
Middleware for Resource-Aware Deployment and Configuration
of Fault-Tolerant Real-time Systems

Jaiganesh Balasubramanian†, Aniruddha Gokhale†, Abhishek Dubey†, Friedhelm Wolf†,
Chenyang Lu‡, Christopher Gill‡, Douglas C. Schmidt†

†Department of EECS, Vanderbilt University, Nashville, TN, USA
‡Department of CSE, Washington University, St. Louis, MO, USA

Abstract—Developing large-scale distributed real-time and em-
bedded (DRE) systems is hard in part due to complex deployment
and configuration issues involved in satisfying multiple quality
for service (QoS) properties, such as real-timeliness and fault
tolerance. Effective deployment requires developing and evaluat-
ing a range of task allocation algorithms that satisfy DRE QoS
properties while reducing resources usage. Effective configuration
requires automated tuning of middleware QoS mechanisms to
avoid tedious and error-prone manual configuration.

This paper makes three contributions to the study of de-
ployment and configuration middleware for DRE systems that
satisfy multiple QoS properties. First, it describes a novel task
allocation algorithm for passively replicated DRE systems to
meet their real-time and fault-tolerance QoS properties while
consuming significantly less resources. Second, it presents the
design of a strategizable allocation engine that enables application
developers to evaluate different allocation algorithms. Third,
it presents the design of a middleware-agnostic configuration
framework that uses allocation decisions to deploy application
components/replicas and configure the underlying middleware
automatically on the chosen nodes. These contributions are real-
ized in the DeCoRAM (Deployment and Configuration Reasoning
and Analysis via Modeling) middleware. Empirical results on a
distributed testbed demonstrate DeCoRAM’s ability to handle
multiple failures and provide efficient and predictable real-time
performance.

I. INTRODUCTION

Distributed real-time and embedded (DRE) systems operate
in resource-constrained environments and are composed of
tasks that must process events and provide soft real-time
performance. Examples include shipboard computing environ-
ments; intelligence, surveillance and reconnaissance systems;
and smart buildings. A second key quality of service (QoS)
attribute of these DRE systems is fault-tolerance since system
unavailability can degrade real-time performance and usability.

Fault-tolerant DRE systems are often built using active or
passive replication [1]. Due to its low resource consumption,
passive replication is appealing for soft real-time applications
that cannot afford the cost of maintaining active replicas
and do not require hard real-time performance [2]. Despite
improving availability, however, server replication invariably
increases resource consumption, which is problematic for
DRE systems that place a premium on minimizing the re-
sources used [3].

To address these concerns, DRE systems require solutions
that can exploit the benefits of replication, but share the
available resources amongst the applications efficiently (i.e.,

This work is supported in part by NSF award 0915976

to minimize the number and capacities of utilized resources).
These solutions must also provide both timeliness and high
availability assurances for applications. For a class of DRE
systems that are closed (i.e., the number of tasks, their
execution patterns, and their resource requirements are known
ahead-of-time and are invariant), such solutions may be deter-
mined at design-time, which in turn can assure QoS properties
at runtime.

The advent of middleware that supports application-
transparent passive replication [4], [5], [6] appears promising
to provide such design-time QoS solutions for fault-tolerant
DRE systems. Unfortunately, conventional passive replication
schemes incur two challenges for resource-constrained DRE
systems: (1) the middleware must generate the right replica-
to-node mappings that meet both fault-tolerance and real-time
requirements with a minimum number of nodes, and (2) the
replica-to-node mapping decisions and QoS needs must be
configured within the middleware. Developers must otherwise
manually configure the middleware to host applications, which
requires source code changes to applications whenever new
allocation decisions are made or existing decisions change to
handle new requirements. Due to differences in middleware
architectures, these ad hoc and manual approaches are neither
reusable nor reproducible, so this tedious and error-prone
effort must be repeated.

To address the challenges associated with passive replica-
tion for DRE systems, this paper presents a resource-aware
deployment and configuration middleware for DRE systems
called DeCoRAM (Deployment and Configuration Reasoning
and Analysis via Modeling). DeCoRAM automatically deploys
and configures DRE systems to meet the real-time and fault-
tolerance requirements via the following novel capabilities:

∙ A resource-aware task allocation algorithm that im-
proves the current state-of-the-art in integrated passive
replication and real-time task allocation algorithms [7],
[8], [9], [10] by providing a novel replica-node mapping
algorithm called FERRARI (FailurE, Real-time, and Re-
source Awareness Reconciliation Intelligence). The nov-
elty of this algorithm are its simultaneous (1) real-time
awareness, which honors application timing deadlines,
(2) failure awareness, which handles a user-specified
number of multiple processor failures by deploying mul-
tiple passive replicas such that each of those replicas can
continue to meet client timing needs when processors
fail while also addressing state consistency requirements,



and (3) resource awareness, which reduces the number
of processors used for replication.

∙ A strategizable allocation engine that decouples the
deployment of a DRE system from a specific task alloca-
tion algorithm by providing a general framework that can
be strategized by a variety of task allocation algorithms
tailored to support different QoS properties of the DRE
system. The novelty of DeCoRAM’s allocation engine
stems from its ability to vary the task allocation algorithm
used from the feasibility test criteria.

∙ A deployment and configuration (D&C) engine that
takes the decisions computed by the allocation algorithm
and automatically deploys the tasks and their replicas
in their appropriate nodes and configures the underlying
middleware appropriately. The novelty of DeCoRAM’s
D&C engine stems from the design of the automated
configuration capability, which is decoupled from the
underlying middleware architecture.

DeCoRAM’s allocation engine, and the deployment and
configuration engine are implemented in ∼10,000 lines of
C++. This paper empirically evaluates the capabilities of
DeCoRAM in a real-time Linux cluster to show how its
real-time fault-tolerance middleware incurs low (1) resource
consumption overhead, where application replicas are de-
ployed across processors in a resource-aware manner using the
FERRARI algorithm, (2) runtime processing overhead, where
failure recovery decisions are made at deployment-time, and
(3) development overhead, where application developers need
not write application-specific code to obtain a real-time fault-
tolerance solution.

