)621-8306.

ParcPlace supports team
programming with new release of
Objectworks\C++

ParcPlace Systems has announced a ma-
jor upgrade to its integrated development
environment for C++, Objectworks\C++
Release 2.4 now supports team program-
ming and provides complete integration
with popular UNIX development tools,
cooperating with the UNIX environment
and permitting tools such as ‘make’ to be
used without modification. New features
include increased performance and de-
bugger enhancements for peer and light
weight processes support.

For further information, contact ParcPlace Sys-
tems, 1550 Plymouth St., Mountain View, CA
94043, (415)691-6700.

Network Integrated Services

announces model and simulation
C++ class library

Network Integrated Services, Inc. is now
shipping MEJIN++ Version 1.1, a 109-
class library that allows programmers to
use the finest features of the C++ language
to develop mathematical, statistical, and

queuing models efficiently.

MEJIN++ allows developers to reduce
complex models to a collection of inter-
acting entities at runtime. The main fea-
tures are an exception handling mecha-
nism, persistent data collections, statistics
and math tools, and discrete event simu-
lation. MEJIN++ includes object code li-
braries for Borland and Zortech compilers
under MS-DOS and documented, portable
C++ 2.1-compliant source code.

For further information, contact Network Inte-
grated Services, Inc., 221 West Dyer Rd., Santa

Ana, CA 92707-3426, (714)755-0995.

Rational offers C++ Booch
Components

Rational Consulting announced that it
is distributing and supporting The C++
Booch Components, a reusable software
component library. The C++ Booch Com-
ponents represent the second generation of
a widely used and mature component li-
brary, the Ada Booch Components. The
Booch Components are available on a va-
riety of platforms including IBM PCs, Mac-
intoshes, and UNIX worlstations, as well as
minicomputers and mainframes. The Booch
Components provide a reusable, extensible
class library of structures and tools imple-
mented and delivered in C++ source code.

| For further information, contact Rasional, 3320

Scott Blvd., Santa Clara, CA 95054-3197.

Sequiter Software announces new
CodeBase++ release

Sequiter Software announced the release
of CodeBase++ 1.04, a C++ dlass library for
database management, which now includes
support for the Clipper NTX index files.
CodeBase++ gives C++ developers the flex-
ibility of using the three most popular index
formats: NDX (Clipper, dBASE IlI+, IV),
.MDX (dBASE IV), and .NTX (Clipper).

For further information, contact Sequiter Sofi-
ware, Inc., #209, 9644-54 Ave., Edmonton,
Alberta T6E 5V1, Canada, (403)448-0313.

Object-oriented asynchronous
communication library

Greenleaf Software, Inc. has released
Greenleaf Comm-++, a class library for asyn-
chronous communications. As a C++ li-
brary, it provides a hierarchy of classes that
give the programmer simple access and con-
trol of serial communications with or with-
out terminal emulation. Classes are pro-
vided for serial port controls, modem
controls, file transfer protocols, and calcu-
lation of check values. There are also classes
that support hardware dependent features.
For further information, contact Greenleaf Soft-
ware, Inc., 16479 Dallas Phwy., Ste. 570, Dal-

las, TX 75248, (800)523-9830.

Smalltalk

First Class Software announces
petformance analysis tool for
Smalltalk/V

First Class Software has announced Pro-
file/V, an efficient, interactive performance

analysis tool for Digitalk’s Smalltalk/V Mac

i and Smalltallk/V 286. Profile/V helps pro-

grammers get the most out of Smalltalk/V
by showing where time is being spent: both
which methods are most expensive and
which statements within each method are
costliest. Profile/V also includes a novel fil-
tering mechanism called “gathering” that
helps users profile the recursive methods
common in object-oriented programs.
For further information, contact First Class
Software, P.O. Box 226, Boulder Creek, CA
95006-0226, (408)338-4649.

