
The Design and Performance of the
jRate Real-time Java Implementation

Angelo Corsaro and Douglas C. Schmidt
Electrical and Computer Engineering Department

University of California, Irvine, CA 92697�

fcorsaro, schmidtg@ece.uci.edu

This paper has been submitted to the 4th International Sym-
posium on Distributed Objects and Applications, Irvine, CA,
October-November, 2002.

Abstract

Over 90 percent of all microprocessors are now used for real-
time and embedded applications. Since the behavior of these
applications is often constrained by the physical world, it is
important to devise higher-level programming languages and
middleware that robustly and productively enforce real-time
constraints, as well as meeting conventional functional re-
quirements. This paper provides two contributions to the study
of programming languages and middleware for real-time and
embedded applications. We first present how we are applying
generative programming techniques to develop jRate, which
is an open-source ahead-of-time-compiled implementation of
the Real-time Specification for Java (RTSJ). The goal of jRate
is to provide developers the ability to generate RTSJ imple-
mentations that are customized for their needs. We then show
performance results of jRate that illustrate how well it per-
forms compared to the TimeSys RTSJ Reference Implementa-
tion (RI).

1 Introduction

1.1 Current Challenges

The vast majority of all microprocessors are now used for em-
bedded systems, in which computer processors control physi-
cal, chemical, or biological processes or devices in real-time.
Examples of such systems include telecommunication net-
works (e.g., wireless phone services), tele-medicine (e.g., re-
mote surgery), manufacturing process automation (e.g., hot
rolling mills), and defense applications (e.g., avionics mission
computing systems). These real-time embedded systems are

�This work was supported in part by ATD, SAIC, and Siemens MED.

increasingly being connected via wireless and wireline net-
works.

Designing real-time embedded systems that implement their
required capabilities, are dependable and predictable, and are
parsimonious in their use of limited computing resources is
hard; building them on time and within budget is even harder.
Moreover, due to global competition for marketshare and en-
gineering talent, companies are now also faced with the prob-
lem of developing and delivering new products in short time
frames. It is therefore essential that the production of real-time
embedded systems can take advantage of languages, tools, and
methods that enable higher software productivity.

1.2 The State of the Art

Many real-time embedded systems are still developed in C,
and increasingly also in C++. While writing in C/C++ is more
productive than assembly code, they are not the most produc-
tive or error-free programming languages. A key source of
errors in C/C++ stems from theirmemory managementmech-
anisms, which require programmers to allocate and deallocate
memory manually. Moreover, C++ is a feature rich, complex
language with a steep learning curve, which makes it hard
to find and retain experienced real-time embedded developers
who are trained to use it well.

Real-time embedded software should ultimately be synthe-
sized from high-level specifications expressed with domain-
specific modeling tools [20]. Until those tools mature, how-
ever, a considerable amount of real-time embedded software
still needs to be programmed by software developers. Ide-
ally, these developers should use a programming language
that shields them from many accidental complexities, such as
type errors, memory management, and steep learning curves.
The Java [1] programming language has become an attractive
choice for the following reasons:

� It has a large and rapidly growing programmer base and
is taught in many universities.

� It is simpler than C++, yet programmers experienced in

1



C++ can learn it easily.

� It has a virtual machine architecture—the Java Virtual
Machine (JVM)—that allows Java applications to run on
any platform that supports a JVM.

� It has a powerful, portable standard library that can re-
duce programming time and costs.

� It offloads many tedious and error-prone programming
details, particularly memory management, from develop-
ers into the language runtime system.

� It has desirable language features, such as strong typing,
dynamic class loading, and reflection/introspection.

� It defines portable support for concurrency and synchro-
nization.

� Its bytecode representation is more compact than native
code, which can reduce memory usage for embedded sys-
tems.

Conventional Java implementations are unsuitable for de-
veloping real-time embedded systems, however, due to the fol-
lowing problems:
� The scheduling of Java threads is purposely underspeci-

fied to make it easy to develop JVMs for new platforms.

� The Java Garbage Collector (GC) has higher execution
eligibility that any other Java thread, which means that
a thread could experience unbounded preemption latency
while waiting for the GC to run.

� Java provides coarse-grained control over memory allo-
cation and access,i.e., it allows applications to allocate
objects on the heap, but provides no control over the type
of memory in which objects are allocated.

� Due to its interpreted origins, the performance of JVMs
has historically lagged that of equivalent C/C++ pro-
grams by an order of magnitude or more.

To address these problems, the Real-time Java Experts
Group has defined the Real-Time Specification for Java
(RTSJ) [2], which provides the following capabilities:
� New memory management models that can be used in

lieu of garbage collection.

� Access to raw physical memory.

� A higher resolution time granularity suitable for real-time
systems.

� Stronger guarantees on thread semantics when compared
to regular Java,i.e., the most eligible runnable thread is
always run.

Until recently, there was no implementation of the RTSJ,
which hampered the adoption of Java in real-time embedded
systems. It also hampered systematic empirical analysis of the
pros and cons of the RTSJ programming model. Several im-
plementations of RTSJ are now available, however, including
the RTSJ Reference Implementation (RI) from TimeSys [23].

1.3 The Road Ahead

While the RTSJ represents an ambitious step toward improv-
ing the state of the art in embedded and real-time system de-
velopment, there are a number of open issues. In particular,
the RTSJ was designed with generality in mind. While this is
a laudible goal, generality is often at odds with the resource
constraints of embedded systems. Moreover, providing de-
velopers with an overly general API can actually increase the
learning curve and introduce accidental complexity in the API
itself.

For example, the scheduling API in RTSJ was designed to
match any scheduling algorithm, including RMS, EDF, LLF,
RED, MUF, etc. While this generality covers a broad range of
alternatives, it may be overly complicated for an application
that simply needs a priority preemptive scheduler. But can we
do any better then this? Can we provide the needed flexibility
and extensibility, without putting undue burden on developers?