II. RELATED WORK

Fault-tolerant middleware has emerged as a core platform
for developing closed DRE systems. For example, MEAD [4],
AQUA [6], and ARMADA [11], among others are fault-
tolerant middleware frameworks that provide runtime repli-
cation management capabilities in a DRE system. The DeC-
oRAM middleware presented in this paper reduces runtime
decision making overhead incurred in such middleware with a
replica allocation and failover decision algorithm. Moreover,
DeCoRAM reduces the manual efforts spent by developers to
deploy application replicas and configure such fault-tolerant
middleware so that application developers can just focus on the
business logic. This section compares DeCoRAM with related
work along the dimensions described below.
Replica-node mapping algorithms. Prior research on real-
time fault-tolerant task allocation algorithms [12], [13], [14],
[15] have focused on active replication, whose resource con-
sumption overhead is not suitable for closed DRE systems.
Research has also focused on transient failures (failures that
appear and disappear quickly) [16], [17] environments. How-
ever, such approaches cannot provide high availability for
applications in the presence of fail-stop processor failures,
which is the focus of our work.

Prior work that focuses on passively replicated real-time
fault-tolerant task allocation algorithms [18], [7], [8] deal with
online algorithms, which incur extra overhead for closed DRE

systems. In contrast, we focus on offline algorithms based
on static scheduling that leverage the invariant properties of
closed DRE systems, which enables us to seamlessly leverage
existing operating systems schedulers. Prior research on static
scheduling-based passive replication approaches [19], [10], [9]
consider only one processor failure at a time.

DeCoRAM’s replica allocation algorithm differs from those
approaches as follows: (1) it handles multiple processor
failures using passive replication while considering primary
replicas, backup replicas, and state synchronization costs in the
replica allocation problem, (2) it opportunistically overbooks
processors with multiple backup replicas by analyzing feasible
failover patterns caused due to multiple processor failures,
and (3) it extends time-demand analysis [20] to meet real-
time requirements both in normal conditions and after multiple
processor failures.
Tools for task allocation, deployment, and configuration
of DRE systems. Prior work on deployment and configu-
ration tools for real-time systems includes VEST [21] and
AIRES [22], which analyze domain-specific models of em-
bedded real-time systems to perform schedulability analysis
and provide automated allocation of components to proces-
sors. SysWeaver [23] supports design-time timing behavior
verification of real-time systems and automatically generates
OS interfacing code with predictable timing information for
multiple target platforms.

SYNDEX [15] provides a graphical environment for automat-
ically exploring various design space alternatives using timing
analysis, active replication scheme, and simulations, and also
generates a code as a real-time executive conforming to the
generated schedule.

DeCoRAM differs from these approaches as follows: (1) it
considers task allocation using minimal resources along with
real-time (i.e., response times) and fault-tolerance in a passive
replication scheme (i.e., replication and state synchronization)
and (2) it automatically deploys and configures applications
and replicas on top of fault-tolerant middleware on nodes
chosen by the replica allocation algorithm.
Relation to our prior work. Our prior work on real-time
fault-tolerant middleware also contains significant gaps. For
example, while Fault-tolerant, Load-aware and Adaptive mid-
dlewaRe (FLARe) [24] maintains service availability and soft
real-time performance in dynamic environments, it requires an
initial deployment of replicas that are assumed to be optimally
placed. Moreover, FLARe does not attempt to minimize the
number of resources used; its goal is to maintain service
availability and desired response times for the given number
of resources. FLARe thus provides online failover in dynamic
environments by changing the failover order of replicas ac-
cording to the monitored utilization of resources.

The COmponent Replication based on Failover Units
(CORFU) [25] middleware enhances FLARe to provide fault-
tolerance for component-based DRE systems, specifically to
support atomic failover for groups of components. Automated
configuration is supported in CORFU, which is made feasible
due to the declarative mechanisms supported by component
middleware. CORFU’s automation is limited to maintaining
replica group semantics, however, and the solution is coupled



to the CORBA Component Model middleware. Since CORFU
is based on FLARe, it incurs the same limitations as FLARe.

DeCoRAM’s FERRARI algorithm statically decides the
failover order for replicas since it can leverage the invariant
properties of closed DRE systems, which reduces the need for
sophisticated runtime capabilities provided by FLARe. FER-
RARI focuses primarily on replica allocation while attempt-
ing to significantly reduce the number of resources needed.
The allocation engine in DeCoRAM provides an opportunity
to evaluate multiple different algorithms beyond FERRARI.
Moreover, unlike CORFU, the deployment and configuration
engine in DeCoRAM can work with a variety of fault-tolerant
middleware and is not limited to FLARe and CORFU.

III. PROBLEM DEFINITION AND SYSTEM MODEL

This section defines the problem definition for our work on
DeCoRAM in the context of the task and fault system models
used.

A. DRE System Model

Our research focuses on a class of DRE systems where the
system workloads and the number of tasks are known a priori.
Examples include system health monitoring applications found
in the automotive domain (e.g., periodic transmission of ag-
gregated vehicle health to a garage) or in industrial automation
(e.g., periodic monitoring and relaying of health of physical
devices to operator consoles), or resource management in
the software infrastructure for shipboard computing. These
systems also demonstrate stringent constraints on the resources
that are available to support the expected workloads and tasks.
Task model. We consider a set of N long running soft
real-time tasks (denoted as S = {T1, T2, ..., TN}) deployed
on a cluster of hardware nodes. Clients access these tasks
periodically via remote operation requests: each application
Ti is associated with its worst-case execution time (denoted as
Ei), its period (denoted as Pi), and its relative deadline (which
is equal to its period). On each processor, the rate monotonic
scheduling algorithm (RMS) [20] is used to schedule each
task and individual task priorities are determined based on
their periods. We assume that the networks within this class
of DRE systems provide bounded communication latencies for
application communication and do not fail or partition.
Fault model. We focus on fail-stop processor failures within
DRE systems that prevent clients from accessing the services
provided by hosted applications. We use passive replication [1]
to recover from fail-stop processor failures. In passive replica-
tion, only one replica—called the primary—handles all client
requests when the application state maintained at the primary
replica could change. Since backup replicas are not involved
in processing client’s requests, their application state must
be synchronized with the state of the primary replica. We
assume that the primary replica (which executes for worst-
case execution time Ei) uses non-blocking remote operation
invocation mechanisms, such as asynchronous messaging, to
send state update propagations to the backup replica, while
immediately returning the response to the client.