Apprentice program for Smallualk/V
Windows

Knowledge Systems Corporation is now
providing a new training program, “The
Smalltalk Apprentice Program,” for Dig-
itall’s Smalltalk/V Windows. This pro-
gram is a customized, project-focused train-
ing course devoted to both developing
internal Smalltalk experts and advancing
the specific corporate project with which

68

JOOP NOVEMBER/DECEMBER 1991

The focus is on
analysis and design

JOOP Focus on Analysis & Design gives you the what,
where, when, how, and why of object-oriented analysis and
design.

Published with the same editorial integrity as the

Journal of Object-Oriented Programming, this expert-re-
viewed selection of editorial proceedings delivers the latest
thinking, insightful perspectives, mind-opening techniques,
and applicable case studies in this crucial stage of object
development.

JOOP Focus on Analysis & Design discusses the most criti-
cal issues and provoking questions facing this process.
Wiritten by many of the originators of object methodolo-
gies — such as Grady Booch, Steve Mellor, Sally Schlaer
— these articles define, demonstrate, simplify, compare,
and contrast their approaches. This info-packed softcover
book takes you through the inner workings of the process,
explaining each step and concept, giving you a frame of

reference you can draw from immediately.

ORDER FORM

Return by FAX (212) 274-0646
or by mail to JOOP Focus oN A&D

Joop FOocus ON ANALYSIS & DESIGN 588 Broadway, Suite 604
[Yes, send me a copy of JOOP Focus ON ANALYsIS & DESIGN. New York, NY 10012
Your satisfaction is guaranteed — your money will be refunded if you are (212) 274-0640
not satisfied. Just return the book within ten days.
Name
$29.00 — Add $4.00 per copy for shipping and handling in the US, Company
$8.00 in Canada, and $15.00 per copy for overseas mailing.
Address
Method of Payment Gi t ;
o Check enclosed (payable fo JOOP in $U.S. drawn on a U.S. bank) |tY State le
o Charge to my oVisa o MasterCard Country Telephone
Card number Exp. Date .
Signature Signature
o Bill me (shipped upon receipt of payment) All orders must be signed to be valid. DILA

Circle 45 on Reader Service Card

— Product News —

the students are tasked. Participants are
provided with individual workstations in
secure office space, access to KSC devel-
opment staff expertise, and training within
the context of their project. The Smalltalk
Apprentice Program is also available for
Objectworks/Smalltalk Release 4,
Smalltalk/V PM, and Smalleall/V 286.
For further information, contact Knowledge Sys-
tems Corporation, 114 MacKenan Dr., Ste.
100, Cary, NC 27511-6446, (919)481-4000.

OODBMS

KnowledgeMan and GURU
introduce BLOBs, multimedia, and
object-based technology in
Version 3.0

Micro Data Base Systems, Inc. is now
shipping version 3.0 of both Knowledge-
Man and GURU. KnowledgeMan is a re-
lational database management system for
business applications. GURU is a com-
prehensive expert system environment. Ver-
sion 3.0 allows developers to incorporate
object-based elements into their applica-
tions.

KnowledgeMan and GURU are both
available for single-user MS DOS-based
PCs, OS/2, most popular LANs, DEC
VAX/VMS, and Sun UNIX environments.

For further information, contact Micro Data
Base Systems, Inc., Two Execusive Dr., P.O.
Box 6089, Lafayette, IN 47903-6089,
(317)463-2581.

Servio announces first commercially
available Kanji object database

Servio’s Gemstone now supports ma-
nipulation of extended UNIX code (EUC)
standard Japanese character strings. Kanji
support is immediately available in Japan
and will be made available worldwide this
fall. Gemstone is an object database man-
agement system that merges advanced ob-
ject-oriented technology with a full-
featured, multiuser database management
system.

For further information, contact Servio Corpo-
ration, 1420 Harbor Bay Pkwy., Alameda, CA
94501, (415)748-6200.

