
OASIS: An Architecture for Dynamic Instrumentation of Enterprise Distributed
Real-time and Embedded Systems

James Hill∗, Hunt Sutherland†, Paul Staudinger†, Thomas Silveria‡, Douglas C. Schmidt§, John Slaby‡ and Nikita Visnevski†
∗ Indiana University-Purdue University Indianapolis

Indianapolis, IN USA
Email: hillj@cs.iupui.edu

† GE Global Research
Niskayuna, NY USA

Email: {sutherland,staudinger}@crd.ge.com
visnevsk@research.ge.com

‡ Raytheon Company
Portsmouth, RI USA

Email: {thomas silveria,john m slaby}
@raytheon.com

§ Vanderbilt University
Nashville, TN USA

Email: d.schmidt@vanderbilt.edu

Abstract—Instrumentation is a critical part of evaluating an
enterprise distributed real-time and embedded (DRE) system’s
performance. Traditional techniques for instrumenting enter-
prise DRE systems require DRE system developers to make
design decisions regarding what metrics to collect during early
phases of the software lifecycle so these needs can be factored
into the system architecture. In many circumstances, however,
it is hard for DRE system developers to know this information
during early phases of the software lifecycle—especially when
metrics come from many heterogeneous sources (such as
application- and system-level hardware and software resources)
and evaluating performance is traditionally an after-thought.

To address these issues, this article presents the design
and performance of OASIS, which is SOA-based middleware
and tools that dynamically instruments enterprise DRE system
without requiring design-time knowledge of which metrics to
collect. This article also empirically evaluates OASIS in the con-
text of a representative enterprise DRE system case study from
the domain of shipboard computing. Results from applying
OASIS to this case study show that its flexibility enables DRE
system testers to precisely control instrumentation overhead.
We also highlight open challenges in dynamic instrumentation
for next-generation enterprise DRE systems.

Keywords-dynamic instrumentation, enterprise DRE systems,
service-oriented architecture, middleware, real-time instrumen-
tation

I. INTRODUCTION

Enterprise distributed real-time and embedded (DRE)
systems (e.g. power grid management, shipboard computing
environments, and traffic management systems) are often
composed of loosely coupled applications that run atop dis-
tributed infrastructure software (e.g., component-base mid-
dleware and service-oriented middleware [26]) and deployed
into heterogeneous execution environments. In addition to
meeting their functional requirements, enterprise DRE sys-
tems must also meet non-functional requirements, such as

The author would like to thank the Test Resource Management Center
(TRMC) Test and Evaluation/Science and Technology (T&E/S&T) Program
for their support. This work is funded by the T&E/S&T Program through
the Naval Undersea Warfare Center, Newport, RI, contract N66604-05-C-
2335.

latency, response time, and scalability, so that applications
achieve their expected behavior in a timely manner [32].
Failure to meet non-functional requirements can cause the
system to not meet its quality-of-service (QoS) guarantees.

To ensure enterprise DRE system QoS, DRE system
stakeholders, such as testers, developers, and end-users,
monitor the system’s behavior and resources (e.g., CPU
usage, memory allocation, and event arrival rate) and analyze
collected metrics. Conventional approaches for monitoring
enterprise DRE system behavior and resources employ soft-
ware instrumentation techniques [4], [24], [29], [32] that
collect metrics of interest (e.g., busy time for an application,
L2 cache memory usage, state of a component, and number
of heartbeats sent by a watchdog daemon) as a system
runs in its target environment. Performance analysis tools
(such as testing and experimentation, distributed resource
management, and real-time monitoring/reporting) then eval-
uate collected metrics and inform DRE system stakeholders
if the system is meeting its QoS expectations, such as
honoring deadlines, processing events in a timely manner,
not hogging to much memory. These tools can also identify
QoS bottlenecks and application components that exhibit
high and/or unpredictable behavior and resource usage [25].

Although software instrumentation helps ensure QoS
guarantees, conventional techniques [32] for collecting met-
rics are often tightly coupled to system implementations. As
a result, DRE system developers must decide what metrics
to collect during the system design phase. These concerns
are also factored into the verification and validation process
for system implementations [32]. DRE system developers
and testers therefore are faced with the following drawbacks
as a result of using a tightly-coupled approach to software
instrumentation:
• Developers often do not know a priori what metrics

are needed to evaluate system QoS—especially since
performance is an afterthought [12] (i.e., evaluated late
in the software lifecycle);

• Incorporating new metrics late in the software lifecycle

typically triggers verification and validation of the
changes system, which is costly [34];

• Developers continually reinvent instrumentation logic
across different application domains; and

• Developers apply ad hoc techniques, such as augment-
ing existing code to inject the instrumentation hooks,
without understanding the impact on overall system
design and maintainability.

To overcome the drawbacks with conventional enterprise
DRE system instrumentation techniques, there is need for
improved techniques that do not require DRE system stake-
holders to make software instrumentation design decisions
during early phases of software lifecycle. A promising ap-
proach to realizing the goal is dynamic instrumentation [4],
[31], where developers control what and how metrics are
collected from the system at runtime rather than during the
design phase. When dynamic instrumentation methodologies
are combined with service-oriented middleware methodolo-
gies, many challenges associated with dynamic instrumenta-
tion, such as data collection and extraction, can be decoupled
from—and resolved independently of—the core application
business logic. Moreover, these solutions can be reused
across different application domains.

This article presents the Open-source Architecture for
Software Instrumentation of Systems (OASIS) and provides
the following contributions to R&D on dynamic instrumen-
tation of enterprise DRE systems:

• It describes the design challenges and OASIS-based
solutions associated with realizing dynamic instrumen-
tation middleware that is suitable for enterprise DRE
systems;

• It shows how OASIS has been applied to a representa-
tive enterprise DRE system case study from the domain
of shipboard computing environments; and

• It analyzes empirical results that quantify how OA-
SIS enables DRE system developers to dynamically
configure the instrumentation middleware manually to
minimize impact on end-to-end response time.

This article extends the seminal paper on OASIS [9] by:

• Presenting a more detailed overview of OASIS’s data
collection architecture;

• Discussing how the generalized architecture is cus-
tomizable for different application domains, program-
ming languages, and distributed technologies; and

• Presenting open challenges for future research on dy-
namic instrumentation of enterprise DRE systems.

