Distributed Computing Systems

Overview

Outline

Overview

Network Infrastructure Distributed Computing Systems Communication Protocols Communication Models Communication Subsystems Distributed Applications Summary

Overview

- Observation
 - Stand-alone computers are increasingly being interconnected to form Distributed Computing Systems (DCS)

• Evolution

 "Old" days: a computer was a stand-alone machine

- ▶ e.g., mainframes, PC
- Today: computers communicate with each other
 - \triangleright e.g., "the network is the computer"

• Key themes:

- Open systems and international standards...

2

Overview (cont'd)

- Three phases mark the evolution of networking and distributed systems:
- 1. Connectivity (1970s)
 - Joining together end-systems into networks
 - Proprietary protocols
- 2. Internetworking (1980s)
 - Joining together networks into internetworks
 - Internetworking standards
 - ▶ Both *de facto* and *de jure*
- 3. Interworking (1990s)
 - Designing distributed computing systems that coordinate distributed applications in a robust, secure, flexible, and efficient manner
 - ▷ e.g., "teamware," CSCW, DCE, etc.

3

1

Distributed Computing Systems

- DCSs contain policies and mechanisms for exchanging various classes of multimedia information across *heterogeneous* internetworks of gateways, bridges, and hosts
- Primary DCS Components
- 1. Transmission media and network infrastructure
- 2. Communication protocols
- 3 Communication Models
- 4. Transport systems
- 5. Distributed application support

An Example DCS End System

11

Network Infrastructure

- A simple point-to-point network configuration
 - Note, hosts A and B may be arbitrary computers or other terminal devices
 - ▷ *e.g.*, frame buffers, video cameras, etc
 - Hosts may operate at different rates
 - Transmission line may be copper, fiber, microwave, radiowave, satellite, etc.

Network Infrastructure Challenges	Reliability Transmission channels are not always error- free
 Even with this simple architecture, several types of problems may occur, involving: 1. Reliability 2. Transmission Control 	 Therefore, depending on applications, we may need mechanisms * Error detection * Error reporting * Error recover and correction
 Moreover, as network topologies become more complex it is also necessary to handle: 1. Routing 2. Congestion 	 Common reliability management schemes for both bit- and packet-level errors include 1. "Positive Acknowledgment with Retransmission" (PAR) 2. "Automatic Repeat Request" (ARQ) 3. "Forward error correction" (<i>e.g.</i>, Hamming code) 4. "Ostrich Approach" (<i>i.e.</i>, do nothing) Note "end-to-end" argument
13	14

Transmission Control

- Two related problems
- 1. Host A may send data at a faster rate than host B can handle it
- 2. Multiple sender hosts may swamp resources at a single receiver host
- Buffer overflows and CPU saturation result if either problem remains unchecked

Transmission Control (cont'd)

- Common solutions involve:
- 1. Flow Control (reactive)
- (a) "Stop-and-wait" (ping-pong)
- (b) "Sliding window" (pipeline)
- 2. Rate Control (preventive)
 - Controls the burst amount and burst interval

Stop-and-wait protocol

• Problem: wasted resources: CPU and network bandwidth are underutilized

17

Sliding window protocol

- Goal: fully utilize network and transport system during steady state
 - Challenge: how big should the window be?

18

Routing

- Complex network topologies require support for *routing*
 - If host A sends packets to host E then hosts B, C, and D have to make routing decisions
- Distinguish between routing:
 - Policies e.g., updating routing tables
 - 'Mechanisms e.g., how a route is located

19

Routing Schemes

- There are many types of routing schemes:
- 1. Fixed Routing
 - Fast, but inflexible
- 2. Dynamic Routing
 - Flexible, but less efficient
- 3. Hybrid Schemes
- Note, routing behavior is usually transparent to distributed applications
 - i.e., they do not have much, if any, control over routing behavior

Fixed Routing Dynamic Routing • For a given source/destination pair, a path · Gateways determine which path is most efis given when configuring the network ficient at run-time • Advantages Advantages - Makes it easy to implement routers/gateways - More adaptive to dynamic changes in network traffic and available routes $-\,$ May be efficient for certain situations, since route lookup algorithms may be optimized... Disadvantages • Disadvantages - Per-packet routing overhead is very high - Not very robust or responsive when failures or con-▷ *i.e.*, more than just a table lookup is involved gestion occurs 21 22 Hybrid Routing • Computers periodically exchange informa-tion and determine the "best" path to des-Congestion tination - Note, this is a good example of a distributed al-• Congestion is a phenomena that occurs if aorithm host computers send more packets through a network than the intermediate gateway(\tilde{s}) are capable of handling • Advantages - e.g., the freeway during rush hour! Combines elements of both fixed and dynamic routing • Alleviating this problem requires congestion - Lookups are relatively fast control algorithms to perform "traffic smoothing" • Disadvantages - e.g., leaky-bucket method, which controls how fast new packets are accepted into the network - Periodic exchange of information creates extra traffic ▷ *i.e.*, just like "access-control" traffic lights on freeway! - Requires time to propagate information to other computers and gateways - "Routing loops" may occur 23 24

