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ABSTRACT

The OMG Data Distribution Service (DDS) has been de-
ployed in many mission-critical systems and increasingly
in Internet of Things (IoT) applications since it supports
a loosely-coupled, data-centric publish/subscribe paradigm
with a rich set of quality-of-service (QoS) policies. Effective
data communication between publishers and subscribers re-
quires dynamic and reliable discovery of publisher /subscriber
endpoints in the system, which DDS currently supports via
a standardized approach called the Simple Discovery Pro-
tocol (SDP). For large-scale systems, however, SDP scales
poorly since the discovery completion time grows as the
number of applications and endpoints increases. To scale
to much larger systems, a more efficient discovery protocol
is required.

This paper makes three contributions to overcoming the
current limitations with DDS SDP. First, it describes the
Content-based Filtering Discovery Protocol (CFDP), which

is our new endpoint discovery mechanism that employs content-

based filtering to conserve computing, memory and network
resources used in the DDS discovery process. Second, it de-
scribes the design of a CFDP prototype implemented in a
popular DDS implementation. Third, it analyzes the results
of empirical studies conducted in a testbed we developed to
evaluate the performance and resource usage of our CFDP
approach compared with SDP.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Discovery, Data Distribution Service, Pub/Sub, P2P

1. INTRODUCTION

The publish/subscribe (pub/sub) communication paradigm [1]

is attractive due to its inherent scalability, which decouples
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publishers and subscribers of event data in time and space,
and enables them to remain anonymous and communicate
asynchronously. A data subscriber is an entity that con-
sumes data by registering its interest in a certain format
(e.g., topics, types or content) at any location and at any
time. Likewise, a data publisher is an entity that produces
data for consumption by interested subscribers.

A key requirement for the pub/sub paradigm is the dis-
covery of publishers by subscribers. Although anonymity is
often a key trait of pub/sub, the underlying pub/sub mech-
anisms that actually deliver the data from publishers to sub-
scribers must map subscribers to publishers based on match-
ing interests. To support spatio-temporal decoupling of pub-
lishers and subscribers, an efficient and scalable discovery
mechanism is essential for pub/sub systems since publishers
and subscribers need not be present at the same time and
in the same location.

Achieving efficient and scalable discovery is even more im-
portant for pub/sub systems that require stringent quality-
of-service (QoS) properties, such as latency of data delivery,
reliable delivery of data, or availability of historical data.
To meet the requirements of various systems, a range of
discovery mechanisms exist. Example mechanisms include
using static and predetermined lookups, using a centralized
broker, or using a distributed and decentralized approach.

The OMG Data Distribution Service (DDS) |9, [11] is a
standardized pub/sub middleware that provides a range of
QoS properties to distributed real-time and embedded (DRE)
systems in which discovery is a key challenge. Since DDS
supports QoS policies that enable it to disseminate data in
a reliable and real-time manner, it has been used to build
many mission-critical DRE systems, such as air traffic con-
trol, unmanned vehicles, and industrial automation systems.

The discovery mechanism defined in the DDS standard
is based on a peer-to-peer (P2P) protocol, where a peer
automatically discovers other peers by matching the topic
names, their data types, and their selected QoS configu-
rations. DDS peers that contain the endpoints (i.e., actual
data publishers or subscribers) are required to locate remote
matching peers with their endpoints to establish communi-
cation paths. Each peer thus runs a discovery protocol to
find matching remote endpoints.

The DDS standard adopts a distributed and decentralized
approach called the Simple Discovery Protocol (SDP) [10].
SDP provides simple and flexible system management by
using discovery traffic for joining and leaving endpoints. It
also supports updating the QoS status of endpoints.



Although SDP is standardized, one drawback is that it
scales poorly as the number of peers and their endpoints
increases in a domain since each peer sends/receives discov-
ery messages to/from other peers in the same domain [16].
When a large-scale DRE system is deployed with SDP, there-
fore, substantial network, memory and computing resources
are consumed by every peer just for the discovery process.
This overhead can significantly degrade discovery comple-
tion time and hence the overall scalability of a DDS-based
pub/sub system.