Article organization. The remainder of this article is
organized as follows: Section II motivates OASIS via a
case study from the domain of shipboard computing; Sec-
tion III describes the structure and functionality of OASIS;
Section IV presents empirical results that evaluate OASIS’s
impact on QoS requirements from the case study; Section V

compares work on OASIS with related efforts; and Sec-
tion VI presents concluding remarks and lessons learned.

II. CASE STUDY: THE SPRING SCENARIO

This section motivates the need for OASIS via a case
study based on the SPRING scenario. This scenario is a
representative enterprise DRE system from the domain of
shipboard computing composed of programming languages
and technologies that execute in heterogeneous environments
where computers can run different operating systems, as
shown in Figure 1.

!"#$%&'(

)*(

+,"-'.$/(

+,"-'.$/(

+,"-'.$/(

+,"-'.$/(

+012--"$/(+012--"$/(+012--"$/(+3.-4567/(+89"&#.$/(

+89"&#.$/(

+89"&#.$/(

+:2#";2</(

+67"$2#.$/(+67"$2#.$/(+67"$2#.$/(

=%&$.'.>(?@8A((

=.-%#.$(:BC(

DE,0?@8AF3GH(

)I=((

D3JJH(

0"$K.$!2-&"(E-21<'%'(A..1'(

8-#"7%'"()I8(2771%&2L.-(

D36I*E(3.!7.-"-#(=.M"1H(

D$"2M'H(D$"2M'H(

Figure 1. Overview of the SPRING Scenario

This scenario tests QoS concerns (such as throughput,
latency, jitter, and scalability) of the underlying enterprise
DRE system infrastructure (e.g., hardware, middleware, op-
erating system, and network) that will host it. For example,
the scenario evaluates whether the infrastructure middleware
can manage and meet the resource needs of applications
in volatile conditions, such as changing arrival rates of
events and dynamic resource usage. Detailed coverage of
the SPRING scenario appears in [7].

Existing techniques for instrumenting enterprise DRE
systems like the SPRING scenario assume software in-
strumentation concerns (e.g., what metrics to collect and
how to extract metrics from the enterprise DRE appli-
cation) are incorporated into the system’s design. Tightly
coupling system instrumentation with the existing software
design, however, impedes flexibility in system design and
implementation throughout the software lifecycle, e.g., by
complicating changes to the number/type of components and
precluding the refreshing of new technologies due to the
effort needed to revalidate QoS requirements.

In general, developers and testers of the SPRING scenario
faced the following challenges:
• Challenge 1: Dynamic collection and extraction of

metrics without design time knowledge metric compo-
sition. While the SPRING scenario is being developed it
is hard for DRE system developers and testers in the early

phases of the software lifecycle to anticipate all the metrics
they will need to collect for performance analysis. Moreover,
the SPRING scenario has many operating conditions (such
as high and low event throughput) and the QoS of its
critical path can be affected by instrumentation. DRE system
developers and testers therefore need mechanisms that en-
able them to (1) collect and extract metrics without making
such decisions at design time and (2) dynamically modify
collection to ensure instrumentation does not unduly perturb
performance. Section III-B1 shows how OASIS addresses
this challenge by using a multi-level packaging technique
that enables it to adapt to different metrics being collected.

• Challenge 2: Dynamic discovery of metrics for
analysis without design time knowledge of metric compo-
sition. Existing third-generation languages and distribution
middleware technologies, such as J2EE [30], CORBA [21]–
[23], DDS [19], and Microsoft .NET [13], support dynamic
types that enable transmission of data without knowledge
of its structure and quantify. Although dynamic types are
a plausible solution for this challenge, they are tightly
coupled to a particular programming languages and middle-
ware. Since many enterprise DRE systems like the SPRING
scenario are composed of heterogenous technologies, DRE
system developers and testers need higher-level mechanisms
that enable them to discover metrics for performance anal-
ysis tools without being bounded to specific technologies.
Section III-B2 shows how OASIS addresses this challenge
by using metadata to describe metrics being collected be-
forehand so it is possible to discover the actual metrics later.

• Challenge 3: Real-time reporting of collected met-
rics. The ability to dynamically instrument and collect
metrics without design time knowledge of what metrics are
being collected is not complete without the ability to analyze
such metrics in real-time. For example, performance analysis
tools may need to monitor system performance in real-time
and adapt the system’s behavior as needed, such as changing
the rate of collecting information without impacting system
response time or migrating software components to reduce
CPU workload or improve fault tolerance [33]. DRE system
developers therefore need architectural support that enables
them to receive collected information in real-time for actu-
ator purposes. Section III-B3 shows how OASIS addresses
this challenge using publisher-subscriber services that allow
performance analysis tools to register for a software probe
and receive metrics in real-time (i.e., as it is collected).

These challenges make it hard for DRE system developers
and testers to apply different performance analysis tools
to the SPRING scenario throughout the software lifecycle,
particularly in early phases. Moreover, these challenges
extend beyond the SPRING scenario and apply to other
enterprise DRE systems that need to collect and extract
metrics without knowledge of such concerns at design time.

III. THE STRUCTURE AND FUNCTIONALITY OF OASIS

This section describes the structure and functionality of
OASIS, focusing on how it addresses the key challenges
presented in Section II that DRE system developers and
testers encounter when dynamically instrumenting enterprise
DRE systems.

A. Overview of OASIS

The challenges in Section II focus on the ability to
handle(e.g., collect, extract, and analyze) metrics without
a priori knowledge of metric details (e.g., their structure
and quantity to the underlying middleware and system
infrastructure). To address these challenges, the OASIS
service-oriented middleware can instrument enterprise DRE
systems to collect and extract metrics of interest without
knowledge of their structure or quantity. Metric collection
and extraction in OASIS is also independent of specific
technologies and programming languages, which decouples
OASIS from enterprise DRE system software implementa-
tion details. DRE system developers and testers are thus
not constrained to make decisions regarding what metrics
to collect for performance analysis tools during the design
phase of the system.