We believe that the answer is affirmative, based on our
experience to date using Generative Programming (GP) [7]
techniques, such as Aspect-Oriented Programming (AOP)
[12], Meta-Programming (MP) [11], Component-Oriented
Programming (COP) [10], and Model-Integrated Computing
(MIC) [20]. Generative programming makes it possible to de-
velop middleware systems that are amenable to customization
of behavior and protocols (e.g., APIs), via automatic code gen-
eration and composition.

Using a GP approach, the development of middleware, such
as RTSJ or Real-time CORBA [19], need not lead to a single
implementation. Instead, it can provide a set of components
and configuration knowledge that can be used to generated a
specific implementation based on user-defined specifications.
If we consider the RTSJ scheduling API example, for instance,
application developers that need a simple priority preemptive
scheduler could use generative programming to specify this as
a requirement. The outcome of the generation process would
then be a Real-time Java platform that exposed only the API
needed for a priority-based scheduler and whose implementa-
tion was also optimized for priority-based schedulers.

1.4 Paper Organization

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief overview of the RTSJ; Section 3 de-
scribes the architecture and design rationale ofjRate; Sec-
tion 4 presents empirical results obtained by benchmarking
jRate and the TimeSys RTSJ Reference Implementation (RI)
using ourRTJPerf [4] benchmarking suite; Section 5 com-
pares our work onjRate with related research; and Section 6
summarizes the results we obtained and outlines how they can
be used to improve the support of next-generation implemen-
tations of RTSJ for real-time embedded software.

2



2 Overview of the Real-Time Specifica-
tion for Java

The RTSJ extends the Java API and refines the semantics of
certain constructs to support the development of real-time sys-
tems. The guiding principles followed by the expert group
who created the RTSJ specification included [2]:
� Backward compatibility with the Java 2 platform
� No syntactic extension to the Java language,i.e. no new

keywords
� Write once carefully, run anywhere conditionally
� Enable predictable execution and
� Balance between current practice and advanced features.

Below, we present an overview of the extensions provided by
the RTSJ.

2.1 Memory

The RTSJ extends the Java memory model by providing mem-
ory areas other than the heap. These memory areas are char-
acterized by the lifetime the objects created in the given mem-
ory area and/or by their allocation time.Scoped memory ar-
eas provide guarantees on allocation time. Each real-time
thread is associated with ascope stackthat defines its alloca-
tion context and thehistory of the memory areas it has en-
tered. Figure 1 shows how the scope stack for threadsT1
andT2 evolve while moving from one memory area to an-
other. As shown in Figure 2, the RTSJ specification pro-

MA1

MA2 MA5 MA6

MA3
MA4 MA7

MA2

MA3

MA1

T1

MA1

T1

MA1

MA2

T1

MA6

T2

MA6

MA7

T2

Figure 1:Thread Scope Stack in the RTSJ Memory Model

vides scoped memories with linear and variable allocation
times (LTMemory, LTPhysicalMemory andVTMemory,
VTPhysicalMemory , respectively). For linear allocation
time scoped memory, the RTSJ requires that the time needed
to allocate then > 0 bytes to hold the class instance must
be bounded by a polynomial functionf(n) � Cn for some
constantC > 0.1 The RTSJ also introduces the concept of

1This bound does not include the time taken by an object’s constructor or
a class’s static initializers.

MemoryArea

ScopedMemoryImmortalMemory ImmortalPhysicalMemory HeapMemory

VTMemory LTMemory LTPhysicalMemory VTPhysicalMemory

Figure 2:Hierarchy of Classes in the RTSJ Memory Model

Immortal Memory. Objects allocated within this memory area
have the same lifetime of the JVM,i.e. are never collected.
Another addition to the Java memory model provided by the
RTSJ allows direct access to raw memory, as well as to allo-
cate Java objects at specific memory locations.

2.2 Threads

The RTSJ extends the existing Java threading model with
two new types of real-time threads:RealtimeThread
andNoHeapRealtimeThread . The relation of these new
classes with respect to the regular Java thread class is depicted
in Figure 3.

«Interface»
Schedulable

RealtimeThread

Thread

NoHeapRealtimeThread

Figure 3:RTSJ Real-time Thread class Hierarchy

The NoHeapRealtimeThread can have execution el-
igibility higher than the garbage collector.2 Therefore, a
NoHeapRealtimeThread can neither allocate nor refer-
ence any heap objects. The scheduler controls theexecu-
tion eligibility3 of the instances of this class by using the
SchedulingParameters associated with it.

2The RTSJ v1.0 specification states that theNoHeapRealtimeThread
always has execution eligibility higher than the GC, but this has been changed
in the v1.01.

3Execution eligibility is defined as the position of a schedulable entity in
a total ordering established by a scheduler over the available entities [6]. The
total order depends on the scheduling policy. The only scheduler required by
the RTSJ is a priority scheduler, which uses thePriorityParameters to
determine the execution eligibility of aSchedulable entity, such as threads
or event handlers.

3



2.3 Scheduling

The RTSJ introduces the concept of aSchedulable ob-
ject. The execution ofSchedulable entities is managed by
the scheduler that holds a reference to them. The RTSJ pro-
vide a scheduling API that is sufficiently general to implement
commonly used scheduling algorithms, such as RMS, EDF,
LLF, RED, MUF, etc.. However, the only required scheduler
for a RTSJ-compliant implementation is a priority preemptive
scheduler that can distinguish 28 different priorities.

2.4 Asynchrony

The RTSJ defines mechanisms to bind the execution of pro-
gram logic to the occurrence of internal and/or external events.
In particular, the RTSJ provides a way to associate an asyn-
chronous event handler to some application-specific or exter-
nal events. As shown in Figure 4, there are two types of asyn-

«Interface»
Schedulable

AsyncEventHandlerAsyncEvent

BoundAsyncEventHandler

0..nEvent

Handler

RealtimeThread

Figure 4: RTSJ Asynchronous Event Class Hierarchy

chronous event handlers defined in RTSJ:

� TheAsyncEventHandler class, which does not have
a thread permanently bound to it – nor is it guar-
anteed that there will be a separate thread for each
AsyncEventHandler . The RTSJ simply requires that
after an event is fired the execution of all its associated
AsyncEventHandler s will be dispatched.