The root cause of SDP’s scalability issues is that peers
send discovery messages to every other peer in the domain,
yet perhaps only a fraction of the peers are actually inter-
ested in conversing with any other peer. As a result, unnec-
essary network, computing and memory resources are used
for this discovery protocol. For example, a data consumer re-
ceives and keeps discovery objects (these objects describe all
of topic names and data type formats of the data that each
consumer uses) for all other consumers even though they
never communicate with each other since they are identical
types of endpoints (e.g., they are all subscribers).

To overcome this limitation with SDP, this paper presents

a new mechanism for scalable DDS discovery called the Content-

based Filtering Discovery Protocol (CFDP). CFDP employs
content filtering on the sending peer(s) to filter discovery
messages by exchanging filtering expressions that limit the
range of interests a priori. To implement SDP, we created a
special DDS topic called the Content Filtered Topic (CFT),
which includes filtering properties that are composed of a
filtering expression and a set of parameters used by that ex-
pression. By using CFT, peers on the sending side that use
CFDP can filter unwanted discovery messages and enhance
the efficiency and scalability of the discovery process. The
results of our empirical evaluations presented in Section [
demonstrate a linear reduction in the number of transferred
and stored messages.

The remainder of this paper is organized as follows: Sec-
tion 2] summarizes the key elements of OMG DDS and SDP;
Section[3]describes the design and implementation of CFDP;
Section [] analyzes the results of empirical evaluations of
CFDP; Section [§] compares our CFDP approach with re-
lated work; and Section |§| presents concluding remarks.

2. AN OVERVIEW OF OMG DDS AND ITS
SDP DISCOVERY SERVICE

This section summarizes the key elements of the OMG
Data Distribution Service (DDS) and its Simple Discovery
Protocol (SDP).

2.1 Overview of the OMG Data Distribution
Service (DDS)

The OMG DDS specification defines a distributed pub-
/sub communications architecture [9]. At the core of DDS
is a data-centric architecture for connecting anonymous data
publishers with data subscribers, as shown in Figure[ll The
DDS architecture promotes loose coupling between system
components. The data publishers and subscribers are decou-
pled with respect to (1) time (i.e., they need not be present
at the same time), (2) space (i.e., they may be located any-
where), (3) flow (i.e., data publishers must offer equivalent
or better quality-of-service (QoS) than required by data sub-
scribers), and behavior (i.e., business logic-independent), (4)

platforms, and (5) programming languages (e.g., DDS ap-
plications can be written in many programming languages,
including C, C++, Java, and Scala).
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Figure 1: DDS Architecture

A DDS data publisher produces typed data-flows identi-
fied by names called topics. The coupling between a pub-
lisher and subscriber is expressed only in terms of topic
name, its data type schema, and the offered and requested
QoS attributes of publishers and subscribers, respectively.
Below we briefly describe the key architectural elements of
the DDS specification.

e Domain is a logical communication environment used
to isolate and optimize network communications within
the group of distributed applications that share com-
mon interests (i.e., topics and QoS). DDS applications
can send and receive data among themselves only if
they have the same domain ID.

e Participant is an entity that represents either a pub-
lisher or subscriber role of a DDS application in a do-
main, and behaves as a container for other DDS en-
tities (i.e., DataWriters and DataReaders), which are
explained next.

e DataWriter and DataReader. DataWriters (data
publishers) and DataReaders (data subscribers) are
endpoint entities used to write and read typed data
messages from a global data space, respectively. DDS
ensures that the endpoints are compatible with respect
to topic name, their data type, and QoS configura-
tions. Creating a DataReader with a known topic and
data type implicitly creates a subscription, which may
or may not match with a DataWriter depending upon
the QoS.

e Topic is a logical channel between DataWriters and
DataReaders that specifies the data type of publication
and subscription. The topic names, types, and QoS of
DataWriters and DataReaders must match to establish
communications between them.

e Quality-of-service (QoS). DDS supports around two
dozen QoS policies that can be combined in different
ways. Most QoS policies have requested/offered se-
mantics, which are used to configure the data flow be-
tween each pair of DataReader and DataWriter, and
dictate the resource usage of the involved entities.
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Figure 2: DDS Discovery Protocol Built-in Entities

e Content Filtered Topic (CFT). Content filters re-
fine a topic subscription and help to eliminate samples
that do not match the defined application-specified
predicates. The predicate is a string encoded SQL-
like expression based on the fields of the data type.
The filter expression and the parameters may change
at run-time. Data filtering can be performed by the
DataWriter or DataReader.