Object Databases announces the
release of GTX object repository
GTX is a multimedia object repository
providing real-time performance to mis-
sion-critical applications and commercial
products. GTX provides a high-performance
object repository to act as the undetlying
data store for multimedia applications.
GTX is a VAX/VMS database server that
supports large multimedia darabases con-
sisting of complex, linked data types with
image, voice, and video objects; fault-tol-
erant network applications requiring a
strong transaction model and detailed
audit trails; real-time, high-volume data
capture with a requirement for immediate
query capability; and recall of temporal ob-
ject versions required for group work and
online back-up. GTX’s most important
feature is intrinsic versioning, the auto-
matic generation and management of his-
torical object versions.
For further information, contact Object
Databases, 238 Broadway, Cambridge, MA
02139, (617)354-4220.

ONTOS, Inc. ships new version of
object database for C++

ONTOS, Inc. announced it is shipping
to its customers Release 2.1 of its ONTOS
object database management system for
UNIX. This release was designed to ad-

| dress the needs of the growing number of

ONTOS customers ready to deploy dis-
tributed applications, such as network man-
agement and daw integration systems, ON-
TOS Release 2.1 also adds support for
IBM’s RISC System/6000 workstation.
The ONTOS database was designed as
a distributed, client-server database for C++
programmers and provides object-oriented,
graphical tools to assist the database lay-
out, object manipulation, and application
development process. Key features of ON-
TOS Release 2.1 include open access to its
internal data structures, or “metaschema,”
flexible and optional transaction and con-
currency conttol models, extensible stor-
age management, and an integrated object
SQL.
For further information, contact ONTOS, Inc.,
Three Burlington Woods, Burlington, MA,

01803, (617)272-7110 ext. 500, or (800)388-
7110 ext. 500.

OO CASE

Object-oriented support added to
CASE tool

Object-oriented support for software
development has been added to the Mac-
intosh CASE tool TurboCASE. Turbo-
CASE 4.0 supports five new editors: four
graphics editors create different class dia-
grams and a fifth edirtor, a dictionary, gives
the user the ability to define classes. The
diagrams, which show class specifications
and relationships, are integrated through
a project database providing multiple views

i of the software design. TurboCASE 4.0 is

an integrated tool following the standard
Macintosh user interface. The package sup-
ports the most widely used methodologies
for analysis, design, and modeling,
For further information, contact StructSoft,
Inc., 5416 156th Ave. SE, Bellevue, WA
98006, (206)644-9834.

Visual Programming

TGS Systems Prograph 2.5 Release
adds suite of new features

TGS Systems introduced Version 2.5
of Prograph — its Eddy award-winning,
object-oriented visual programming envi-
ronment for the Macintosh. In addition to
adding a wide array of new features to the
Prograph environment, this new version
provides high-level System 7.0/IAC sup-
port and a database engine. Prograph will
also connect to SQL databases through in-
terfaces for DAL and Oracle; these inter-
faces are part of the company’s new line of
add-on products.

For further information, contact TGS Systems,
2745 Dutch Village RA., Ste. 200, Halifax,
Nova Scotia B3L 4G7, Canada,
(902)455-4446.

70

JOOP NOVEMBER/DECEMBER 1991

Now there’s a single, reliable

technical forum for X.

The ><Juurnal

e the N Wimdaw oo Comunit

The X Journal stimulates,

tracks, and evaluates usage of X.

X servers

X window managers

X programming traps and pitfalls
X education & training

X in the UNIX environment

X saoftware engineering

X-based applications

X-related workstation hardware
Xlib and X toolkits

X user interface design

X graphics programming

The Open-Windows environment

Plus: Company profiles, important product de-
velopment and industry updates, and candid
product, conference, and book reviews.