� The BoundAsyncEventHandler class, which has
a real-time thread associated with it permanently. An
BoundAsyncEventHandler ’s real-time thread is
used throughout its lifetime to handle event firings.

Event handlers can also be specified ano-heap, which
means that the thread used to handle the event must be a
NoHeapRealtimeThread .

The RTSJ also introduces the concept ofAsynchronous
Transfer of Control(ATC), which allows a thread to asyn-
chronously transfer the control from a locus of execution to
another.

2.5 Time and Timers

Real-time embedded systems often use timers to perform cer-
tain actions at a given time in the future, as well as at periodic
future intervals. For example, timers can be used to sample
data, play music, transmit video frames, etc. As shown in Fig-

AsyncEvent

Timer

PeriodicTimer OneShotTimer

Figure 5: RTSJ Timer Class Hierarchy

ure 5, the RTSJ provides two types of timers:

� OneShotTimer , which generates an event at the expi-
ration of its associated time interval and

� PeriodicTimer , which generates events periodically.

OneShotTimer s andPeriodicTimer s events are han-
dled byAsyncEventHandler s.

The RTSJ also supports high resolution timers and high res-
olution clocks.

3 jRate Overview

jRate is an open-source RTSJ-based real-time Java implemen-
tation that we are developing at the University of California,
Irvine (UCI). jRate extends the open-source the GNU Com-
piler for Java (GCJ) runtime system [9] to provide an ahead-
of-time compiled platform for the development of RTSJ-
compliant applications. ThejRate architecture shown in Fig-

(x86, PPC, ARMS)
Host

GCJ Runtime

Application
RT−Java

jRate

(x86, PPC, ARMS)
Host

RT−JVM

RT−Java Application

(b)(a)

Figure 6:The jRate Architecture

ure 6(a) differs from the JVM model shown in Figure 6(b)
since there is no JVM interpreting the Java bytecode. Instead,
jRate ahead-of-time compiles RTSJ applications into native

4



code. The Java and RTSJ services, such as garbage collection,
real-time threads, and scheduling, are accessible via the GCJ
andjRate runtime systems, respectively.

One downside of ahead-of-time compiled RTSJ implemen-
tations likejRate is that they can hinder portability since ap-
plications must be recompiled each time they are ported to a
new architecture. In practice, however, embedded and real-
time software developers should find this a small price to pay
for the substantial performance benefits, compared to Java im-
plementations based on interpreters or just-in-time (JIT) com-
pilers.

3.1 Current jRate Capabilities

The RTSJ features currently supported byjRate are described
next.

3.1.1 Memory Areas

jRate supports scoped memory and immortal memory. It pro-
vides a strategy to decide which type of memory, such as lin-
ear time memory or variable time memory, should be used as
immortal memory. The RTSJ does not specify the immortal
memory implementation, but since we believe it is important
to specify the type of memory used,jRate can configure it
at application launch time. The scoped memory implementa-
tion exposes an additional non-standard extension that allows
the use of non-thread safe allocators. This extension allows
threads to avoid unnecessary locks if a memory area will al-
ways be accessed by one thread.

jRate also provides a new type of scoped memory called
CTMemory, which trades off allocation time for the memory
area creation time. This memory area is zeroed at initialization
time and the amount used is also zeroed each time the memory
reference count4 drops to zero. This feature provides constant
time allocation for objects created within theCTMemory.

The internal organization of theCTMemory is depicted in
Figure 7. Thetypefield distinguishes different types of ob-

Type Chunk Size

Header

Data Type Chunk Size

Header

Data Trailer

Figure 7:The jRate CTMemoryStructure

jects. In fact, there are different types of objects that must
be treated slightly differently,e.g., some must be finalized,
whereas others need not be finalized.

4The reference count associated with a scoped memory is represented by
the number of real-time thread that are currently active in it,i.e. have entered
the scoped memory, but have not exited yet.

3.1.2 Real-Time Threads and Scheduling

jRate currently supports real-time threads of the
type RealtimeThread (i.e. it does not yet support
NoHeapRealtimeThread ), using a basic priority pre-
emptive scheduler. This implementation simply relies upon
the underlying real-time operating system priority preemptive
scheduler.

3.1.3 Asynchrony

jRate provides a robust and efficient asynchronous event han-
dling implementation, as shown by the empirical results in
Section 4.2. This implementation avoids any source of priority
inversion and provides lock free dispatch on most platforms.5

jRate uses the priority queues ordered by the execution eli-
gibility of the handlers for the event dispatching. Execution
eligibility is the ordering mechanism used throughoutjRate,
e.g., it is used to achieve total ordering of schedulable entities
whose QoS are expressed in various ways. This approach is
an application of the formalisms presented in [6].

3.1.4 High Resolution Time and Clock

jRate implements the RTSJ high resolution time API. Differ-
ent implementations of real-time clocks are provided. De-
pending on the underlying hardware and OS platform, reso-
lution from nanoseconds up to microseconds can be obtained.

3.2 Next Steps: A Chameleonic Real-Time Java
Implementation

jRate is intended to be a “chameleonic” Real-time Java im-
plementation. We use the analogy sincejRate is designed to
its target environment, just as a chameleon adapts to its sur-
rounding environment. InjRate, the adaptation process is ob-
tained via generative programming techniques. Our ultimate
goal is to provide a set of core reusable components, along
with the appropriate configuration tools, so application devel-
opers can automatically generate a customized Real-time Java
implementation that precisely meets their needs. Our work
to date has focused on manually generating high performance
and small footprint implementations of the RTSJ specification.