Each backup replica of a task Ti is associated with its worst-
case execution time for synchronizing state Si, which signif-
icantly reduces the response times for clients, but supports
only “best effort” guarantees for state synchronization. Replica
consistency may be lost if the primary replica crashes after it
responds to the client, but before it propagates its state update
to the backup replicas. This design tradeoff is desirable in DRE
systems where state can be reconstructed using subsequent
(e.g., sensor) data updates at the cost of transient degradation
of services.

B. Problem Motivation and Research Challenges

The goal of DeCoRAM is to deploy and configure a
passively replicated DRE system of N tasks that is tolerant to
at most K fail-stop processor failures, while also ensuring that
soft real-time requirements are met. To satisfy fault tolerance
needs, no two replicas of the same task can be collocated. To
satisfy real-time requirements, the system also must remain
schedulable. These goals must be achieved while reducing
resource utilization. To realize such a real-time fault-tolerant
DRE system, a number of research questions arise, which we
examine below via an example used throughout the paper.

Consider a sample task set with their individual periods, as
shown in Table I. Assuming that the system being deployed

Task Ei Si Pi Util
<A1,A2,A3> 20 0.2 50 40
<B1,B2,B3> 40 0.4 100 40
<C1,C2,C3> 50 0.5 200 25
<D1,D2,D3> 200 2 500 40
<E1,E2,E3> 250 2.5 1000 25

TABLE I: Sample Ordered Task Set with Replicas

must tolerate a maximum of two processor failures, two
backup replicas of each task are needed as shown. The table
also shows the execution times taken by the primary replica,
the state synchronization times taken by the backup replicas,
and the utilization of a primary replica.

Using bin packing algorithms [26], [27] (e.g., based on
first-fit allocation) and ensuring that no two replicas of the
same task are collocated, we can identify the lower and
upper bounds on the number of processors required to host
the system. For example, Figure 1 shows the placement of
the tasks, indicating a lower bound on processors that is
determined using a bin packing algorithm when no faults are
considered. Figure 2 shows the upper bound on processors

Fig. 1: Lower Bound on Processors (No FT Case)

needed when the system uses active replication. This case
represents an upper bound because in active replication, all
replicas contribute WCET. Passive replication can reduce the
number of resources used because the backup replica in



Fig. 2: Upper Bound on Processors (Active FT Case)

a passively replicated system only contributes to the state
synchronization overhead. Naturally, the number of processors
required for passive replication should be within the range
identified above.

Researchers and developers must address the following
questions when deploying and configuring DRE systems that
must assure key QoS properties:
∙ How can developers accurately pinpoint the number of
resources required?
∙ Does this number depend on the task allocation algorithm
used?
∙ How can application developers experiment with different
allocation algorithms and evaluate their pros and cons?
∙ How can the results of the allocations be integrated with the
runtime infrastructures and how much effort is expended on
the part of an application developer?

The three key challenges described below arise when ad-
dressing these questions.
Challenge 1: Reduction in resource needs. Since backups
contribute to state synchronization overhead, a bin-packing
algorithm can pack more replicas, thereby reducing the number
of resources used. The resulting packing of replicas, however,
is a valid deployment only in no-failure scenarios, which is
unrealistic for DRE systems. On failures, some backups will
be promoted to primaries (thereby contributing to WCET).
Bin packing algorithm cannot identify which backups will
get promoted, however, since failures are unpredictable and
these decisions are made entirely at runtime. What is needed,
therefore, is the ability to identify a priori the potential failures
in the system and determine which backups will be promoted
to primaries so as to determine the number of resources
needed. Section IV-A describes an algorithm that uses the
bounded and invariant properties of closed DRE systems to
address this challenge in a design-time algorithm.
Challenge 2: Ability to evaluate different deployment al-
gorithms. An algorithm for task allocation has limited benefit
if there is no capability to integrate it with production sys-
tems where the algorithm can be executed for different DRE
system requirements. Moreover, since different DRE systems
may impose different QoS requirements, any one allocation
algorithm is often limited in its applicability for a broader class
of systems. What is needed, therefore, is a framework that
can evaluate different task allocation algorithms for a range
of DRE systems. Section IV-B discusses how the DeCoRAM
framework evaluates different task allocation algorithms.
Challenge 3: Automated configuration of applications on
real-time fault-tolerant middleware. Even after the replica-
to-node mappings are determined via task allocation algo-

rithms, these decisions must be enforced within the runtime
middleware infrastructure for DRE systems. Although devel-
opers often manually configure the middleware, differences in
middleware architectures (e.g., object-based vs. component-
based vs. service-based) and mechanisms (e.g., declarative
vs. imperative) make manual configuration tedious and error-
prone. What is needed, therefore, is a capability that can
(1) decouple the configuration process from the middleware
infrastructure and (2) seamlessly automate the configuration
process. Section IV-C describes how the DeCoRAM configu-
ration engine automates the configuration process.

IV. THE STRUCTURE AND FUNCTIONALITY OF
DECORAM

This section presents the structure and functionality of
DeCoRAM and shows how it resolves the three challenges
described in Section III-B.

A. DeCoRAM’s Resource-aware Task Allocation Algorithm

Challenge 1 described in Section III-B is a well-known NP-
hard problem [13], [15], [26]. Although this problem is similar
to bin-packing problems [26], it is significantly harder due to
the added burden of satisfying both fault-tolerance and real-
time system constraints. We developed an algorithm called
FailurE, Real-time, and Resource Awareness Reconciliation
Intelligence (FERRARI) presented below to satisfy the real-
time and fault-tolerance properties of DRE systems while
reducing resource utilization. FERRARI is explained using the
sample task set shown in Table I.

1) Allocation Heuristic: Algorithm 1 describes the design
of DeCoRAM’s replica allocation algorithm called FERRARI.
Line 3 replicates the original task set corresponding to the K
fault tolerance requirements, and orders these tuples according
to the task ordering strategy (Line 4). For example, to tolerate
two processor failures, tasks could be ordered by RMS prior-
ities and the resulting set could contain tasks arranged with
tuples from highest priority to lowest as shown in a sample
task set of Table I.