Special Charter Subscriber Offer

.

g
4

O Yes, sign me up as a Charter Subscriber to The X Journal at a
$10 savings off the regular $49 rate.
i 1 year (6 issues) — $39 [2 years (12 issues) — $78 Jrer 522
Outside the US, add $30 per year for air service

Method of payment (forsign orders must bs prepaid in US dollars drawn on a US bank]
1 Check enclosed {drawn on a US bank and made payable to Tue X Journat)
a Bill me QCharge my QOVisa O MasterCard

Card# Exp. date

Signature

Name

Company

Address
City/ST/Zip
Country/Postal code

3
i
3
i
:
:

Telephone
The X Journal, Subscriber Services, Dept XXX, D1LA
PO Box 3000, Denville, NJ 07834; or fax 212.274.0646

CAREER OPPORTUNITIES

& TRAINING SERVICES

To advertise, call Diane Morancie at 212.274.0640.

H! Ascent Logic

Corporation

Work on two leading edges
* Interactive desktop tools for system-level designers
« Object-oriented development for commercial products

Multiple Benefits

 Explore how Objectworks/Smalltalk can be used to
develop advanced design aids for System Engineers

» Grow with a smaller, dynamic company dedicated to
the success of its customers

If you can make an outstanding contribution in the
Architecture of Object-Oriented Systems, Object-
Oriented Software Engineering, Object-Oriented Data
Management and Groupware, Quality Assurance of
Object-Oriented Systems, Ease of Leaming/Ease of Use
and have 2-5 years of Smalltalk experience with a BS or
MS, please send your resume to:

Ascent Logic Corporation

180 Rose Orchard Way, Suite 200
San Jose, CA 95134

or call 408-943-0630

An equal opporumity employer.

Objectworks/Smalltalk is a trademark of ParcPlace Systems, Inc.

IF OPPORTUNITY CALLS...

.. .LISTEN, even though you’re not “looking™ now.
Exceptional career-advancing opportunities for a particular
person occur infrequently. The best time to investigate a
new opportunity is when you don’t have to!

You can increase your chances of becoming aware of such
opportunities by getting your resume into our full-text
database which indexes every word in your resume. (We
use a scanner and OCR software to enter it.) Later, we will
advise you when one of our search assignments is an exact
match with your experience and interests; a free service.

We are a 17 year-old San Francisco Bay Area based
employer-retained recruiting and placement firm
specializing in Object-Oriented software development
professionals at the MTS to V.P. level throughout the U.S.
and Canada.

We would like to establish a relationship with you for the
long-term, as we have with hundreds of other Obect-Oriented
professionals, Now is the time for you to add a new node in
your network of contacts!

Zee Joteredon Sntevnatiznal

Established 1974

Internet: lee__johnson@ cup.portal com
Voice: 415-524-7246 FAX/BRS (8, 1, N, 1200 baud): 415-524-0416
555 Pierce St., Suite 1508, Albany, CA 94706

Statement of Ownership
Management and Circulation
Required by 30. U.S.C.3688
1. Title of publication: the Journal of Object-Oriented Programming
2. Date of filing: 10/21/91
3. Frequency of issue: Monthly except for March/April, July/August, and Novemher/December
A. Number of issues published annually: 9
B. Annual Subscription Price: $59
4. Location of known office of publisher: 588 Broadway, Suite 604, New York, NY 10012
5. Location of headquarters or general business offices of the publishers (not printers): 588 Broad-
way, Suite 604, New York, NY 10012
6. Name and address of publisher, editor, and managing editor: Publisher, Richard P. Friedman, 588
Broadway, Suite 604, New York, NY 10012; Editor, Richard Wiener, 588 Broadway, Suite 604, New
York, NY 10012; Managing Editor, Elisa Varian, 588 Broadway, Suite 604, New York, NY 10012
7. Owner: SIGS Publications, Inc., 588 Broadway, Suite 604, New York, NY 10012; Richard
Friedman, 588 Broadway, Suite 604, New York, NY 10012; Richard Wiener, 588 Broadway, Suite
604, New York, NY 10012

8. Known bondholders, mortgagees, and other security holders owning or holding 1 percent or
more of total amount of lands, mortgages, or other securiries: None.