2.2 Overview of the DDS Simple Discovery Pro-

tocol (SDP)

The OMG DDS Real-Time Publish-Subscribe (RTPS) stan-
dard [10] defines a discovery protocol that splits the discov-
ery process into two phases: the Participant Discovery Pro-
tocol (PDP) and the Endpoint Discovery Protocol (EDP).
The PDP defines the means for discovering participants in a
network. After participants have discovered each other, they
exchange discovery messages for endpoints via the EDP.

The standard DDS specification describes a concrete dis-
covery protocol called the Simple Discovery Protocol (SDP)
as the default discovery protocol to be used by different DDS
implementations for interoperability. SDP also uses the two
phase approach, which are called the Simple Participant
Discovery Protocol (SPDP) and Simple Endpoint Discovery
Protocol (SEDP). These discovery protocols are suitable for
deployments of DDS in Local-Area Networks (LANSs).

In the SPDP phase, a participant in a DDS application
uses multicast or unicast discovery messages to announce
named participant DATA to other participants periodically.
These messages use built-in topics for discovery to let ex-
isting participants know of a new “announcing” participant.
Figure [2| depicts the different built-in DDS entities (topics
and endpoints) used by SDP. The SPDP message contains a
participant’s Globally Unique Identifier (GUID), transport
locators (IP addresses and port numbers), and QoS policies.
The message is periodically sent with the BEST_EFFORT reli-
ability QoS to maintain liveliness of discovered participants.
When participant DATA messages are received from other
participants, the received messages for remote participants
are archived in a database managed by the DDS middleware.

After a pair of remote participants discover each other by
exchanging discovery messages, they transition to the SEDP
phase. In this phase, remote entities (i.e., remote partici-
pants or endpoints) imply the remotely-located entities from

the entity that initiated the discovery service. Likewise, lo-
cal entities (i.e., local participants or endpoints) indicate the
locally-located entities in the same process address space.

After the SPDP phase, SEDP begins to exchange dis-
covery messages of endpoints using the RELIABLE reliability
QoS. These messages are known as publication DATA for
DataWriters and subscription DATA for DataReaders, re-
spectively. They include topic names, data types, and QoS
of discovered endpoints. In the SEDP phase, participants
archive received remote endpoints’ information into an in-
ternal database and start the matching process. During this
process the communication paths for publication and sub-
scription are established between the matching endpoints if
the remote endpoints have the same topic name, data types,
and compatible QoS configurations with the ones of their
local endpoints.

Rather than using an out-of-band mechanism for discov-
ery, SDP uses DDS entities as an underlying communica-
tion transport for exchanging discovery information outlined
above. As an initial step, an SDP-enabled participant cre-
ates and uses a special type of DDS entity called a “built-in
entity” to publish and subscribe discovery data. This built-
in entity uses predefined built-in topics (DCPSParticipant,
DCPSPublication, and DCPSSubscription) to discover re-
mote participants and endpoints, as shown in Figure

The built-in entity has two variants: DataWriters for an-
nouncement and DataReaders for discovery. Each discovery
topic for different entities (participant, publication, and sub-
scription) therefore has a pair of DataWriters and DataRead-
ers. After this built-in entity is initially created, the partic-
ipants use it to exchange discovery messages for SDP.

3. CFDP DESIGN AND IMPLEMENTATION

Section [1] highlighted the drawbacks of the existing stan-
dardized protocol for peer discovery in DDS called Sim-
ple Discovery Protocol (SDP). The key limitations in SDP
stemmed from multicasting discovery messages to all other
peers in the LAN, many of whom may not have a match
between the publication and subscription. This protocol
unnecessarily wastes network, storage and computation re-
sources. To overcome this limitation, we designed the Content-
based Filtering Discovery Protocol (CFDP). This section first
describes the design of CEFDP and then outlines key elements
of its implementation.