Lines 5 and 6 show how FERRARI allocates a task and all
of its K replicas before allocating the next task. For example,
for the set of tasks in Table I, first all replicas belonging to
task A will be allocated followed by B and so on. To allocate
each replica, FERRARI selects a candidate processor based on
the configured bin-packing heuristic (Line 8). To satisfy fault-
tolerance requirements, FERRARI ensures that the processor
does not host another replica of the same application being
allocated when selecting a candidate processor.

For the candidate processor, FERRARI runs a feasibil-
ity test using novel enhancements to the well-known time-
demand analysis [20], which is used to test feasibility (see
Section IV-A2). We chose the time-demand analysis for its
accuracy in scheduling multiple tasks in a processor. Although
the time-demand analysis method is computationally expen-
sive, it is acceptable since DeCoRAM is a deployment-time
solution.

The feasibility criteria evaluates if the replica could be
allocated to the processor subject to the specified real-time



Algorithm 1: Replica Allocation Algorithm
Input:

T Ã set of N tasks to be deployed (not including replicas),
K Ãnumber of processor failures to tolerate,

Output:
Deployment plan DP Ã set of two tuples mapping a replica to a processor,
PF : resulting set of processors used

begin1
Intially, DP = {},PF = default set of one processor2
Let T ′ Ã{< tik >},1 ≤ i ≤ N,1 ≤ k ≤ K // Replicate each tasks in T , K3

times so that T ′ contains set of N K-tuples
Task_Ordering(T ′) // Order the tasks and replicas4
foreach tuplei ∈ T ′,1 ≤ i ≤ N do5

for k = 1 to K do6
// Allocate a task and all its K replicas before moving to the next7
Proc_Select: Pick a candidate processor pc from the set PF not yet8
being evaluated for allocation
/* Check if allocation is feasible on this processor */9
bool result = Test_Alloc_ f or_Feasibility(tik ,k, pc,K)10
if result==false then // Infeasible allocation11

GoTo Proc_Select for selecting the next candidate processor for12
this replica

else // Update the deployment plan13
DP Ã DP

∪ {< tik , pc >} // add this allocation14
if no pc from set PF is a feasible allocation then15

Add a new processor to PF16
GoTo Proc_Select// Attempt allocation again with the new set of17

candidate processors
end18

and fault-tolerance constraints (Line 10). If the test fails for
the current processor under consideration, a new candidate
processor is chosen. For our sample task set, after deploying
task sets A and B along with their replicas (as shown in
Figure 3), the next step is to decide a processor for the primary
replica of task C. Processor P1 is determined an infeasible

Fig. 3: Allocation of Primary and Backup Replicas for
Tasks A and B

solution since the combined utilization on the processor would
exceed 100% if C1 were allocated on P1 already hosting A1
and B1 (40+40+25=105).

If a feasible allocation is found, the output deployment
plan set DP is updated (Line 14). If no candidate processor
results in a feasible allocation, however, the set of candidate
processors PF is updated (Line 16) and the replica allocation
is attempted again. As shown in Section IV-A2, C1 cannot be
allocated to any of P1, P2 or P3, thereby requiring an addi-
tional processor (as shown in Figure 4). FERRARI completes
after allocating all the tasks and its replicas.

2) Failure-Aware Look-Ahead Feasibility Algorithm:
Challenge 1 implied exploring the state space for all possible
failures in determining the feasible allocations. The time-
demand analysis on its own cannot determine this state space.
We therefore modify the well-known time-demand function
ri(t) for task Ti in time-demand analysis [20] as follows:

ri(t)=Ei+

{
∑i−1

k=1⌈ t
Pk
⌉Ek if k is primary

∑i−1
k=1⌈ t

Pk
⌉Sk if k is backup

}
f or 0< t <Pi

where the tasks are sorted in non-increasing order of RMS pri-
orities. This condition is checked for each task Ti at an instant
called the critical instant phasing [20], which corresponds to
the instant when the task is activated along with all the tasks
that have a higher priority than Ti. The task set is feasible if
all tasks can be scheduled under the critical instant phasing
criteria.

Using this modified definition, we now enhance the feasi-
bility test criteria using the following novel features:
(1) Necessary criteria: “lookahead” for failures. Sec-
tion III-A explained how a task being allocated can play the
role of a primary (which consumes worst case execution time
E) or a backup replica (which consumes worst case state
synchronization time S). Due to failures, some backups on
a processor will get promoted to primaries and because E
>> S, the time-demand analysis method must consider failure
scenarios so that the task allocation is determined feasible in
both a non-failure and failure case. For our sample task set,
this criteria implies that all possible failure scenarios must be
explored for the snapshot shown in Figure 3 when allocating
the primary replica for task C (i.e., C1).

For any two processor failure combinations (e.g., the failure
of P1 and P2 or P1 and P3), the backups of tasks A and B
will be promoted to being primaries. It is therefore no longer
feasible to allocate C1 on either P2 or P3 (using the same
reasoning that eliminated P1 as a choice). An enhancement

Fig. 4: Feasible Allocation for Task C1

to perform such a check must be made available in the time-
demand analysis, which then results in an extra processor to
host C1, as shown in Figure 4.
(2) Relaxation criteria: assign “failover ordering” to mini-
mize processors utilized. Clause 1 above helps determine the
placement of newly considered primaries (e.g., C1). We next
address the allocation of backups. One approach is to allocate
C2 and C3 on processors P5 and P6 (see Figure 2). This
straightforward approach, however, requires the same number
of resources used in active replication, which is contrary to
the intuition that passive replication utilizes fewer resources.

Using Clause 1, P1 can be eliminated as a choice to host
backup C2 since a failure of P4 will make C2 a primary
on P1, which is an infeasible allocation. Clause 1 provides
only limited information, however, on whether P2 and P3 are
acceptable choices to host backups of C (and also those of
D and E since they form a group according to the first-fit
criteria). We show this case via our sample task set.

Consider a potential feasible allocation in a non-failure case
that minimizes resources, as shown in Figure 5. Using Clause
1, we lookahead for any 2-processor failure combinations. If
P1 and P2 fail, the allocation is still valid since only A3 and
B3 on P3 will be promoted to primaries, whereas C1, D1 and
E1 continue as primaries on P4. If P2 and P3 were to fail, the



Fig. 5: Determining Allocation of Backups of C, D and E

allocation will still be feasible since the existing primaries on
P1 and P4 are not affected.