Figure 8 shows a typical generative programming approach.
In this approach, thefeature profileprovided by application
developers is used to select the set of features that must be
present in the generated Real-time Java implementation. Gen-
erative tools are used to compose the different parts, check
dependencies, and optimize the generated system.

5On certain platforms, such as Compaq Alpha, the assumptions that we
rely upon to avoid locking do not hold, so for those platformsjRate must use
locks.

5



Specification
Domain Specific
Concepts and

Features

Configuration 
Knowledge

Generated Articraft

Figure 8:Generative Programming Approach

For instance, in the context ofjRate, a givenfeature profile
might designate the following:

� A priority-based scheduler with no support for feasibility
analysis

� Raw memory access is not needed, and

� A particular style of scoped memory must be used.

This information is then used by generators to provide an in-
stance ofjRate that is optimized for this particular use case.
The generated API could be simplified since the user only
wants to use priority-based scheduler and does not need any
feasibility analysis support.

The tools we are applying to makejRate a generative
real-time Java implementations include AspectJ [22] and As-
pectC++ [21], along with other techniques that are commonly
used in generative programming, such as:

� Static crosscuttingto compose APIs. Static crosscutting
is an AOP technique that allows “meta-programmers”
to modify the static structure of a class,e.g., by adding
methods or changing an inheritance hierarchy.

� Dynamic crosscutting is used to customize and com-
pose run-time behaviors. Dynamic crosscutting is an-
other AOP technique that allows the execution of aspect
code at specific points in the application, known asjoin-
points, such as method invocations, data member assign-
ments, etc.

4 jRate Performance

This section presentsjRate’s performance results for the pri-
mary RTSJ features. All experiments were conducted us-
ing RTJPerf, which is an open-source benchmarking suite
for RTSJ available athttp://tao.doc.wustl.edu/
˜corsaro/periscope.html . see [4, 5] for in-depth cov-
erage of theRTJPerf benchmark suite and a comparison of

jRate’s performance with a range of Java implementations, in-
cluding CVM, the TimeSys RTSJ Reference Implementation
(RI), and Sun’s JDK 1.4.

The test results reported in this section were obtained on an
Intel Pentium III 733 MHz with 256 MB RAM, running Linux
RedHat 7.2 with the TimeSys Linux/RT 3.0 GPL6 kernel [24].
jRate was compared against the TimeSys RTSJ RI [23], to
provide a baseline to comparejRate against. The RI is based
on a Java 2 Micro Edition (J2ME) JVM and supports only an
interpreted execution modei.e., there is no just-in-time (JIT)
compilation. Theefficiencyof the RI was intentionally not op-
timized since its main goal waspredictablereal-time behavior
and RTSJ-compliance. The RI runs on all Linux platforms, but
the priority inversion control mechanisms are available to the
RI only when running under TimeSys Linux/RT [24],i.e., the
commercial version.

4.1 jRate Memory Subsystem Performance

Scoped Memory Allocation Time Test. RTJPerf provides
a test that measures the allocation time for different types of
scoped memory. The results obtained for thejRate’s and RI
implementation of scoped memory are presented and analyzed
below.

Test Settings. To measure the average allocation time
incurred by the RI implementation ofLTMemory and
VTMemory, we ran theRTJPerf allocation time test for al-
location sizes ranging from 32 to 16,384 bytes. Each test sam-
ples 1,000 values of the allocation time for the given alloca-
tion size. This test also measured the average allocation time
of jRate’s CTMemory implementation. Figure 9 shows how
jRate’s CTMemory implementation relates to the memory ar-
eas defined by the RTSJ, which are depicted in Figure 2.

MemoryArea

ScopedMemory

CTMemory

Figure 9:CTMemoryClass Hierarchy

Test Results. The data obtained by running the allocation
time tests were processed to obtain an average, dispersion, and
worst-case measure of the allocation time. We compute both
the average and dispersion indices since they indicate the fol-
lowing information:

6This OS is the freely available version of TimeSys Linux/RT and is avail-
able under the GNU Public License (GPL).

6



32 1K 2K 4K 8K 16K

Chunk Size (Bytes)

10

20

30

40

50

60

70

80

A
ve

ra
ge

 A
llo

ca
tio

n 
T

im
e 

(m
ic

ro
-s

ec
on

ds
)

jRate CTMemory
RI LTMemory
RI VTMemory

Figure 10:Average Allocation Time.

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

0.02

0.03

0.06

0.1

0.2

0.5

1

2

4

8

A
llo

ca
tio

n 
T

im
e 

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(m
ic

ro
-s

ec
on

ds
)

jRate CTMemory
RI LTMemory
RI VTMemory

Figure 11:Allocation Time Standard Deviation.

� How predictable is the implementation
� How much variation in allocation time can occur and
� How the worst-case behavior compares to the average-

case and to the case that provides a 99% upper bound.7

Figure 10 shows the resulting average allocation time for the
different test runs and Figure 11 shows the standard devia-
tion of the allocation time measured in the various test set-
tings. Figure 12 shows the performance ratio betweenjRate’s
CTMemory and the RILTMemory. This ratio indicates
how many times smaller theCTMemory average allocation
time is compared to the average allocation time for the RI
LTMemory.

Results Analysis. We now analyze the results of the tests
that measured the average and worst-case allocation times,
along with the dispersion for the different test settings:

7By “99% upper bound” we mean that value that represents an upper
bound for the measured values in the 99th percentile of the cases.

7.1 7.3 7.4 8.1 9.5
12.5

18.4

30.0

51.5

95.4

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 A
llo

ca
tio

n 
T

im
e 

R
at

io

RI LTMemory AAT / jRate CTMemory AAT

Figure 12:Speedup of theCTMemory Average Allocation
Time Over the LTMemory Average Allocation Time.