!""#$%&'()*+(),-.,*

/01(2-*3!+*

4(56&7-*

87(9-*

:;/*<&)&=-7*

8-7>(7?&)%-*

!)&#@A$A*:((#*

Figure 2. Overview of OASIS

Figure 2 presents an high-level overview of OASIS. As
shown in this figure, OASIS consists of the following five
entities:

Software probe is an autonomous agent [17] that collects
metrics of interest (such as the current value(s) of an event,
the current state of a component, or the heartbeat of a
component or the node hosting the component) and acts
independent of the monitored application and other entities
in OASIS. For example, a heartbeat software probe in the
SPRING scenario has an active object that periodically
sends metrics representing a heartbeat, whereas an event
monitor probe may send metrics each time a component
receives/sends an event.

OASIS supports application-level and system-level
probes. Application-level probes are embedded into
an application to collect metrics, such as the state
of an application component or number of events it
sends/receives. System-level probes collect metrics (such

as current memory usage or the heartbeat of each host in
the target environment) that are not easily available at the
application-level or may be redundant the application-level.
Both application- and system-level probes submit their
metrics to the Embedded Instrumentation Node (EINode)
described below. Each software probe is identifiable
from other software probes by a user-defined UUID and
corresponding human-readable name.

Embedded Instrumentation Node (EINode) is respon-
sible for receiving metrics from software probes. OASIS
has one EINode per application-context, which is a domain
of commonly related data. Application-context examples
include a single component, an executable, or a single host
in the target environment. The application-context for an
EINode, however, is locality-constrained for efficiency, i.e.,
to ensure data transmission from a software probe to an
EINode need only cross process boundaries—rather than
network boundaries. Moreover, the EINode controls the flow
of data it receives from software probes and submits to the
data and acquisition controller described next. Each EINode
is uniquely identifiable from other EINodes by a user-defined
UUID and corresponding human-readable name.

Data Acquisition and Controller (DAC) receives data
from an EINode and archives it for subsequent acquisition
by performance analysis tools, such as querying the latest
state of component in the SPRING scenario. The DAC is
a persistent database with a static location in the target
environment that can be located via a naming service [20].
This design decouples an EINode from a DAC and enables
an EINode to discover which DAC it will submit data to
dynamically at creation time. Moreover, if a DAC fails
during at runtime the EINode can (re)discover a new DAC
to submit data. The DAC registers itself with the test and
evaluation manager (described next) when it is created and
is identifiable by an user-defined UUID and corresponding
human-readable name.

Test and evaluation manager (T&E) is the main entry
point for user applications (see below) into OASIS. The
T&E Manager gathers and correlates data from each DAC
that has registered with it. The T&E Manager also enables
user applications to send signals a software probe to alter
its behavior at runtime, e.g., decreasing/increasing the hertz
of the heartbeat software probe in the SPRING scenario. .

Performance analysis tools interact with OASIS by
requesting metrics collected from different software probes
via the T&E Manager. They can also send signals/commands
to software probes to alter their behavior at runtime. This
design enables DRE system developers and testers and
performance analysis tools to control the effects of software
instrumentation at runtime and minimize the affects on
overall system performance, such as ensuring the SPRING
scenario’s critical path meets its deadline while under in-
strumentation.

Figure 3 shows an example deployment of the OASIS

!"#$%&'
()*'

+,!'-./.0&1'

23&1'

)44567.8$/'

()*'

!"#$%&'
!"#$%&'
!"#$%&'

!"#$%&'

23&1'

)44567.8$/'9&1:$1;./7&'

)/.5<363'+$$5'

!"#$%&'
!"#$%&'
!"#$%&'!=&/>'-$/6>$1'

91$?&'

!"#$%&'
!"#$%&'
!"#$%&'@$AB.1&'

91$?&'

C)@"@'($;.6/')44567.8$/'($;.6/'+$$5'($;.6/'

!D&7>$1'*$;4$/&/>'

Figure 3. Deployment of OASIS in the SPRING Scenario

entities above in the context of an Effector component
from the SPRING scenario. This figure also shows how
DRE system developers and testers write domain-specific
software probes—at either the application or system level—
that collect metrics unknown to the OASIS middleware, such
as probe that monitors incoming events or the heartbeat of
a component. While the system under instrumentation is
executing in its target environment, software probes collect
metrics and submit them to an EINode. The EINode, in turn,
submits the data to the DAC, which stores the metrics until
user applications request metrics collected from different
software probes via the T&E Manager.

Figure 3 also highlights the application and network
boundaries of OASIS. Software probes do not submit data
across different network boundaries directly; instead, the
EINode localizes instrumentation overhead on the host.
Likewise, the DAC and T&E Manager are designed to
execute on hosts separate from those running the instru-
mented system to ensure data management concerns of the
DAC and T&E Manager do not interfere with the system’s
performance.

The remainder of this section discusses how OASIS ad-
dresses the challenges of enabling dynamic instrumentation
without design-time knowledge of the collected metrics or
being bounded to a specific technologies and programming
language.

B. Addressing the Dynamic Instrumentation Challenges in
OASIS

1) Solution 1. Dynamic Collection of Metrics: As dis-
cussed in Section III-A, OASIS has no knowledge of what
metrics are collected during system instrumentation. Instead,
DRE system developers and testers implement software
probes and register them with an EINode that ensures
its data is collected properly by the OASIS middleware.
Figure 4 therefore shows OASIS’s architecture for facili-
tating dynamic collection metrics from software probes. As
shown in this figure, the architecture is composed of several
interfaces. Each interface, except for the SoftwareProbe
interface, represents a point where different implementations
can be inserted into the architecture to provide more domain-

!"#$
%%&'()*+,-)..$

!"#"$%"&&'()

%%&'()*+,-)..$

*+,"(!"#"$%"&&'()

/001$

2*34&5)6$

2*34&5)6$

/001$

%%&'()*+,-)..$

-+./"0'10+2')

%%&'()*+,-)..$

-+./"0'10+2'3",#+04)

-*),()6$

/$

76)6$/$

/$

76)6$ 8,',9)6$

:;<$=,',9)*$

/001$

8,',9)6$

%%&'()*+,-)..$

567+8')

Figure 4. OASIS’s Architecture Diagram for Dynamic Collection of Metrics.

specific behavior, e.g., data channels that intelligently select
metrics to transmit when dealing with software probes that
have high data rates [5].