An interesting scenario occurs when P1 and P4 fail. There
are two possibilities for how backups are promoted. If the fault
management system promotes A2 and B2 on processor P2, and
C3, D3 and E3 on processor P3 to primaries the allocation
will still be feasible and there will be no correlation between
the failures of individual tasks and/or processors. If the fault
management system promotes all of A2, B2, C2, D2 and E2
to primaries on processor P2, however, an infeasible allocation
will result. The unpredictable nature of failures and decisions
made at runtime is the key limitation of Clause 1.

A potential solution is to have the runtime fault management
system identify situations that lead to infeasible allocations
and not enforce them. The drawback with this approach,
however, is that the number of failure combinations increases
exponentially, thereby making the runtime extremely complex
and degrading performance as the system scale increases.
A complex runtime scheme is unaffordable for closed DRE
systems that place a premium on resources. Moreover, despite
many properties of closed DRE systems being invariant,
the runtime cannot leverage these properties to optimize the
performance.

It is possible to overcome the limitation of Clause 1 if the
runtime fault management system follows a specific order for
failovers. Our algorithm therefore orders the failover of the
replicas according to their suffixes, which eliminates the pos-
sibility of infeasible allocations at design-time. Naturally, the
replica-to-node mapping and hence the time-demand analysis
must be enhanced to follow this ordering.

Based on this intuition, even with K processor failures it is
unlikely that backups on a live processor will be promoted all
at once. In other words, only a subset of backups on a given
processor will be promoted in the worst case, without causing
an infeasible allocation. The rest of the backups will continue
to contribute only S load, which enables the overbooking of
more backup replicas on a processor [18], thereby reducing
the number of processors utilized.

These two criteria form the basis of the enhancements we
made to the original time-demand analysis, which underpins
the feasibility test in our task allocation algorithm FERRARI.
Due to space considerations we do not show the feasibility
test algorithm itself, but the details are available at www.isis.
vanderbilt.edu/sites/default/files/decoram_tr09.pdf.

Figure 6 shows a feasible allocation determined by FER-
RARI for the sample set of tasks and their replicas, which
reduces the number of resources used and supports real-time
performance even in the presence of up to two processor
failures.

Fig. 6: Allocation of Sample Task Set

3) DeCoRAM Algorithm Complexity: We now briefly
discuss the complexity of FERRARI. The top-level algorithm
(Algorithm 1) comprises an ordering step on Line 4, which
results in O(Nlog(N) for N tasks. Allocation decision must
then be made for each of the N tasks, their K replicas, and upto
M processors if the feasibility test fails for M−1 processors.

The overall complexity is thus O(N ∗ K ∗ M ∗
f easibility_test), where feasibility_test is the failure-aware
look-ahead feasibility algorithm described in Section IV-A2.
Each execution of the feasibility test requires (1 +

(Pt
K

)
)

executions of the enhanced time-demand analysis [20]. Since
the replica allocation algorithm allocates tasks according
to non-increasing RMS priority order, however, the time-
demand analysis is not overly costly and can be performed
incrementally.

B. DeCoRAM Allocation Engine

The FERRARI algorithm presented in Section IV-A is
one of many possible task allocation algorithms that target
different QoS requirements of DRE systems. Moreover, it may
be necessary to decouple an allocation algorithm from the
feasibility test criteria. For example, FERRARI can leverage
other schedulability testing mechanisms beyond time-demand
analysis. To address these variabilities, Challenge 2 in Sec-
tion III-B highlighted the need for a framework to evaluate
multiple different algorithms that can work with different
feasibility criteria.

The DeCoRAM Allocation Engine shown in Figure 7
provides such a framework comprising multiple components,
each designed for a specific purpose. DeCoRAM’s Allocation

Fig. 7: Architecture of the DeCoRAM Allocation Engine

Engine is implemented in ∼6,500 lines of C++ and provides
a placement controller component that can be strategized
with different allocation algorithms, including FERRARI (see
Section IV-A). This component coordinates its activities with
the following other DeCoRAM components:
1. Input manager. DRE system developers who need to
deploy a system with a set of real-time and fault-tolerance
constraints express these requirements via QoS specifications
that include: (1) the name of each task in the DRE sys-
tem, (2) the period, worst-case execution time, and worst-
case state synchronization time of each task, and (3) the



number of processor failures to tolerate. Any technique for
gathering these QoS requirements can be used as long as
DeCoRAM can understand the information format. For the
examples in this paper, we used our CoSMIC modeling tool
(www.dre.vanderbilt.edu/cosmic), which supplies information
to DeCoRAM as XML metadata. The input manager com-
ponent parses this XML metadata into an in-memory data
structure to start the replica allocation process.
2. Node selector. To attempt a replica allocation, the allocation
algorithm must select a candidate node, e.g., using efficient
processor selection heuristics based on bin-packing [26]. The
node selector component can be configured to select suitable
processors based on first-fit and best-fit bin packing heuris-
tics [28] that reduce the total number of processors used,
though other strategies can also be configured.
3. Admission controller. Feasibility checks are required to
allocate a replica to a processor. As described above, the
goal of DeCoRAM’s allocation algorithm is to ensure both
real-time and fault-tolerance requirements are satisfied when
allocating a replica to a processor. The admission controller
component can be strategized by a feasibility testing strategy,
such as our enhanced time-demand analysis algorithm (see
Section IV-A2).
4. Task replicator. The task replicator component adds a
set of K replicas for each task in the input task set and
sorts the resultant task set according to a task ordering
strategy to facilitate applying the feasibility algorithm by the
admission controller component. Since FERRARI uses time-
demand analysis [20] for its feasibility criteria, the chosen task
ordering strategy is RMS prioritization, with the tasks sorted
from highest to lowest rate to facilitate easy application of the
feasibility algorithm. Other task ordering criteria also can be
used by the task replicator component.

For the closed DRE systems that we focus on in this paper,
the output from the DeCoRAM Allocation Engine framework
is (1) the replica-to-node mapping decisions for all the tasks
and their replicas in the system, and (2) the RMS priorities
in which the primary and backup replicas need to operate in
each processor. This output format may change depending on
the type of algorithm and feasibility criteria used. The output
serves as input to the deployment and configuration (D&C)
engine (described in Section IV-C). This staged approach helps
automate the entire D&C process for closed DRE systems.