� Average Measures—As shown in Figure 10, both
LTMemory andVTMemory provide linear time alloca-
tion with respect to the allocated memory size. Match-
ing results were found for the other measured statistical
parameter, based on this, we infer that the RI implemen-
tation ofLTMemory andVTMemory are similar, so we
mostly focus on theLTMemory since our results also ap-
ply to VTMemory. jRate has an average allocation time
that is independent of the allocated chunk, which helps
analyze the timing of real-time Java code, even without
knowing the amount of memory that will be needed. Fig-
ure 12 shows that for small memory chunks thejRate
memory allocator is nearly ten times faster than RI’s
LTMemory. For the biggest chunk we tested,jRate’s
CTMemory is�95 times faster RI’sLTMemory.

� Dispersion Measures—The standard deviation of the
different allocation time cases is shown in Figure 11. This
deviation increases with the chunk size allocated for both
LTMemory and VTMemory until it reaches 4 Kbytes,
where it suddenly drops and then it starts growing again.
On Linux, a virtual memory page is exactly 4 Kbytes, but
when an array of 4 Kbytes is allocated the actual memory
is slightly larger to store freelist management informa-
tion. In contrast, theCTMemory implementation has the
smallest variance and the flattest trend.

The plots in Figure 13 show the cumulative relative fre-
quency distribution of the allocation time for some of
the different cases discussed above. These graphs illus-
trate how the allocation time is distributed for different
types of memory and different allocation sizes. For any
given pointt on thex axis, the value on they axis indi-
cates the relative frequency of allocation time for which

7



0.8 1 1.2

jRate CTMemory - Alloc. Time (usec)

0

0.2

0.4

0.6

0.8

1

A
llo

ca
tio

n 
T

im
e 

C
um

ul
at

iv
e 

R
el

at
iv

e 
F

re
qu

en
cy

32 Bytes
1 KBytes
8 KBytes

16 64

RI LTMemory - Alloc. Time (usec)

0

0.2

0.4

0.6

0.8

1

32 Bytes
64 Bytes
128 Bytes
256 Bytes
512 Bytes
1 KBytes
2 KBytes
4 KBytes
8 KBytes
16 KBytes

Figure 13:Allocation Time Cumulative Relative Frequency
Distribution.

AllocationT ime � t. This graph, along with Figure 11
that shows the standard deviation, provides insights on
how the measured allocation time is dispersed and dis-
tributed.

� Worst-case Measures—Figure 14 and Figure 15 show
the bounds on the allocation time forjRate’s CTMemory
and the RILTMemory. Each of these graphs depicts the
worst, best, and average allocation times, along with the
99% upper bound of the allocation time. Figure 14 il-
lustrates how the worst-case execution time forjRate’s
CTMemoryis at most�1.4 times larger than its average
execution time.

Figure 15 shows how the maximum, average, and the
99% case, for the RILTMemory, converge as the size
of the allocated chunk increases. The minimum ratio be-
tween the worst-case allocation time and the average-case
is�1.6 for a chunk size of 16K. Figure 14, Figure 15 and
Figure 13 also characterize the distribution of the allo-
cation time. Figure 13 shows how for some allocation
sizes, the allocation time for the RILTMemory is cen-
tered around two points.

4.2 jRate’s Asynchronous Event Handler Per-
formances.

Asynchronous Event Handler Dispatch Delay Test.
RTJPerf provides a test that measures the dispatch la-
tency of the two types of RTSJ asynchronous event han-
dlers, which are theBoundAsyncEventHandler and the
AsyncEventHandler . The results we obtained are pre-
sented and analyzed below.

32 128 256 512 1K 2K 4K 8K 16K64

Chunk Size (Bytes)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

A
llo

ca
tio

n 
T

im
e 

(m
ic

ro
-s

ec
on

ds
)

Average Allocation Time 
Max Allocation Time
Min Allocation Time
99% Allocation Time

Figure 14:CTMemory Worst, Best, Average and 99% Al-
location Time.

32 64 128 256 512 1K 2K 4K 8K 16K

Chunk Size (Bytes)

8

16

32

64

128
A

llo
ca

tio
n 

T
im

e 
(m

ic
ro

-s
ec

on
ds

)

RI LTMemory Avg. Alloc. Time
RI LTMemory Max Alloc. Time
RI LTMemory Min Alloc. Time
RI LTMemory 99% Allocation Time

Figure 15:LTMemory Worst, Best, Average and 99% Al-
location Time.

Test Settings. To measure the dispatch latency provided
by different types of asynchronous event handlers defined by
the RTSJ, we ran the asynchrony tests provided byRTJPerf,
and described in [4, 5], with a fire count of 2,000 for both RI
andjRate. To ensure that each event firing causes a complete
execution cycle, we ran the test in “lockstep mode,” where one
thread fires an event and only after the thread that handles the
event is done is the event fired again. To avoid the interference
of the GC while performing the test, the real-time thread that
fires and handles the event uses scoped memory as its current
memory area.

Test Results. Figure 16 shows the trend of the dispatch
latency for successive event firings.8 The data obtained by

8Since The RI’sAsyncEventHandler trend is completely off the scale,
it is omitted in this figure and depicted separately in Figure 17.

8



0 500 1000

Event Count

30

35

40

45

50

55

60

65

70

D
is

pa
tc

h 
D

el
ay

 (
m

ic
ro

-s
ec

on
ds

)

jRate BoundAsyncEventHandler
jRate AsyncEventHandler
RI BoundAsyncEventHandler

Figure 16: Dispatch Latency Trend for Successive Event
Firing.

AsycnEventHandler BoundAsycnEventHandler
Avg. 36.574�s 34.004�s

Std. Dev. 0.113�s 0.148�s
Max 39.400�s 35.555�s
99% 36.945�s 34.472�s

Table 1:jRate Event Handler’s Dispatch Latency statistics
for the Different Settings

running the dispatch delay tests were processed to obtain aver-
age worst-case and dispersion measure of the dispatch latency.
Table 1 and Table 2 shows the results found forjRate and the
RI respectively.