Local Area Networks (LANs)

- Typical configuration of Local Area Networks
 - Note, the communication line is *shared* among multiple users
 - Collisions occur if more than one user sends a packet at the same time

Local Area Networks (LANs)

- Ethernet (CSMA/CD)
 - 10 Mbps
 - Random access protocol
 - ▷ Send when you have a packet to send
 - ▷ If there is a collision, backoff and retransmit
 - ▷ "polite people in a dark room"
- Token Ring
 - 4/16 Mbps
 - Demand assignment
 - Assign channel capacity only to those who have packets to send

	Wide Area Networks (WANs)
Metropolitan Area Networks (MANs) Example	Example
 FDDI – (Fiber Distributed Data Interface) 100 Mbps Fiber optics, "dual counter-rotating ring topology" Supports synchronous and asynchronous traffic DQDB – (Distributed Queue Dual Bus) 160 Mbps Bus topology Supports isochronous and asynchronous traffic Uses CCITT ATM packet format 	 ATM - (Asynchronous Transfer Mode) 155/622 Mbps Very high-speed packet switched, connection-orient network Based on optical transmission and VLSI technology Multi-service support for multimedia applications e.g., voice, video, data, image X.25 Traditional data communications network architecture
29	- Point-to-point 30
 Communication Protocols A protocol is a set of rules or conventions governing how two or more entities cooper- 	Communication Protocols (cont'd)
ate to exchange data	Peer-to-Peer

- As shown previously, there is tremendous diversity of components in distributed computing systems
 - Therefore, we need standard protocols to communicate reliably, efficiently, and correctly
- If protocols are standard, then interoperability may be achieved even if all other aspects of network/computer communication are heterogeneous

31

Services vs. Protocols	
• Services are operations <i>provided</i> to <i>consumers</i>	Services vs. Protocols (cont'd)
• Protocols implement these services	• Note, there may be:
 Protocols are accessed via "service interfaces" 	1. Multiple protocols for a given service
	 e.g., "reliable stream communication"
Distinguishing services from protocols en-	2. Multiple service interfaces for a given protocol
ables providers to incorporate new technolo- gies while maintaining backward compatibil- ity at the "service interface" level	− <i>e.g.</i> , BSD Sockets vs. System V ⊤LI
33	34
Types of Service	
1. Non-reliable real-time	
	Higher lover Drotecole
• e.g., voice and video	Higher-layer Protocols
• <i>e.g.</i> , voice and video	Higher-layer Protocols 1. Transport Protocols
• e.g., voice and video 2. Reliable real-time	
• <i>e.g.</i> , voice and video	1. Transport Protocols
• e.g., voice and video 2. Reliable real-time	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, con-
 e.g., voice and video 2. Reliable real-time e.g., manufacturing control and robotics 	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, con-
 e.g., voice and video 2. Reliable real-time e.g., manufacturing control and robotics 3. Non-reliable non-real-time 	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, connectionless, request/response
 e.g., voice and video 2. Reliable real-time e.g., manufacturing control and robotics 3. Non-reliable non-real-time 	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, connectionless, request/response Distributed Object Protocols
 e.g., voice and video 2. Reliable real-time e.g., manufacturing control and robotics 3. Non-reliable non-real-time e.g., junk email 	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, connectionless, request/response Distributed Object Protocols
 e.g., voice and video 2. Reliable real-time e.g., manufacturing control and robotics 3. Non-reliable non-real-time e.g., junk email 4. Reliable non-real-time 	 Transport Protocols e.g., TCP, XTP, TP4, UDP, RPC, VMTP Basic categories include connection-oriented, connectionless, request/response Distributed Object Protocols