9. For completion by nonprofit organization authorized to mail at special rates (Secrion 424.12
DMM only): Not applicable

10. Extent and nature of circulation: Average number of copies each issue during preceding 12
months: A. Total no. copies printed (net press run): 16,213; B. Paid circularion: 1. Sales througt
dealers and carriers, street vendors and counter sales: 1,407; 2. Mail subscriptions: 8,565; C. Tor:
paid circulation: 9,772; D. Free distribution by mail, carrier and other means, samples, complem
tary, and other free copies: 4,044 E. Total distribution (sum of C and D): 13,816; F. Copies not ¢
tributed: 1. Office use, left aver, unaccounted, spoiled after printing: 1,377; 2. Returns from new
agents: 1,020; G. Total (sum of E and F, should equal net press run shown in A): 16,213.

Acrual number of capies single issue published nearesr to filing dare: A. Total no. copies
printed (net press run): 19,625; B. Paid circulation: 1. Sales through dealers and carriers, streer
vendors and counter sales: 2,517; 2. Mail subscriptions: 10,486; C. Total paid circulation: 13,0
D. Free distribution by mail, carrier and other means, samples, complementary, and other free
copies: 2,953; E. Total distribution (sum of C and D): 15,956; F. Copies not distributed: 1. Offi
use, left over, unaccounred, spoiled after printing: 1,130; 2. Returns from news agents: 2,539; C
Total (sumn of E and F, should equal net press run shown in A): 19,625.

- SPONsored by

presented by

CaaftPOR

ONE-DAY INTENSIVE
TRAINING CLASSES IN C++

C++ Across America is the only single-day technical
training in C++ that offers you a choice of six
in-depth sessions presented by experienced in-

structors. Education sessions are objective and
product neutral.

NGV And only at C++ Across America will you:

St SN S \m\\;ﬁ Y * Learn how to effectively implement C++
into your organization

* Learn what others are doing with C++

* Learn to program in C++

* See new Microsoft C/C++ technology
demonstrated

* Keep abreast of new language
developments

* Improve your productivity with C++

* Determine the realistic productivity gains
to be expected from C++

\

gyt !

.
A
<
=
~
=
-
=
S
z
z
i 4
%

—=

.
Pl
i

BT

LAY

~ in-

Plus — 3399 off the suggested retail price of Microsoft
C/C++ and a free one-year subscription to The C++
Report (a $69 value) — a total of $468 in savings. This
more than pays for the $299 registration fee.

. \\\\,\,PJ:‘ g

AN

Topics AT A GLANCE

Morning
*» C++ Program Guidelines (for
Reliability and Portability) Dan Saks
* Object-Oriented Program Design
Using C++ (a primer) David Bern
* Writing Efficient C++ Programs Tom Cargill
1992 LoGATIONS 2D DATES

San Francisco Sheraton Palace Tues., Feb. 11

Afternoon
. i ++
Los Angeles LA Airport Marriott Wed., Feb. 12 Moving from C to C Dan Saks

Dallas The Fairmont Hotel Fri., Feb. 14 * Effective Memory Management
Chicago The Lisle/Napenville Hilton ~ Tues., Feb. 18 in C++

David Bern
Boston The Sheraton Boston Wed., Feb. 19 = C++ Programming style Tom Cargill
New York City The NY Marriott Marquis Thurs., Feb. 20

* Panel discussion of the design and management
Washington, DC Loew’s L'Enfant Plaza Hotel Fri., Feb. 21 of C++ class libraries

To receive a detailed brochure or to reserve your seat call 212.274.9135 or fax 212.274.0646

Circle 18 on Reader Service Card

Reed Phillips, President of Knowledge

a o lvosing obiect-orieﬁ

VIDEO COURSE

“Filled with ideas, insights and information
you can use right away!”