0 500 1000 1500 2000

Event Count

500

1000

1500

2000

2500

3000

3500

4000

D
is

pa
tc

h 
D

el
ay

 (
m

ic
ro

-s
ec

on
ds

)

RI AsyncEventHandler

Figure 17: AsyncEventHandler Dispatch Latency
Trend.

Results Analysis. Below we analyze the results of the
tests that measure the average-case and worst-case dispatch
latency, as well as its dispersion, for the different test settings:

AsycnEventHandler BoundAsycnEventHandler
Avg. 2373.0�s 56.100�s

Std. Dev. 909.92�s 0.848�s
Max 3950.8�s 70.462�s
99% 3892.5�s 56.692�s

Table 2: RI Event Handler’s Dispatch Latency Statistics
for the Different Settings

� Average Measures—Table 2 illustrates the large av-
erage dispatch latency incurred by the RTSJ RI
AsyncEventHandler . The results in Figure 17 show
how the actual dispatch latency increases as the event
count increases. By tracing the memory used when run-
ning the test using heap memory, we found that not only
did memory usage increased steadily, but even invoking
the GC explicitly did not free any memory.

These results reveal a problem with how the RI man-
ages the resources associated to threads. The RI’s
AsyncEventHandler creates a new thread to han-
dle a new event, and the problem appears to be a
memory leak in the underlying RI memory manager
associated with threads, rather than a limitation with
the model used to handle the events. In contrast,
the RI’sBoundAsyncEventHandler performs quite
well, i.e., its average dispatch latency is slightly less than
twice as large as the average dispatch latency forjRate.

Figure 16 and Table 1 show that the average dispatch la-
tency ofjRate’s AsyncEventHandler is the same or-
der of magnitude as itsBoundAsyncEventHandler .
The difference between the two average dispatch latency
stems fromjRate’s AsyncEventHandler implemen-
tation, which uses anexecutor[14] thread from a pool of
threads to perform the event firing, rather than having a
thread permanently bound to the handler.

� Dispersion Measures—The results in Table 2, Ta-
ble 1, Figure 16, and Figure 18 illustrate howjRate’s
BoundAsyncEventHandler dispatch latency incurs
the least jitter. The dispatch latency value dispersion
for the RTSJ RI BoundAsyncEventHandler
is also quite good, though its jitter is higher
than jRate’s AsyncEventHandler and
BoundAsyncEventHandler . The higher jitter
in RI may stem from the fact that the RI stores the
event handlers in ajava.util.Vector . This data
structure achieves thread-safety by synchronizing all
method thatget() , add() , or remove() elements
from it, which acquires and releases a lock associated
with the vector for each method.

To avoid this locking overhead,jRate uses a data struc-
ture that associates the event handler list with a given
event and allows the contents of the data structure to be

9



30 35 40 45 50 55 60 65 70

Dispatch Delay (micro-seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

pa
tc

h 
D

el
ay

 C
um

ul
at

iv
e 

R
el

at
iv

e 
F

re
qu

en
cy

jRate BoundAsyncEventHandler
jRate AsyncEventHandler
RI BoundAsyncEventHandler

Figure 18:Cumulative Dispatch Latency Distribution.

read without acquiring/releasing a lock. Only modifica-
tions to the data structure must be serialized. As a re-
sult, jRate’s AsyncEventHandler dispatch latency
is relatively predictable, even though the handler has no
thread bound to it permanently. ThejRate thread pool
implementation uses LIFO queues for its executor,i.e.,
the last executor that has completed executing is the first
one reused. This technique is often applied in thread pool
implementations to leverage cache affinity benefits [17].

� Worst-case Measures—Table 1 illustrates how
the jRate’s BoundAsyncEventHandler and
AsyncEventHandler have worst-case execu-
tion time that is close to its average-case. The
worst-case dispatch delay provided by the RI’s
BoundAsyncEventHandler is not as good as
the one provided byjRate, due to differences in how
their event dispatching mechanisms are implemented.
The 99% bound differs only on the first decimal digit for
both jRate and the RI (clearly we do not consider the
RI’s AsyncEventHandler since no bound can be put
on its behavior).

Asynchronous Event Handler Priority Inversion Test.
This test measures how the dispatch latency of an asyn-
chronous event handlerH is influenced by the presence ofN
others event handlers, characterized by a lower execution eligi-
bility thanH . In the ideal case,H ’s dispatch latency should be
independent ofN , and any delay introduced by the presence
of other handlers represents some degree of priority inversion.
The results we obtained are presented and analyzed below.

Test Settings. This test uses the same settings as the
asynchronous event handler dispatch delay test. Only

the BoundAsyncEventHandler performance is mea-
sured, however, because the RI’sAsyncEventHandler s
are essentially unusable since their dispatch latency grows
linearly with the number of event handled (see Fig-
ure 17), which masks any priority inversions. Moreover,
jRate’s AsyncEventHandler performance is similar to its
BoundAsyncEventHandler performance, so the results
obtained from testing one applies to the other. The current test
uses the following two types of asynchronous event handlers:
� The first is identical to the one used in the previous test,

i.e., it gets a time stamp after the handler is called and
measures the dispatch latency. This logic is associated
with H .

� The second does nothing and is used for the lower priority
handlers.

Test Results. Table 3 and Table 4 report how the average,
standard deviation, maximum and 99% bound of the dispatch
delay changes forH as the number of low-priority handlers
increase. Figure 19 and Figure 20 provide a graphical repre-
sentation for the average and dispersion measures.