3.1 The Design of CFDP

CFDP filters discovery messages based on topic names and
endpoint types, thereby reducing the number of resources
wasted by the traditional SDP approach. Like SDP, CFDP
utilizes the first phase of SDP called SPDP (described in
Section for participant discovery. It differs from SDP
in the endpoint discovery phase known as SEDP, where key
modifications have been designed for CFDP.

Similar to how SEDP applies DDS built-in entities as
a communication transport to share discovery information,
CFDP also uses DDS built-in entities to exchange discovery
messages, however with some modifications.

In our design, we have used a special feature called Con-
tent Filtered Topic (CFT) that is supported in our under-
lying DDS implementation. CFT filters data samples on
the DataWriter or DataReader side in accordance with the
filtering expression defined in a DataReader.

CFDP’s key enhancement was to create built-in entities
with CFTs that filter discovery messages on topic names
stored in subscription DATA and publication DATA. Since
built-in topics already exist for discovering publication and
subscription in the SEDP design, the CFDP creates separate
built-in CFTs and filtering expressions for DataWriters and
DataReaders. The application logic is completely oblivious
to these steps because everything is handled at the DDS
middleware-level.
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i publication DATA (DW{A}} +
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Figure 3: Filtering Discovery Messages by Topic
Names

Figure [3]shows an example of filtering discovery messages
based on topic names. The following notations are used in
the figure.

e DPz - Domain Participant named z

e Discovery DB - Internal in-memory database stored at
the core level of the DDS middleware.

e DW{y} - DataWriter publishing a topic y
e DR{z} - DataReader subscribing for a topic z

e DPz[DW{y}, DR{z}] - Discovery object indicating
a Domain Participant containing DW{y} and DR{z}
stored in the Discovery DB.

DPs using SDP disseminate all the discovery messages for
created endpoints to other DPs in the same domain. Our

CFDP approach, however, filters out unmatched discovery
messages on the DataWriter side utilizing CFTs by harness-
ing topic names of local endpoints. This avoids unwanted
messages being sent over the network.

In this example, DP1 does not forward any discovery mes-
sages about DW{ B} to DP2 since DP2 does not have DR{ B}.
Likewise, DP2 does not send discovery messages for DW{ B}
to DP1. Discovery messages about unmatched endpoints in
CFDP are filtered out on the announcing side and imple-
mented via filtering expressions defined in each participant.

The publication filtering expression in DP1 (topic_name
MATCH ‘A,B,MASK_ALL’) means that it only accepts sub-
scription discovery messages for topics A and B. Here, topic-
_name is a variable defined in the built-in topic for the dis-
covery process. MATCH is a reserved relational operator
for a CFT expression. If a value of the variable is matched
with the right-hand operator (‘A,B,MASK_ALL’), a sample
containing the value is accepted by the participant. Like-
wise, the subscription filtering expression does not allow any
publication discovery messages by using a reserved filter,
MASK _ALL, because DataReaders do not exist.

Figures [4] and [5] compare SDP and CFDP by showing an
example having the same application topology. In this com-
parison, we assume that unicast is used for the discovery
protocol. In Figure 4] each participant contains DataWrit-
ers and DataReaders with topic names ranging from A to
D. Every participant publishes SEDP messages of endpoints
to other participants in the same domain, and participants
receiving the discovery messages store the messages as dis-
covery objects in internal database. Six discovery objects
including discovery objects of local endpoints are stored in
each participant resulting in a total of 18 discovery objects
consuming memory resources in this system. Likewise, there
are a total of 18 network transfers.
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DP1[DW{A}, DR{B}]
DP2[DW{B}, DR{C}]

DP1
DW/{A}, DR{B}
Discovery DB
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| Memory Load: 6 objects for each DP's DB = 18 }

Figure 4: SDP Example

Figure [f] shows a case using CFDP, which has the same
setup and topology used in the SDP example. However, in
this case, each participant filters discovery messages based
on topic names and endpoint types, so it transfers and stores
only the required discovery messages. As a result, a total of
ten discovery objects are stored in each local database result-
ing in ten network transfers. This comparison demonstrates
that CFDP can conserve memory and network resources.