C. DeCoRAM Deployment and Configuration (D&C) Engine

The replica-to-node mapping decisions must be configured
within the middleware, which provides the runtime infras-
tructure for fault management in DRE systems. Challenge 3
in Section III-B highlighted the need for a deployment and
configuration capability that is decoupled from the underlying
middleware. This capability improves reuse and decouples the
task allocation algorithms from the middleware infrastructure.

The DeCoRAM D&C Engine automatically deploys tasks
and replicas in their appropriate nodes and configures the
underlying middleware using ∼3,500 lines of C++. Figure 8
shows how this D&C engine is designed using the Bridge
pattern [29], which decouples the interface of the DeCoRAM

D&C engine from the implementation so that the latter can
vary. In our case, any real-time fault-tolerant component mid-
dleware can serve as the implementation. By using a common
interface, DeCoRAM can operate using various component
middleware, such as [4], [6].

The building blocks of DeCoRAM’s D&C engine are de-
scribed below:
∙ XML parser. The XML parser component converts the

allocation decisions captured in the deployment plan (which
is the output of the allocation engine) into in-memory data
structures used by the underlying middleware.
∙ Middleware deployer. The middleware deployer com-

ponent instantiates middleware-specific entities on behalf of
application developers, including essential building blocks of
any fault tolerance solution, such as the replication manager,
which manages the replicas; a per-process monitor, which
checks liveness of a host; and state transfer agent, which
synchronizes state of primary with backups.
∙ Middleware configurator. The middleware configurator

component configures the QoS policies of the real-time fault-
tolerant middleware to prepare the required operating envi-
ronment for the tasks that will be deployed. Examples of
these QoS policies include thread pools that are configured
with appropriate threads and priorities, e.g., RMS priorities
for periodic tasks.
∙ Application installer. The application installer compo-

nent installs and registers tasks with the real-time fault-tolerant
middleware, e.g., it registers the created object references for
the tasks with the real-time fault-tolerant middleware. Often
these references are maintained by middleware entities, such as
the replication manager and fault detectors. Client applications
also may be transparently notified of these object references.

Fig. 8: Architecture of the DeCoRAM D&C Engine

DeCoRAM’s D&C engine provides two key capabilities:
(1) application developers need not write code to achieve fault-
tolerance, as DeCoRAM automates this task for the application
developer, and (2) applications need not be restricted to
any particular fault-tolerant middleware; for every different
backend, DeCoRAM is required to support the implementation
of the bridge. This cost is acceptable since the benefits can be
amortized over the number of DRE systems that can benefit
from the automation.



V. EVALUATION OF DECORAM

This section empirically evaluates DeCoRAM along several
dimensions by varying the synthetic workloads and the number
of tasks/replicas.

A. Effectiveness of the DeCoRAM Allocation Heuristic

By executing FERRARI on a range of DRE system tasks
and QoS requirements, we demonstrate the effectiveness of
DeCoRAM’s allocation heuristic in terms of reducing the
number of processors utilized.
Variation in input parameters. We randomly generated task
sets of different sizes N, where N = {10,20,40,80,160}. We
also varied the number of failures we tolerated, K, where
K = {1,2,3,4}. DRE systems often consist of hundreds of
applications, while passively replicated systems often use 3
replicas, which make these input parameters reflect real-world
systems. For each run of the allocation engine, we varied a
parameter called max load, which is the maximum utilization
load of any task in the experiment. Our experiments varied
max load between 10%, 15%, 20%, and 25%.

For each task in our experiments, we chose task periods that
were uniformly distributed with a minimum period of 1 msec
and a maximum period of 1,000 msec. After the task period
was obtained, each task load was picked at random from a
uniformly distributed collection with a minimum task load of
0% up to the specified maximum task load, which determines
the worst-case execution times of each task.

We applied a similar methodology to pick the worst-case
state synchronization times for all tasks between 1% and 2%
of the worst-case execution times of each task. The deadline
of each task was set to be equal to its period. Our objective in
varying these parameters as outlined above was to understand
how effectively DeCoRAM reduces resources and how each
input parameter impacts the result.
Evaluation criteria. To determine how many resources FER-
RARI was able to save, we defined two baseline bounds: a
lower bound for the no-failure case (shown as No-FT) and an
upper bound for the active replication case (shown as AFT).

We then strategized FERRARI to use the first-fit (FF-FT)
and best-fit (BF-FT) (max utilization) allocation techniques,
and computed the number of processors needed. Section IV-B
showed how the node selector component in the DeCoRAM
Allocation Engine can be strategized with these techniques.
Analysis of results. Figures 9a, 9b, 9c, and 9d show the
number of processors used when each allocation heuristic
attempts to allocate varying number of tasks with varying
max load for a task set. As N and K increase, the number
of processors used also increased exponentially for AFT. This
exponential increase in processors is due to the behavior of
the active replication scheme, which executes all the replicas
to provide fast failure recovery on a processor failure.

In contrast, when DeCoRAM uses the FF-FT or the BF-
FT allocation heuristics, the rate of increase in number of
processors used in comparison with the No-FT allocation
heuristic is slower compared to AFT. For example, when K
is equal to 1, the number of processors used by both the FF-
FT and BF-FT allocation heuristics is only slightly larger than

(a) Varying number of tasks and backups with 10% max load

(b) Varying number of tasks and backups with 15% max load

(c) Varying number of tasks and backups with 20% max load

(d) Varying number of tasks and backups with 25% max load

Fig. 9: Performance of FERRARI with Varying Tasks,
Backups, and Loads

those used by the No-FT allocation heuristics.
As the number of tasks and processor failures to tolerate



increases, the ratio of the number of processors used by the
FF-FT and the BF-FT allocation heuristics to those used by
the No-FT allocation heuristic increases, but at a much slower
rate than the increase in the case of AFT. For large N and K
(e.g., see Figure 9d, 160 tasks and 4 backups for each task),
the number of processors used by the FF-FT and the BF-FT
allocation heuristics is only half the number of processors used
by AFT.

This result is a direct consequence of the relaxation criteria
described in Section IV-A2. As the number of tasks to allocate
and number of backup replicas increases, the look ahead step
finds more opportunities for passive overbooking of backups
on a processor for FF-FT and BF-FT allocation heuristics.