Avg. Std. Dev. Max 99%
0 LP 33.375�s 0.124�s 34.877�s 34.116�s
10 LP 33.154�s 0.134�s 34.903�s 33.797�s
50 LP 33.205�s 0.161�s 36.063�s 33.825�s
100 LP 33.264�s 0.147�s 35.959�s 33.851�s
500 LP 33.632�s 0.180�s 37.149�s 34.283�s
1000 LP 33.739�s 0.199�s 37.565�s 34.458�s

Table 3:jRate’s Dispatch Delay Statistics.

Avg. Std. Dev. Max 99%
0 LP 56.106�s 0.887�s 70.462�s 56.706�s
10 LP 112.33�s 1.346�s 133.90�s 122.18�s
50 LP 332.41�s 2.396�s 353.17�s 344.86�s
100 LP 609.92�s 3.410�s 631.51�s 624.96�s
500 LP 2826.4�s 12.005�s 2884.0�s 2862.1�s
1000 LP 5587.0�s 23.768�s 5672.7�s 5650.3�s

Table 4:RI’s Dispatch Delay Statistics.

Results Analysis. Below, we analyze the results of the
tests that measure average-case and worst-case dispatch la-
tency, as well as its dispersion, forjRate and the RI.
� Average Measures—Figure 19 and Tables 3 and 4 il-

lustrate that the average dispatch latency experienced by
H is essentially constant forjRate, regardless of the
number of low-priority handlers. It grows rapidly, how-
ever, as the number of low-priority handlers increase for
the RI. The RI’s event dispatching priority inversion is
problematic for real-time systems and stems from the
fact that its queue of handlers is implemented with a
java.util.Vector , which is not ordered by theex-
ecution eligibility. In contrast, the priority queues in
jRate’s event dispatching are ordered by the execution
eligibility of the handlers.

10



33.4 33.2 33.2 33.3 33.6 33.7

56.11

112.3

332.4

609.9

2826

5587

0 LPH 10 LPH 50 LPH 100 LPH 500 LPH 1000 LPH

25

125

625

3125

A
ve

ra
ge

 D
is

pa
tc

h 
La

nt
en

cy
 (

m
ic

ro
-s

ec
on

ds
)

jRate
RI

Figure 19:H ’s Average Dispatch Latency.

0.124 0.134
0.161 0.147

0.18 0.199

0.888

1.35

2.4

3.41

12

23.8

0 LPH 10 LPH 50 LPH 100 LPH 500 LPH 1000 LPH

0.04

0.2

1

5

25

D
is

pa
tc

h 
La

te
nc

y 
S

ta
nd

ar
d 

D
ev

ia
tio

n 
(m

ic
ro

-s
ec

on
ds

)

jRate
RI

Figure 20:H Dispatch Latency’s Standard Deviation.

Execution eligibility is the ordering mechanism used
throughoutjRate. For example, it is used to achieve total
ordering of schedulable entities whose QoS are expressed
in different ways. This approach is an application of the
formalisms presented in [6].

� Dispersion Measures—Figure 20 and Tables 3 and 4 il-
lustrate howH ’s dispatch latency dispersion grows as the
number of low-priority handlers increases in the RI. The
dispatch latency incurred byH in the RI therefore not
only grows with the number of low-priority handlers, but
its variability increasesi.e., its predictability decreases.
In contrast,jRate’s standard deviation increases very lit-
tle as the low-priority handlers increase. As mentioned
in the discussion of the average measurements above, the
difference in performance stems from the proper choice
of priority queue.

� Worst-Case Measures—Tables 3 and 4 illustrate how
the worst-case dispatch delay is largely independent of
the number of low-priority handlers forjRate. In con-

trast, worst-case dispatch delay for the RI increases as the
number of low-priority handlers grows. The 99% bound
is close to the average forjRate and relatively close for
the RI.

5 Related Work

Although the RTSJ was adopted fairly recently [2], there are
already a number of research projects related to our work on
jRate andRTJPerf. The following projects are particularly
interesting:

� TheFLEX [15] provides a Java compiler written in Java,
along with an advanced code analysis framework. FLEX
generates native code for StrongARM or MIPS proces-
sors, and can also generate C code. It uses advanced anal-
ysis techniques to automatically detect the portions of a
Java application that can take advantage of certain real-
time Java features, such as memory areas or real-time
threads.

� The OVM [16] project is developing an open-source JVM
framework for research on the RTSJ and programming
languages. The OVM virtual machine is written entirely
in Java and its architecture emphasizes customizability
and pluggable components. Its implementation strives to
maintain a balance between performance and flexibility,
allowing users to customize the implementation of oper-
ations such as message dispatch, synchronization, field
access, and speed. OVM allows dynamic updates of the
implementation of instructions on a running VM.

� Work on real-time storage allocation and collection [8]
is being conducted at Washington University, St. Louis.
The main goal of this effort is to develop new algorithms
and architectures for memory allocation and garbage col-
lection that provide worst-case execution bounds suitable
for real-time embedded systems.

There are several ways in which we plan to leverage our
work on jRate and the work being done in the FLEX, OVM,
and real-time allocator projects outlined above. For instance,
the jRate RTSJ library implementation could become the li-
brary used by the OVM. This is possible becausejRate has
been designed to port easily from one Java platform to another.
jRate could be used as the RTSJ library on which FLEX re-
lies. Likewise, the work on real-time allocators and garbage
collectors could be to implementjRate’s scoped memory with
different characteristics than its currentCTMemorydesign.

11



6 Concluding Remarks and Future Di-
rections

This paper presented an overview ofjRate, which is an ahead-
of-time compiled implementation of RTSJ. We analyzed the
results of systematic benchmarks ofjRate and the TimeSys
RTSJ RI based on theRTJPerf benchmarking suite [4].
RTJPerf is one of the first open-source benchmarking suites
designed to evaluate RTSJ-compliant Java implementations
empirically. TheRTJPerf results shown in Section 4 un-
derscore thatjRate is both efficient and predictable since its
use of ahead-of-time compilation (1) improves its performance
and (2) limits the sources of overhead and jitter introduced by
interpreted or just-in-time (JIT) compiled execution.