Figure 5 shows the UML class diagram for the
SoftwareProbe interface. As shown in this figure,
each software probe implements an init() and fini()
method to initialize and finalize a software probe, re-
spectively. A software probe can optionally implement the
handleCommand() method, which allows it to process
commands sent from performance analysis tools via the
T&E Manager. For example, if a software probe automati-
cally sends updates to its host EINode, then a performance
analysis tool can send a command to change its update rate,
i.e., the software probes hertz. Such commands can also be
used to change the software probe’s configuration based on
the state of the software system undergoing instrumentation.

!!"#$%&'()%**+

!"#$%&'(&")'*

,%$(-($(.+/$&"#0+

"#"$+1"#$+/$&"#0+23+(&0/4.+56"-+

7#"+156"-4.+56"-+

89/:+156"-4.+56"-+

:(#-;%<6,,(#-+1"#+/$&"#0+),-4.+56"-+

/%$=($(<:(##%;+1"#+>6)(;=($(<:(##%;+-)4.+56"-++

!!"#$%&'()%**+

!"#$%&'(&")'+%,-"&.*

)&%($%+156"-4.+?6@A(&%B&6C%+

Figure 5. UML Class Diagram for OASIS’s Software Probe Architecture

Each software probe implements a flush() method
that allows the host EINode or application to force the

software probe to send its most recently collected metrics
to its hosting EINode. The setDataChannel() method
determines the local data channel that the software probe
uses to send collected metrics to the EINode. This method
therefore is invoked by the hosting EINode when a software
probe is loaded into memory, but before the software probe’s
init() method in invoked.
LocalDataChannel (see Figure 4 and Figure 7) is

an interface for a locality-constrained object. Its implemen-
tation can therefore vary, depending on the needs of the
enterprise DRE system undergoing dynamic instrumentation.
For example, the local data channel implementation can
aggregate collected metrics before sending them to the
DAC to reduce network overhead. Each software probe has
a corresponding SoftwareProbeFactory to support
dynamic creation and linking into the application via the
Component Configurator pattern [28] and associating the
software probe with an EINode—via an implementation of
the LocalDataChannel interface—to submit metrics.

!"#$%&!

'()%*&+$,,()%-./)-012/)3-4,%56-7$/%-

Figure 6. UML Class Diagram for OASIS’s EINode

Figure 6 presents the standard and lightweight object
structure for an EINode. As shown in this figure, the
EINode exports a single method to the software probe named
handleCommand(), which receives commands from a
DAC. The commands received via this method have the
format: [PROBE] [COMMAND], where PROBE is the name
of the target software probe that receives the command and
COMMAND is the command-line passes to the target probe,
if found.

The EINode also implements the one or more

!!"#$%&'()%**+

!"#"$%"&&'()

,%#-.($(+/"#+0)$%$+12+-($(34+50"-+

!!"#$%&'()%**+

*+,"(!"#"$%"&&'()

Figure 7. UML Class Diagram for OASIS’s Data Channels

LocalDataChannel objects that are used by different
software implementation probes. As shown in Figure 7,
the LocalDataChannel has a single method named
sendData() used by the software probe to send packaged
data in binary format based on the specification presented
in Table I to the EINode. As shown in this table, each
software probe packages its metrics to include information
for OASIS to learn the metric’s origin, i.e., the UUID of the
software probe, and the probe/metric’s state at collection,
e.g., collection timestamp, sequence number of metrics,
probe state, and metric’s data size. The remaining contents
of the BinaryData, such as the actual metrics, are outside
of the EINode’s concern and remain unknown.

Table I
KEY ELEMENTS IN DATA PACKAGING SPECIFICATION FOR OASIS

SOFTWARE PROBES

Name (size) Description
probeUUID (16) User-defined UUID
tsSec (4) Seconds value of timestamp
tsUsec (4) Micro-seconds value timestamp
seqeunceNum (4) Metric sequence number
probeState (4) Probe-defined value (if applicable)
dataSize (4) Size of metric data

After an EINode receives packaged metrics from a soft-
ware probe, the EINode submits it to the DAC via an ex-
posed DataChannel interface (see Figure 7). This version
of the data channel interface is designed to support network
communication, unlike the LocalDataChannel since the
DAC and EINode reside on different machines (as shown
in Figure 3). The behavior of an EINode for submitting
collected metrics to the DAC can vary between different im-
plementations. Regardless of an EINode’s implementation,
the specification in Table II is used to package data received
from a software probe into binary data. The EINode then
invokes the sendData() method on the DataChannel,
which sends collected metrics to the target DAC.

Table II shows the necessary header information the
EINode prepends to binary data it receives from a soft-
ware probe. This information allows OASIS to learn the
application-context origin for collected metrics. The EINode
then submits the data to the DAC for storage. OASIS can

Table II
KEY ELEMENTS IN DATA PACKAGING SPECIFICATION FOR OASIS

EINODE

Name (size) Description
byteOrder (1) Byte-order of data
versionNumber (2) OASIS version number
reserved (1) padding for word alignment
einodeUUID (16) EInode unique id

dynamically collect metrics without knowing their details as
long as metrics sent to a DAC are packaged according to
Table I and Table II. This approach also decouples OASIS
from any specific technology or programming language
since data are a well-defined binary stream produceable
using any language or platform that supports sockets—
thereby addressing Challenge 1 in Section II.

2) Solution 2. Discovery of Metrics for Analysis: In
many cases, performance analysis tools requesting data from
OASIS via the T&E Manager will know at design time
the metrics being collected by software probes submitting
data to an EINode. In other cases, these tools may want
to request data for metrics not known at design-time. For
example, in the SPRING scenario, DRE system developers
and testers want to construct a generic GUI to monitor all
metrics collected while the system is instrumented in its
target environment. Since the GUI does not know all the
different metrics collected by software probes at design time,
the GUI needs mechanisms to learn metrics at runtime.