B. Validation of Real-time Performance

We now empirically validate the real-time and fault-
tolerance properties of an experimental DRE system task set
deployed and configured using DeCoRAM. The experiment
was conducted in the ISISlab testbed (www.dre.vanderbilt.
edu/ISISlab) using 10 blades (each with two 2.8 GHz CPUs,
1GB memory, and a 40 GB disk) and running the Fedora
Core 6 Linux distribution with real-time preemption patches
(www.kernel.org/pub/linux/kernel/projects/rt) for the kernel.
Our experiments used one CPU per blade and the blades were
connected via a CISCO 3750G switch to a 1 Gbps LAN.

The experimental setup and task allocation follows the
model presented in Figure 6 and Table I. For our experiment
we implemented the Bridge pattern [29] in the DeCoRAM
D&C engine for our FLARe middleware [24]. Clients of
each of the 5 tasks are hosted in 5 separate blades. FLARe’s
middleware replication manager ran in the remaining blade.

The experiment ran for 300 seconds. We introduced 2
processor failures (processors P1 and P2 in Figure 6) 100 and
200 seconds, respectively, after the experiment was started.
We used a fault injection mechanism where server tasks call
the exit() system call (crashing the process hosting the server
tasks) while the clients CLIENT-A or CLIENT-B make invo-
cations on server tasks. The clients receive COMM_FAILURE
exceptions and then failover to replicas according to the order
chosen by DeCoRAM.

Figure 10 shows the response times observed by the clients
despite the failures of 2 processors. As shown by the label A in

20

40

60

80

100

120

50 100 150 200 250 300

R
es

po
ns

e 
T

im
e 

(m
ill

is
ec

on
ds

)

Time (sec)

(CLIENT-B)

(CLIENT-A)(A) (B)

Fig. 10: DeCoRAM Empirical Validation

Figure 10, at 100 seconds when replica A1 fails (processor P1
fails, thereby failing B1 as well), client CLIENT-A experiences
a momentary increase of 10.6 milliseconds in its end-to-end

response time, which is the combined time for failure detection
and subsequent failover but stabilizes immediately, thereby
ensuring soft real-time requirements. The same behavior is
also observed at 200 seconds (see label B) when P2 fails.

These results demonstrate that irrespective of the overbook-
ing of the passive replicas, DeCoRAM can still assure real-
time and fault-tolerance for applications.

C. Evaluating DeCoRAM’s Automation Capabilities

We now define a metric that counts the number of steps per
deployment and configuration activity to provide a qualitative
evaluation of developer effort saved using DeCoRAM. Assum-
ing N number of tasks, K number of failures to tolerate, and M
processors needed to host the tasks, Table II shows the efforts
expended by the developer in conventional approaches versus
using DeCoRAM (we assume the use of our FLARe [24] real-
time fault-tolerant middleware).

Activity Effort (Steps Required)
Manual DeCoRAM

Specification N N
Allocation N*(K+1) 0
XML Parsing 1 0
Middleware Deployment 1 + N + 2*M 0
Middleware Configuration M 0
Application Installation 2*N*(K+1) 0

TABLE II: Effort Comparison

The contents of the table are explained below. For N tasks,
both the conventional and DeCoRAM approaches require
developers to specify the QoS requirements. All steps in DeC-
oRAM are then automated and hence no effort is expended
by developers. In contrast, in a manual approach, developers
must determine the allocation for K+1 replicas (primary and
K backups) of the N tasks followed by one step in parsing the
XML output.

Middleware deployment requires one step in deploying the
FLARe middleware replication manager, N steps to install
the FLARe client request interceptors on the N clients of the
servers, and 2 steps each to deploy the FLARe monitor and
FLARe state transfer agent on each of the M processors. One
step is then necessary to configure the underlying middleware
(e.g., setting up thread pools with priorities) on M processors
for a total of M steps. Finally, installation of each task requires
two steps to register a task with the FLARe middleware
replication manager and FLARe state transfer agent for the
N tasks with K +1 replicas each.

VI. CONCLUDING REMARKS

This paper describes the structure, functionality, and perfor-
mance of the DeCoRAM deployment and configuration frame-
work, which provides a novel replica allocation algorithm
called FERRARI that provides real-time and fault-tolerance
to closed DRE systems while significantly reducing resource
utilization. DeCoRAM also provides a strategizable allocation
engine that is used to evaluate FERRARI’s ability to reduce the
resources required in passively replicated closed DRE systems.
Based on the decisions made by FERRARI, DeCoRAM’s de-
ployment and configuration engine automatically deploys ap-
plication components/replicas and configures the middleware



in the appropriate nodes, thereby eliminating manual tasks
needed to implement replica allocation decisions. The results
from our experiments demonstrate how DeCoRAM provides
cost-effective replication solutions for resource-constrained,
closed DRE systems.

Below is a summary of lessons learned from our work
developing and empirically evaluating DeCoRAM:

∙ DeCoRAM requires a small number of additional pro-
cessors to provide fault-tolerance, particularly for smaller
number of processor failures to tolerate, i.e., smaller
values of K.

∙ As loads contributed by individual tasks increases, the
gains in processor reduction increases when compared
with active replication since DeCoRAM exploits the
failover order of backup replicas to overbook multiple
backup replicas whose ranks are high and whose lower
ranked replicas are deployed across different processors.

∙ The gains seen by FERRARI hold when the state syn-
chronization overhead is a small fraction of the worst case
execution time. As the state synchronization overhead
approaches 50% or more of the WCET, the reduction seen
in processors consumed is no longer attractive, which
indicates that such DRE systems may benefit from using
active replication.

DeCoRAM is available in open-source format at www.dre.
vanderbilt.edu/~jai/DeCoRAM.

REFERENCES

[1] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The Primary-
backup Approach,” in Distributed systems (2nd Ed.). New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1993, pp. 199–216.

[2] P. Felber and P. Narasimhan, “Experiences, Approaches and Challenges
in building Fault-tolerant CORBA Systems,” Computers, IEEE Trans-
actions on, vol. 54, no. 5, pp. 497–511, May 2004.