	Protocol Specifications
Higher-layer Protocols (cont'd)	 Protocols are specified by describing the ob- jects and operations that comprise a partic- ular communication protocol
1. Distributed file system protocols	 Protocol specifications describe:
NFS, AFS/DFS, RFS	 Protocol services and assumptions
 2. X-window protocols Used to decouple clients and X servers Make window applications independent of the hardware; change hardware without changing applications 	 ▷ e.g., file transfer, remote login, ARP over broad-cast network <i>Protocol vocabulary and encodings</i> ▷ e.g., packet types, header formats, packet sizes, byte ordering <i>Procedure rules</i> ▷ e.g., state machine transitions ▷ Schemes for connection, flow and congestion, and reliability management
37	38

Communication Models

- To reduce complexity and enable vendor independence, communication protocols are commonly layered into a hierarchy that forms a "communication model"
 - i.e., a protocol stack (or more generally, a protocol graph)
- A protocol graph represents the hierarchical relations between protocols in one or more "protocol suites"
- Well-defined protocol graphs exist for network protocol suites

- e.g., ISO OSI, TCP/IP, XNS, Novell, SNA

ISO OSI 7 layer Reference Model

40

Higher layer protocols in OSI

- (7) Application Layer
 - Standard remote services like file transfer, directory services, mail, etc
- (6) Presentation Layer
 - Encryption, basic encoding rules (e.g., network/host byte-ordering), compression
 - XDR and ASN.1
- (5) Session Layer
 - "Dialog management"
- (4) Transport Layer
 - Services that ensure end-to-end communication
 - $\triangleright~e.g.,$ reliable, in-order, non-duplicated data delivery

41

Lower layer protocols in OSI Reference Model

- (3) Network Layer
 - Routing, congestion control, fragmentation and reassembly
- (2) Data Link Layer
 - Services for hop-to-hop communication
 - ▷ e.g., frame creation, frame error control
- (1) Physical Layer
 - Hardware (e.g., # of pins, voltage, etc.)

42

Internet Communication Model

HOST A HOST B VIRTUAL LINK PROCESS PROCESS HOST-TO-HOST-TO-HOST HOST GATEWAY A GATEWAY B INTERNET INTERNET INTERNET INTERNET NETWORK NETWORK NETWORK NETWORK ACCESS ACCESS ACCESS ACCESS 1 t PHYSICAL LINK

- Note, applications are responsible for *application*, *presentation*, and *session* layer services
 - Increases software redundancy, but may improve performance

Throughput Preservation Problem

- Note, network performance has improved by 5 to 6 orders of magnitude (from kbps to Gbps)
- Due to advances in fiber optics and VLSI technology
- $\bullet\,$ Note, mostly hardware at this level...

OSI vs. Internet

1. *OSI*

- The *de jure* standard
- International in its scope
- Top-down specification/development process
- "Committees do research, researchers do implementation"
- Intended as "displacement technology"
- *i.e.*, "installed-base hostile"

2. Internet

- The *de facto* standard
- Not vendor-specific
- Research, implement, deploy, and test before standardization!
- Motto: respect the installed base

45

Communication Subsystems

- Communication protocols do not generally exist in a vacuum
 - Instead, they exist within an integration framework offered by the communication subsystem

• A communication subsystem combines

- 1. Communication protocol tasks
 - Such as connection management, data transmission control, remote context management, and error protection
- 2. Operating system services
 - Such as memory and process management
- 3. Network hardware components
 - Local, metropolitan, and wide area networks devices

47

Comparision of Internet and OSI Protocol Families

46

Communication Subsystem

(cont'd)

- Communication subsystems integrate network protocols (*e.g.*, TCP, TP4, VMTP, XTP) into the operating systems of host computers
 - Typically incorporates OSI layers 3 and above
- Computer architecture performance has improved overall by 2 to 3 orders of magnitude (from 1 MIP to 100 MIPS)
 - Due to hardware advances such as (1) faster clock speeds, (2) larger caches, (3) superpipelining, and (4) superscalar architectures
- However, communication subsystems are largely written in software
 - Therefore, their overall improvement has not been 2 to 3 orders of magnitude, leading to a throughput preservation problem

48

avironments is often to make distribution ansparent e.g., Remote Procedure Calls RPC addition, these infrastructures also pro-
addition, these infrastructures also pro-
addition, these infrastructures also pro-
de many reusable mechanisms and abstrac-
ons that simplify distributed application de-
σμπεπτ
54

Summary

- Distributed computing systems are becoming increasingly essential in research and commercial settings
- It is important to understand the networking aspects, communication subsystem aspects, and application aspects of these distributed systems
- Communication protocols are used to control diversity
 - Standardized communication protocols aid in the development of portable distributed applications by allowing for independence from specific
 - 1. Hardware platforms
 - 2. Vendors
 - However, there are several standards...