We address the challenge of discovering metrics for
analysis without design-time knowledge by requiring each
OASIS entity shown in Figure 2 to perform a registration
and unregistration process at startup and shutdown time,
respectively. The registration process between an EINode
and a DAC, as well as a DAC with a T&E manager,
involves understanding the composition of metric collection
(i.e., the origin and path of metrics collected during system
instrumentation). The registration process for a software
probe with an EINode is more critical, however, because this
is when the software probe notifies OASIS metric’s format.
1 <? xml v e r s i o n =” 1 . 0 ” ?>
2 <xsd : schema>
3 <xsd :complexType name=” Component . S t a t e ”>
4 <x s d : s e q u e n c e>
5 <x s d : e l e m e n t name=”name” t y p e =” x s d : s t r i n g ” />
6 <x s d : e l e m e n t name=” s t a t e ” t y p e =” x s d : b y t e ” />
7 </ x s d : s e q u e n c e>
8 </ xsd :complexType>
9

10 <x s d : e l e m e n t
11 name=” p r o b e M e t a d a t a ” t y p e =” Component . S t a t e ” />
12 </ x sd : schema>

Listing 1. Example Registration File for Software Probe in OASIS

Listing 1 presents an example registration for a software
probe from the SPRING scenario that keeps track of a com-
ponent’s state (e.g., activated or passivated). Each software
probe’s registration in this listing is a XML schema defini-
tion (XSD) file. We use XSD since it provides a detailed

description of data types (such as quantity and constraints)
that can help with optimizations and filtering/managing data.
The element named probeMetadata defines the root
element that describes the format of the metric collected
by a software probe. Likewise, the child annotation of the
probeMetadata element with the id named metadata
describes information about the software probe, such as the
user-defined UUID and description of the software probe.

During registration, a software probe passes its XSD file
to the EINode when the create() method is invoked on its
SoftwareProbeFactory (see Listing 5). The EINode
then passes the XSD file to the DAC with which it is reg-
istered. Performance analysis tools can request registration
information for a software probe via the T&E Manager,
which includes the metadata describing its metric format.
Using the metadata for a software probe, user applications
can learn about metrics at runtime for analytical purposes—
thereby addressing Challenge 2 in Section II.

3) Solution 3. Pub/sub for Real-time Reporting: In many
cases, instrumentation of a software system is done to collect
metrics for postmortem analysis, such as debugging the
application or locating data trends in performance properties.
Moreover, dynamic software instrumentation provides the
ability to control at run-time the instrumentation’s behavior,
which implies that performance analysis tools should have
the ability to control this behavior. Such control, however, is
typically based on analyzing collected metrics at real-time
and invoking commands back into the system—similar to
an actuator.

OASIS address this challenge problem by implementing
the Publisher-Subscriber [3] pattern that allows performance
analysis tools to register for metrics collected by software
probes. When software probes send new data to the DAC, if
the software probe has subscribers, the metrics are pushed to
the subscriber. OASIS implements the Publisher-Subscriber
pattern using CORBA, unlike the rest of OASIS that is not
tied to a platform or architecture. This design choice was
made in the specification and architecture for the following
reasons:

• The technology-, architecture-, and platform-
independence is needed only for extracting metrics
from the enterprise DRE system. Once metrics reach
the DAC, it is outside the application-space of the
system undergoing instrumentation.

• The performance analysis tool and the DAC typically
will reside on different host machines, which implies
that there will be network communication. CORBA
therefore simplifies inter-network communication con-
cerns involving objects on residing on different ma-
chines.

Listing 2 shows the publisher-subscriber interface imple-
mented by the T&E Manager and DAC, respectively. As
shown in this listing the T&E Manager must implement

register() and unregister() methods. The regis-
tration method requires an target DAC and software probe.
Likewise, the performance analysis tool must implement a
DataChannel interface—similar to the DataChannel
implemented by the DAC, which allows the performance
analysis tool to provide a domain-specific implementation
of the data channel, if necessary.
1 / / P u b l i s h e r i n t e r f a c e f o r t h e T&E Manager .
2 i n t e r f a c e T n E P u b l i s h e r {
3 Cookie r e g i s t e r (i n UUID dac ,
4 i n UUID probe ,
5 i n DataChanne l s u b s c r i b e r) ;
6
7 void u n r e g i s t e r (i n Cookie c) ;
8 } ;
9

10 / / P u b l i s h e r i n t e r f a c e f o r t h e DAC.
11 i n t e r f a c e DACPublisher {
12 Cookie r e g i s t e r (i n UUID probe ,
13 i n DataChanne l s u b s c r i b e r) ;
14
15 void u n r e g i s t e r (i n Cookie c) ;
16 } ;

Listing 2. Publisher-subscriber interface definition for the DAC and T&E
Manager.

The DAC also implements register() and
unregister() methods. The DAC’s registration
method, however, requires only the target software probe
and the provided DataChannel interface. The result of
successful registration is a cookie, which is a subscription
id for each client. This cookie is used to unregister the
subscribers.

After successful registration, performance analysis tools
begin receiving updates via the provided DataChannel
interface. Based on collected data, the performance analysis
tool can send command to software probes at real-time
via the handleCommand() method. Performance analysis
tools thus have the ability to adapt software instrumentation
autonomously based on the needs of the application at
runtime—thereby addressing Challenge 3 in Section II.

C. Using a Definition Language to Define Software Probes
Implementing a software probe for OASIS requires the

following two steps:
1) Creating the XML Schema Definition that defines the

software probes collected metrics, i.e., the software
probes metadata.

2) Implementing the software probe to package data
according to its metadata.

Software probes can be implemented in different program-
ming languages, such as Java and C++, so it can be used
for different application domains.

To simplify implementing software probes, OASIS pro-
vides the Probe Definition Language (PDL), which is a
domain-specific language for defining metric collected by
a software probe. The language specification resembles
the CORBA Interface Definition Language (IDL), but uses
different keywords to define data. Listing 3 shows the PDL
for the component state probe in Listing 1.

1 module Component {
2 s t r u c t UnusedType {
3 i n t 3 2 v a l u e 1 ;
4 i n t 3 2 v a l u e 2 ;
5 } ;
6
7 [uu id (0 A499B6B−7250−4B88−B9DC−360D32639081) ;
8 v e r s i o n (1 . 0)]
9 p robe S t a t e {

10 s t r i n g name ;
11 b y t e s t a t e ;
12 } ;
13 }

Listing 3. Specification of the component state probe using OASIS’s PDL.

As shown in this listing, PDL supports tuple definitions as
structures. A software probe is also defined by the keyword
probe. In addition, each probe has a set of attributes
that define its implementation properties, such as UUID
and version number. After a software probe is defined
using PDL, it is compiled into a separate XML Schema
Definition and software probe implementation. The current
implementation of OASIS generates software probes in C++,
but can be extended easily to support other programming
languages.