[3] M. Broy, “Challenges in Automotive Software Engineering,” in ICSE
’06: Proceedings of the 28th international conference on Software
engineering. Shanghai, China: ACM, 2006, pp. 33–42.

[4] P. Narasimhan, T. Dumitras, A. M. Paulos, S. M. Pertet, C. F. Reverte,
J. G. Slember, and D. Srivastava, “MEAD: support for Real-Time Fault-
Tolerant CORBA.” Concurrency - Practice and Experience, vol. 17,
no. 12, pp. 1527–1545, 2005.

[5] H. Zou and F. Jahanian, “A Real-time Primary-backup Replication
Service,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 10, no. 6, pp. 533–548, 1999.

[6] Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr, P. Rubel, C. Sabnis,
W. Sanders, R. Schantz, and M. Seri, “AQuA: An Adaptive Architec-
ture that Provides Dependable Distributed Objects,” Computers, IEEE
Transactions on, vol. 52, no. 1, pp. 31–50, 2003.

[7] Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the Design of Fault-
Tolerant Scheduling Strategies Using Primary-Backup Approach for
Computational Grids with Low Replication Costs,” Computers, IEEE
Transactions on, vol. 58, no. 3, pp. 380–393, March 2009.

[8] W. Sun, Y. Zhang, C. Yu, X. Defago, and Y. Inoguchi, “Hybrid Over-
loading and Stochastic Analysis for Redundant Real-time Multiprocessor
Systems,” in Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEE
International Symposium on, Oct. 2007, pp. 265–274.

[9] X. Qin, H. Jiang, and D. R. Swanson, “An Efficient Fault-Tolerant
Scheduling Algorithm for Real-Time Tasks with Precedence Constraints
in Heterogeneous Systems,” in ICPP ’02: Proceedings of the 2002
International Conference on Parallel Processing (ICPP’02). IEEE
Computer Society, 2002, p. 360.

[10] A. A. Bertossi, L. V. Mancini, and F. Rossini, “Fault-Tolerant Rate-
Monotonic First-Fit Scheduling in Hard-Real-Time Systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 10, no. 9, pp. 934–945, 1999.

[11] T. F. Abdelzaher, S. Dawson, W. cheng Feng, F. Jahanian, S. Johnson,
A. Mehra, T. Mitton, A. Shaikh, K. G. Shin, Z. Wang, H. Zou,
M. Bjorkland, and P. Marron, “ARMADA Middleware and Commu-
nication Services,” Real-Time Systems, vol. 16, no. 2-3, pp. 127–153,
1999.

[12] S. Gopalakrishnan and M. Caccamo, “Task Partitioning with Repli-
cation upon Heterogeneous Multiprocessor Systems,” in RTAS ’06:
Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 199–207.

[13] J.-J. Chen, C.-Y. Yang, T.-W. Kuo, and S.-Y. Tseng, “Real-Time Task
Replication for Fault Tolerance in Identical Multiprocessor Systems,”
in RTAS ’07: Proceedings of the 13th IEEE Real Time and Embedded
Technology and Applications Symposium. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 249–258.

[14] P. Emberson and I. Bate, “Extending a Task Allocation Algorithm for
Graceful Degradation of Real-Time Distributed Embedded Systems,”
in RTSS ’08: Proceedings of the 2008 Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 270–279.

[15] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel, “An Algorithm for
Automatically Obtaining Distributed and Fault-tolerant Static Sched-
ules,” in Dependable Systems and Networks, 2003. Proceedings. 2003
International Conference on, June 2003, pp. 159–168.

[16] H. Aydin, “Exact Fault-Sensitive Feasibility Analysis of Real-Time
Tasks,” IEEE Trans. Comput., vol. 56, no. 10, pp. 1372–1386, 2007.

[17] G. de A Lima and A. Burns, “An Optimal Fixed-priority Assignment
Algorithm for Supporting Fault-tolerant Hard Real-time Systems,” Com-
puters, IEEE Transactions on, vol. 52, no. 10, pp. 1332–1346, Oct. 2003.

[18] S. Ghosh, R. Melhem, and D. Mossé, “Fault-Tolerance Through
Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor Sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 3, pp. 272–284,
1997.

[19] Y. Oh and S. H. Son, “Scheduling Real-Time Tasks for Dependability,”
The Journal of the Operational Research Society, vol. 48, no. 6, pp.
629–639, 1997. [Online]. Available: http://www.jstor.org/stable/3010227

[20] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
RTSS ’89: Proceedings of the IEEE Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 1989, pp. 166–171.

[21] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis, “VEST: An Aspect-Based Composition Tool for Real-Time
Systems,” in RTAS ’03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium. Toronto, Canada:
IEEE Computer Society, 2003, pp. 58–69.

[22] Z. Gu, S. Kodase, S. Wang, and K. G. Shin, “A Model-Based Approach
to System-Level Dependency and Real-Time Analysis of Embedded
Software,” in RTAS ’03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium. Toronto, Canada:
IEEE Computer Society, 2003, pp. 78–85.

[23] D. de Niz, G. Bhatia, and R. Rajkumar, “Model-Based Development
of Embedded Systems: The SysWeaver Approach,” in RTAS ’06: Pro-
ceedings of the 12th IEEE Real-Time and Embedded Technology and
Applications Symposium. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 231–242.

[24] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C.
Schmidt, “Adaptive Failover for Real-time Middleware with Passive
Replication,” in Proceedings of the 15th Real-time and Embedded
Applications Symposium (RTAS), San Francisco, CA, Apr. 2009, pp.
118–127.

[25] F. Wolf, J. Balasubramanian, A. Gokhale, and D. C. Schmidt, “Compo-
nent Replication based on Failover Units,” in Proceedings of the 15th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA ’09), Aug. 2009, pp. 99–108.

[26] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation
Algorithms for Bin Packing: A Survey,” in Approximation algorithms
for NP-hard problems. Boston, MA, USA: PWS Publishing Co., 1997,
pp. 46–93.

[27] S. Dhall and C. Liu, “On a Real-time Scheduling Problem,” Operations
Research, pp. 127–140, 1978.

[28] J. M. López, M. García, J. L. Díaz, and D. F. García, “Utilization
Bounds for Multiprocessor Rate-Monotonic Scheduling,” Real-Time
Syst., vol. 24, no. 1, pp. 5–28, 2003.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.