Although jRate implements many core RTSJ features, the
following omissions will be addressed in our future work:

� Add support for the remaining RTSJ features, such as
timers, POSIX signal handling, periodic and no-heap
real-time threads, and physical memory access. Some
feature that we don’t plan to implement in the first re-
lease ofjRate is the memory reference checking, and
the Asynchronous transfer control. SincejRate will be
the primary Real-Time Java platform used by ZEN [13],
jRate’s implementation is being driven by the features
that are most important for real-time ORBs.

� Provide a user-level scheduling framework that leverages
the simple priority-based scheduling provided by the un-
derlying real-time operating systems to provide advanced
scheduling services.

� Focus on applying generative programming techniques to
jRate. This will involve completely partitioning the Java
and C++ parts ofjRate into sets of aspects that can be
woven together at compile-time to configure custom real-
time Java implementations that are tailored for specific
application needs.

� Provide a meta-object protocol as one of the aspects to
support both computational and structural reflection. Re-
flection is useful for real-time applications that must man-
age resources dynamically. Moreover, it enables develop-
ers to customize the behavior ofjRate’s implementation
at run-time.

Our long-term goal is to create not just a single RTSJ imple-
mentation, but a set of components that allow users to generate
custom Real-time Java implementation tailored for particular
requirements and environments. Developer therefore will not
have to pay the cost and accidental complexity for features that
they do not use.

The first public version ofjRate will be released by the end
of June, 2002. Information on its current status and avail-
ability can be found athttp://tao.doc.wustl.edu/

˜corsaro/jRate . SincejRate is an open-source project,
we encourage researchers and developers to provide us feed-
back and help improve its quality and capabilities.jRate will
use the same open-source model we use for ACE [18] and
TAO [3], which has proved to be successful to produce high-
quality open-source middleware.

References
[1] Ken Arnold, James Gosling, and David Holmes.The Java

Programming Language. Addison-Wesley, Boston, 2000.

[2] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull.
The Real-Time Specification for Java. Addison-Wesley, 2000.

[3] Center for Distributed Object Computing. The ACE ORB
(TAO). www.cs.wustl.edu/�schmidt/TAO.html, Washington
University.

[4] Angelo Corsaro and Douglas C. Schmidt. Evaluating
Real-Time Java Features and Performance for Real-time
Embedded Systems. InProceedings of the8th IEEE
Real-Time Technology and Applications Symposium, San Jose,
September 2002. IEEE.

[5] Angelo Corsaro and Douglas C. Schmidt. Evaluating
Real-Time Java Features and Performance for Real-time
Embedded Systems. Technical Report 2002-001, University of
Califoria, Irvine, 2002.

[6] Angelo Corsaro, Douglas C. Schmidt, Ron K. Cytron, and
Chris Gill. Formalizing Meta-Programming Techniques to
Reconcile Heterogeneous Scheduling Disciplines in Open
Distributed Real-Time Systems. InProceedings of the 3rd
International Symposium on Distributed Objects and
Applications., pages 289–299, Rome, Italy, September 2001.
OMG.

[7] Krzysztof Czaenwcki and Ulrich W. Eisenecker.Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts, 2000.

[8] Steven M. Donahue, Matthew P. Hampton, Morgan Deters,
Jonathan M. Nye, Ron K. Cytron, and Krishna M. Kavi.
Storage allocation for real-time, embedded systems. In
Thomas A. Henzinger and Christoph M. Kirsch, editors,
Embedded Software: Proceedings of the First International
Workshop, pages 131–147. Springer Verlag, 2001.

[9] GNU is Not Unix. GCJ: The GNU Complier for Java.
http://gcc.gnu.org/java , 2002.

[10] George T. Heineman and Bill T. Councill.Component-Based
Software Engineering: Putting the Pieces Together.
Addison-Wesley, Reading, Massachusetts, 2001.

[11] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow.The
Art of The Metaobject Protocol. The MIT Press, Cambridge,
Massachusetts, 1991.

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John
Irwin. Aspect-Oriented Programming. InProceedings of the
11th European Conference on Object-Oriented Programming,
June 1997.

12



[13] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan.
The Design of a Real-time CORBA ORB using Real-time
Java. InProceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing. IEEE,
April 2002.

[14] Doug Lea.Concurrent Programming in Java: Design
Principles and Patterns, Second Edition. Addison-Wesley,
Boston, 2000.

[15] M.Rinard et.al. FLEX Compiler Infrastructure.http:
//www.flex-compiler.lcs.mit.edu/Harpoon/ ,
2002.

[16] OVM/Consortium. OVM An Open RTSJ Compliant JVM.
http://www.ovmj.org/ , 2002.

[17] James D. Salehi, James F. Kurose, and Don Towsley. The
Effectiveness of Affinity-Based Scheduling in Multiprocessor
Networking. InIEEE INFOCOM, San Francisco, USA, March
1996. IEEE Computer Society Press.

[18] Douglas C. Schmidt. The ADAPTIVE Communication
Environment (ACE). www.cs.wustl.edu/�schmidt/ACE.html,
1997.

[19] Douglas C. Schmidt and Fred Kuhns. An Overview of the
Real-time CORBA Specification.IEEE Computer Magazine,
Special Issue on Object-oriented Real-time Computing, 33(6),
June 2000.

[20] Janos Sztipanovits and Gabor Karsai. Model-Integrated
Computing.IEEE Computer, 30(4):110–112, April 1997.

[21] The AspectC++ Organization. Aspect-Oriented Programming
for C++. www.aspectc.org , 2001.

[22] The AspectJ Organization. Aspect-Oriented Programming for
Java.www.aspectj.org , 2001.

[23] TimeSys. Real-Time Specification for Java Reference
Implementation.www.timesys.com/rtj , 2001.

[24] TimeSys. TimeSys Linux/RT 3.0.www.timesys.com ,
2001.

13