Table III
DIFFERENT DATA TYPES SUPPORTED BY OASIS’S PDL.

Category Keyword
Integer int8, int16, int32, int64
Unsigned Integer uint8, uint16, uint32, uint64
Decimal real32, real64
String char, string

Table III list the different data types supported in PDL.
Each data type can be specified as an array by using standard
bracket notation: int8 v[N] where N is the number of
elements in the array. Likewise, ranges can be specified in
the bracket notation: int8 v[min, max] where min is
the minimum number of elements in the array and max is
the maximum number of elements in the array. If max =
infinite, then there are unbounded number of elements in
the array, whereas if min = 0 and max = 1 the element is
optional—similar to XML Schema Definition.

IV. EVALUATING OASIS’S RUNTIME FLEXIBILITY AND
INSTRUMENTATION OVERHEAD

This section analyzes the results of experiments that
empirically evaluate the capabilities and performance of
OASIS in the context of the SPRING scenario presented
in Section II. The heterogeneity of the SPRING scenario
influenced the design of OASIS, as discussed in Section III.

A. Experiment Setup

A key concern of developers of applications and middle-
ware for DRE systems is that dynamic instrumentation will
negatively impact existing QoS properties, such as response-
time and utilization, of the instrumented system. Due to the
design of OASIS (described in Section III), QoS properties

related to the Data Acquisition and Controller (DAC) and the
Test and Evaluation (T&E) Manager do not impact existing
QoS properties of the system undergoing instruction, such
as the application in the SPRING scenario. Instead, the
Embedded Instrumentation Node (EINode) and software
probes have more impact on QoS properties for instrumented
system since the DAC and T&E manager are not deployed in
the application domain. In contrast, the EINode and software
probes interact directly with the instrumented system.

Since the EINode and software probes have more of an
impact on existing QoS properties for the system undergoing
instrumentation, developers and testers of the SPRING sce-
nario were interested in determining if they could use OASIS
to monitor the application in real-time without causing the
application in the SPRING scenario to miss its critical-path
deadline. In particular, system testers wanted to monitor (1)
as many events sent between each component and (2) the
heartbeat of each application. Monitoring these two metrics
significantly impacts the end-to-end response time of the
application in the SPRING scenario and is thus essential to
evaluate OASIS’s capabilities.

System testers therefore used the CUTS system execution
modeling tool [8] to construct the application in the SPRING
scenario shown in Figure 1. CUTS was used to (1) model the
behavior and workload of each component at a high-level of
abstraction and (2) auto-generate source code for the CIAO
architecture from constructed models. System testers then
compiled the generated source code on its target architecture
and emulated the system on a cluster of computers running
in ISISlab (www.isislab.vanderbilt.edu). Each computer in
ISISlab used Emulab software to configure the Fedora Core
8 operating system. Likewise, each computer is an IBM
Blade Type L20, dual-CPU 2.8 GHz processor with 1 GB
RAM interconnected via six Cisco 3750G-24TS network
switches and one Cisco 3750G-48TS network switch. The
remainder of this section analyzes the results of the experi-
ment.

B. Experiment Results

Section IV-A provided background information that the
system testers of the SPRING scenario were interested in
executing. In particular, the system testers wanted to under-
stand how using the dynamic instrumentation capabilities
of OASIS would affect end-to-end response time of the
application in the SPRING scenario. Figure 8 shows a
single test run of the application in the SPRING scenario
in ISISlab, where system testers adjusted the hertz of the
heartbeat software probe.

As shown in the figure, system testers initially started with
a configuration of 1 hertz (or 1 event/sec) for each heartbeat
software probe embedded in a component. Since the end-
to-end response time for the application’s critical path of
execution between the Effectors and Sensors was under its
500 msec deadline for this particular scenario, the system

!"#$#%# !"#$#&# !"#$#'# !"#$#(#

)*+,-./#0.12#34.5/+64#$#&77#894-#

Figure 8. Single Test Run of Adjusting the Heartbeat Software Probe’s
Hertz in SPRING Scenario’s Application Under OASIS Instrumentation.

testers decided to increase the heartbeat software probe’s
hertz to improve awareness of application liveliness. After
increasing the heartbeat to 5 hertz, the end-to-end response
time began increasing above 500 msec, as shown in Figure 8.

Since the heartbeat probe negatively impacted end-to-end
response time for the application’s critical path of execution,
system testers decreased the heartbeat software probe’s hertz
to 2. Figure 8 shows how this dynamic change enabled
testers to increase awareness of application liveliness and not
negatively impact end-to-end response of the application’s
critical path of execution. System testers also increased
the heartbeat software probe’s hertz to 3 to determine the
new configuration would impact end-to-end response time.
Unfortunately, 3 hertz caused the end-to-end response time
to gradually increase with respect to time. System testers
therefore learned that they could configure the heartbeat
software probe to execute at 2 hertz without impacting end-
to-end response time of the application’s critical path of
execution.

C. Open Research Problems

The results above are just one of many different exe-
cutions of the SPRING scenario. Experience gained from
running this scenario throughout the system lifecycle un-
derscores the challenges of validating OASIS’s usage in
enterprise DRE systems. Based on this experience, the
following is a list of open research problems in dynamic
software instrumentation of DRE systems.

Patterns for (dynamic) software instrumentation of
enterprise DRE systems. Different application domains
require different software instrumentation needs, which is
part of the reason that software instrumentation concerns
have been tightly coupled with the system’s implementation.
Once this tight-coupling is removed (as done with OASIS)
it is possible to separate the core “business-logic” of soft-
ware instrumentation from the more domain-specific aspects,
such as collection, aggregation, and extraction techniques.

Moreover, this decoupling will force DRE system developers
and testers to discover patterns for instrumenting distributed
systems, similar to patterns of software architectures [1]–[3],
[10], [28].

Optimization techniques for general-purpose dis-
tributed system instrumentation middleware. When a
concern, such as software instrumentation, is separated from
the overall application it is typically over-generalized and
highly configurable. For example, distributed middleware
architectures, such as CORBA, Microsoft.NET, and J2EE,
removed complexities associated with network communica-
tion, through abstraction and generalization. Although these
abstractions generally improve reuse and software quality,
many times the generalization does not fit every application
domain. Similar to general-purpose distributed middleware,
DRE system developers and testers must develop different
optimization techniques for software instrumentation of en-
terprise DRE systems that try to minimize resource usage,
such as network bandwidth, CPU overhead, memory, while
not impacting existing qualities of the system undergoing
instrumentation.