OBJCI-ORIENTED Presents

a three-hour video course that reviews everything
you really need to know before implementing
ohject-oriented programming — no matter whar ¢
your application.

The presenters have been actively involved in the
creation of the object-oriented industry since the
early 1980’s. Love and Phillips have successfully
advised many companies in their application of
¢ object technology. On these tapes we present not .
theory, not textbook — but pracrical, proven {
advice that works in the real world. '

T i LI VPPN
-

[

e

ted
methods”

Dr. Tom Love, software management
consultant and instructor,
co-founder of Stepstone Corp.

Systems Corp.

In cooperation with Hewlett-Packard
Corporate Engineering & HP-TV Network

In this four-part, two-cassette course you will learn:

Part 1 Objeets in a nutshell —
Complete and comprehensive
review of the basics - Easy to
understand explanation of
terminology and relationships
among objects, classes, dynamic
binding, inheritance and
encapsulation - Learn the
benefits and drawbacks of
object-oriented techniques ~
Code reuse statistics reveal what
can be gained with object-
oriented technology.

Part 2 Experiences in using ob-
jects — Three project managers at
HP give sound advice and reveal
traps and pitfalls -~ Don't reinvent
the wheel; learn from others who
have successfully used object-
oriented technology - Avoid costly
mistakes; get inside tips on what
really works.

Part 3 Options for development
tools — History and comparison of
object-oriented languages such as
C++, Smalitalk, Objective-C,
Actor, Eiffel, Hypertalk, Object
Pascal, MacApp ~ evaluate crite-
ria such as education, develop-
ment productivity, development
support tools, systems integration,
and delivery issues ~ review an
edit debugging cycle.

Part 4 Lessons learned and rec-
ommendations — Some costly
lessons explored on training the
team, analysis & design, introduc-
ing objects into your organization,
choosing environments, productiv-
ity and quality experiences, mea-
suring productivity, what the
realistic gains are from reuse ~
Get helpful hints, analyze projects
and look at the future of object
technology.

Circle 47 on Reader Service Card

r
[}
I
i
1
[}
[
i
1
1
[}
I
I
I
I
I
1
1
]
1
1
1
1
1
1
1
1
1
1
I
1
I
!

A decade of object-oriented
experience in a three-hour
video course

Save time and money — no travel, no registration fees, no
hassles. Watch and learn in the convenience of your office;
train as many of your people as you need.

Order today

Call (212)274-0640
or mail or fax this coupon for immediate delivery

Please rush me “Choosing object-oriented methods"

1 Domestic (177 min., VHS) $195 plus $5 shipping & handling in US

U Foreign {177 min., PAL) $265 plus $35 shipping & handling

J Volume discount: deduct $50 per video for an order of three or more.

Method of payment:

A Check enclosed (payable ta JOOP in US funds drawn on US bank)

QO Purchase order #

U Credit card JVisa J MasterCard
Card#
Signature

Name/Title

Company

Address

City/ST/Country/Code

Exp.

Maii 1o JOOP-Video, 588 Broadway. Ste. 604, New Yark, NY 10012 or Fax to (212)274-0646

e e e e e e e e e]

	By Article Title
	Combining modal and nonmodal components to build a picture viewer
	Contravariance for the rest of us
	Delegation in C++
	Eiffel, the Language
	Making inferences about objects
	Multilevel secure object-oriented data model - issues on noncomposite objects, composite objects and versioning
	Real-world reuse
	The evolution of bugs and systems
	Understanding constructor initializers in C++

	By Author Name
	Bilow, Steven C.
	Harmon, Paul
	Harris, Warren
	Johnson, Ralph E.
	Koenig, Andrew
	LaLonde, Wilf
	Lorenz, Mark
	Magnusson, Boris
	Pugh, John
	Rumbaugh, James
	Thuraisingham, Bhavani
	Zweig, Jonathan M.

	By Topic
	Book Review
	C++
	Guest Editorial
	Modeling & Design
	Smalltalk
	Tools