Verification and validation of DRE systems that utilize
dynamic instrumentation middleware. Verification and
validation of dynamic enterprise DRE systems is still an
active research area [6], [11], [18], [27]. Dynamic instru-
mentation middleware adds another level of complexity to
the problem because these concerns are not tightly coupled
to the design and can change at run-time. These run-time
changes, in turn, can impact the integrity of the system if
the such changes force the system to comprise its QoS guar-
antees. DRE system developers and testers therefore need
to research methodologies that support V&V of enterprise
DRE systems that use dynamic instrumentation middleware
capabilities.

V. RELATED WORK

This section compares and contrasts our work on OASIS
with related work.

Instrumentation techniques. Tan et al. [32] discuss
methodologies to verify instrumentation techniques for re-
source management. Their approach decomposes instrumen-
tation for resource management into monitor and corrector
components. OASIS also has a monitor component (i.e.,
software probes) and a corrector component (i.e., user appli-
cations). OASIS extends their definition of instrumentation
components, however, to include those necessary to extract
metrics from the system efficiently and effectively (i.e., the
EINode, DAC, and T&E manager).

DTrace [4] is a non-intrusive dynamic instrumentation
utility for production systems that has similar concepts
as OASIS (such as application- and system-level software
probes). DTrace is locality constrained, however, whereas
OASIS can collect data in a distributed environment. DTrace
and OASIS can both collect metrics without design time

knowledge of what metrics are being collected via instru-
mentation. DTrace also has the option of filtering instru-
mentation data at the software probe level using predi-
cates. OASIS can achieve similar functionality—and greater
flexibility—at the software probe, DAC, and T&E manager
levels if each component uses a software probe’s registered
metadata to learn and filter collected metrics at runtime.
DTrace and OASIS can complement each other to remove
the locality constrained characteristics of DTrace.

Metric collection techniques. XML is the basis of several
techniques for collecting metrics without a priori knowl-
edge of their type. XML is used in technologies such as
Simple Object Access Protocol (SOAP) for Web Services,
XML-RPC, and XML Metadata Interchange (XMI). OASIS
likewise enables collection/transmission of metrics without
design time knowledge of their type. OASIS uses raw binary
streams to collect and transmit metrics, however, as opposed
to verbose text strings as in XML that can impact the
performance of an enterprise DRE system. OASIS uses
XML to describe metametrics, which are metadata that
describes the metrics structure, data types, and quantity,
collected and transmitted at registration time (i.e., before
the system is fully operational).

Generic data types, such as CORBA Any and Java Object,
can be used to dynamically collect and transmit metrics.
OASIS improves upon these techniques since it is not
bound to a particular programming language or middleware
technology. Moreover, using generic types to collect and
transmit metrics makes it hard for receivers (such as user ap-
plications) to learn about unknown types unless the language
supports built-in discovery mechanisms, such as reflection.
OASIS removes this complexity by storing metadata about
a software probe’s metrics (which is decoupled from the
actual metrics) so programming languages and technologies
used to implement user applications in OASIS that do not
support type discovery mechanisms can still discover and
utilize metric types at runtime.

Distributed instrumentation middleware. The Testing
and Training Enabled Architecture (TENA) [14]–[16] is a
distributed service-oriented middleware that supports instru-
mentation of distributed software applications—similar to
OASIS. The main difference between TENA and OASIS
is that TENA focuses on interoperability between differ-
ent application domains using CORBA, whereas OASIS
focuses on separating and defining different concerns of
software instrumentation so each can be implemented using
domain-specific objects. Likewise, OASIS provides support
for dynamic instrumentation and callback commands to
software probes, which provides the foundation for software
actuators.

VI. CONCLUDING REMARKS

Conventional techniques for instrumenting enterprise
DRE systems and determining which metrics to collect

for performance analysis tools can limit their analytical
capabilities. Moreover, deferring design decisions pertain-
ing to instrumenting DRE systems and determining what
information to collect can limit the metrics available to
performance analysis tools since the instrumentation may not
be incorporated into the system’s design. To address these
drawbacks, this paper presented OASIS, which is service-
oriented dynamic instrumentation middleware that enables
enterprise DRE system developers and testers to collect met-
rics via instrumentation without prematurely committing to
tightly-coupled design decision during early system lifecycle
phases. The results of our experiments show how OASIS
helps adapt the instrumentation needs of enterprise DRE
system developers and testers by enabling them to control
the impact of instrumentation overhead at runtime.

The following are our lessons learned thus far based on
our experience of applying OASIS to the SPRING scenario:

• Dynamic configuration of probes at runtime min-
imizes probe effects. OASIS’s ability to alter the
behavior of software probes at runtime helps minimize
instrumentation overhead, e.g., software probes have
essentially the same effects on QoS whether they are
present or not. Enterprise DRE system developers and
testers thus have greater confidence they can incorpo-
rate instrumentation into production systems and still
meet system QoS requirements. Our future work is
investigating techniques to automate minimizing probe
effects for dynamic instrumentation of enterprise DRE
systems.

• Separating metadata from data improves discovery
capabilities. Since OASIS separates metadata (i.e., the
XSD files) from the actual data (i.e., collected metrics)
for each software probe, performance analysis tools
to utilize collected metrics at runtime without having
prior knowledge of its structure and quality. Our future
work is investigating techniques to optimize OASIS’s
data collection, archiving, and retrieval capabilities by
leveraging this metadata.

• Data distribution services may improve publisher-
subscriber architecture. The current OASIS specifi-
cation and architecture relies on CORBA to realize
its publisher-subscriber requirements. A better solu-
tion, however, may be to use QoS-enabled publisher-
subscriber middleware, such as the Data Distribution
Service (DDS), to handle real-time notifications of
collected metrics. Our future work is comparing DDS
implementations against CORBA implementations to
determine their relative value for OASIS.

OASIS is integrated into the CUTS system execution model-
ing tool and both are available for download in open-source
form from www.cs.iupui.edu/CUTS.

REFERENCES

[1] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-
Oriented Software Architecture: A Pattern Language for Dis-
tributed Computing, Volume 4. Wiley and Sons, New York,
2007.

[2] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-
Oriented Software Architecture: Patterns and Pattern Lan-
guagesg, Volume 5. Wiley and Sons, New York, 2007.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture—A System
of Patterns. Wiley & Sons, New York, 1996.

[4] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
Instrumentation of Production Systems. In Proceedings of the
General Track: 2004 USENIX Annual Technical Conference,
pages 15–28, June 2004.

[5] J. Chang, N. Park, and W. Lee. Adaptive selection of
tuples over data streams for efficient load shedding. Interna-
tional Journal of Computer Systems Science & Engineering,
23(4):277–287, 2008.

[6] R. Feldt, R. Torkar, E. Ahmad, and B. Raza. Challenges with
Software Verification and Validation Activities in the Space
Industry. In Third International Conference on Software
Testing, Verification and Validation, pages 225–234, April
2010.

[7] J. H. Hill, T. Silveria, J. M. Slaby, , and D. C. Schmidt. The
SPRING Scenario: An Heterogeneous Enterprise Distributed
Real-time and Embedded (DRE) System Case Study. Techni-
cal Report TR-CIS-1211-09, Indiana University-Purdue Uni-
versity Indianapolis, December 2009.

[8] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Applying
System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS. In Pro-
ceedings of the 12th International Conference on Embedded
and Real-Time Computing Systems and Applications, Sydney,
Australia, August 2006.

[9] J. H. Hill, H. Sutherland, P. Staudinger, T. Silveria, D. C.
Schmidt, J. M. Slaby, and N. A. Visnevski. OASIS: A
Service-Oriented Architecture for Dynamic Instrumentation
of Enterprise Distributed Real-time and Embedded Sys-
tems. In Proceedings of 13th IEEE International Symposium
on Object/Component/Service-oriented Real-time Distributed
Computing (ISORC), Carmona, Spain, May 2010.

[10] M. Kircher and P. Jain. Pattern-Oriented Software Architec-
ture, Volume 3: Patterns for Resource Management. Wiley
and sons, 2004.

[11] O. Laurent. Using Formal Methods and Testability Concepts
in the Avionics Systems Validation and Verification (V&V)
Process. In Third International Conference on Software
Testing, Verification and Validation (ICST), April 2010.

[12] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida. Perfor-
mance by Design: Computer Capacity Planning By Example.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[13] Microsoft Corporation. Microsoft .NET Framework 3.0
Community. www.netfx3.com, 2007.

[14] J. R. Noseworthy. Developing Distributed Applications
Rapidly and Reliably Using the TENA Middleware. In IEEE
Military Communications Conference, volume 3, pages 1507–
1513, October 2005.

[15] J. R. Noseworthy. The Test and Training Enabling Archi-
tecture (TENA) Supporting the Decentralized Development
of Distributed Applications and LVC Simulations. In 12th
IEEE/ACM International Symposium on Distributed Simu-
lation and Real-Time Applications, pages 259–268, October
2008.

[16] J. R. Noseworthy. Supporting the Decentralized Development
of Large-Scale Distributed Real-Time LVC Simulation Sys-
tems with TENA (The Test and Training Enabling Architec-
ture). In Distributed Simulation and Real Time Applications,
IEEE/ACM International Symposium on, pages 22–29, 2010.

[17] H. S. Nwana. Software Agents: An Overview. Knowledge
Engineering Review, 11(3):1–40, 1996.

[18] R. Obermaisser, C. El-salloum, B. Huber, and H. Kopetz.
Modeling and Verification of Distributed Real-time Systems
using Periodic Finite State Machines. 23, 2008.

[19] Object Management Group. Data Distribution Service for
Real-time Systems Specification, 1.0 edition, Mar. 2003.

[20] Object Management Group. Naming Service, version 1.3,
OMG Document formal/2004-10-03 edition, October 2004.

[21] Object Management Group. The Common Object Request
Broker: Architecture and Specification Version 3.1, Part 1:
CORBA Interfaces, OMG Document formal/2008-01-04 edi-
tion, Jan. 2008.

[22] Object Management Group. The Common Object Request
Broker: Architecture and Specification Version 3.1, Part 2:
CORBA Interoperability, OMG Document formal/2008-01-07
edition, Jan. 2008.

[23] Object Management Group. The Common Object Request
Broker: Architecture and Specification Version 3.1, Part 3:
CORBA Component Model, OMG Document formal/2008-
01-08 edition, Jan. 2008.

[24] K. O’Hair. The JVMPI Transition to JVMTI. java.sun.com/
developer/technicalArticles/Programming/jvmpitransition,
2006.

[25] T. Parsons. Automatic Detection of Performance Design
and Deployment Antipatterns in Component Based Enterprise
Systems. PhD thesis, University College Dublin, Belfield,
Dublin 4, Ireland, 2007.

[26] M. Pezzini and Y. V. Natis. Trends in Platform Middleware:
Disruption Is in Sight. www.gartner.com/DisplayDocument?
doc cd=152076, September 2007.

[27] S. Poulding and J. A. Clark. Efficient Software Verification:
Statistical Testing Using Automated Search. IEEE Transac-
tions on Software Engineering, 36:763–777, 2010.

[28] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concur-
rent and Networked Objects, Volume 2. Wiley & Sons, New
York, 2000.

[29] A. Srivastava and A. Eustace. ATOM: A System for Building
Customized Program Analysis Tools. In PLDI ’94: Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, pages 196–205, 1994.

[30] Sun Microsystems. JavaTM 2 Platform Enterprise Edition.
java.sun.com/j2ee/index.html, 2007.

[31] A. Tamches and B. P. Miller. Using Dynamic Kernel
Instrumentation for Kernel and Application Tuning. Interna-
tional Journale High Performance Computing Applications,
13(3):263–276, 1999.

[32] Z. Tan, W. Leal, and L. Welch. Verification of Instrumentation
Techniques for Resource Management of Real-time Systems.
J. Syst. Softw., 80(7):1015–1022, 2007.

[33] P. Tröger and A. Polze. Object and process migration in
.NET. 24, 2009.

[34] D. R. Wallace and R. U. Fujii. Software Verification and
Validation: An Overview. IEEE Software, 6:10–17, 1989.