Algorithm [T] describes the pseudo code for the event call-
back functions for CFDP. The callback function is invoked

by the pluggable discovery framework described in Section[3.3.1]

which we have used in our solution.
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Algorithm 1 CFDP Callback Function Algorithms

function LOCAL ENDPOINT ENABLED(EP)
if EPype is DataWriter then
if EPiopicName € SubFiltering then
Add EPiopicName to SubFiltering
else if EP;y;,. is DataReader then
if EPiopicName € PubFiltering then
Add EPiopicName to PubFiltering
Send EP to remote Participants
function LOCAL ENDPOINT DELETED(EP)
if EPyype is DataWriter then
if EPtopicName € Subletemng then
Delete EPiopicName from SubFiltering
else if EPiype is DataReader then
if EPiopicName € PubFiltering then
Delete EPiopicName from PubFiltering
function REMOTE DATA WRITER RECEIVED(E Ppw )
Assert EPpw into Internal DB
function REMOTE DATA READER RECEIVED(EPpRr)
Assert EPpr into Internal DB

Each callback function is invoked when the following events
occur:

o LocalEndpointEnabled - when a local endpoint (DataWriter
or DataReader) is created

e LocalEndpointDeleted - when a local endpoint (DataWriter
or DataReader) is deleted

e RemoteDataWriter Received - when a remote DataWriter
is created

e RemoteDataReaderReceived - when a remote DataReader
is created

A discovery object of a created local endpoint is deliv-
ered as a parameter value to the LocalEndpointEnabled call-
back function. When the discovery object is for a local
DataWriter, the function adds the DataWriter’s topic name
to the subscription filtering expression(SubFiltering). The
subscription filtering expression is used for finding matching
remote DataReaders for local DataWriters.

Similarly, in the case for finding matching remote DataWrit-
ers for local DataReaders, the publication filtering expres-
sion (PubFiltering) is used and must be updated with a topic

name of a local DataReader if it does not exist. After updat-
ing topic names in the filtering expressions, it sends the dis-
covery objects to other participants to let them know about
the newly created local endpoints.

When a local endpoint is deleted, the topic name of the
local endpoint is removed from the relevant filtering expres-
sions in the callback function LocalEndpointDeleted. The
callback functions for remote endpoints (RemoteData Writer-
Received and RemoteDataReaderReceived) insert discovery
objects of remote endpoints to the internal database. The
underlying DDS middleware then executes the matching pro-
cess by comparing data types and QoS policies stored in the
discovery objects to establish communication paths between
endpoints.

3.2 Analysis of SDP and CFDP Complexity

We performed a complexity analysis of SDP and CFDP
to determine the expected number of transmitted discovery
messages and stored discovery objects. Tables [1| and [2| show
notations and metrics used for the complexity analysis, re-
spectively.

Table 1: Notation used for Complexity Analysis

Notation Definition
P Number of participants in a domain
E Number of endpoints in a domain
F Number of endpoints per participant, Fanout =
E/P
R Ratio of the number of matching endpoints to the
number of endpoints in a participant, 0 < R <1

Table 2: Metrics used for Complexity Analysis
Metric I Definition

Number of messages sent/received by a
participant using multicast

Total number of messages sent/received by
participants using multicast in a domain
Number of messages sent/received by a
participant using unicast

Total number of messages send /received by
participants using unicast in a domain

Nulti_participant

Nmutti_total

Nuyni_participant

Nuyni_total

Mparticipant Number of endpoint discovery objects
stored in a participant
Miotal Total number of endpoint discovery objects

stored in a domain

The notations use the number of participants and the
number of endpoints in a domain because these variables
are crucial to measuring the performance of discovery pro-
tocols. A ratio of matching endpoints in each participant
can also be used for CFDP complexity analysis because it
is the primary factor affecting network transfers and stored
objects of CFDP. For analysis metrics, we decided to inspect
the number of transferred and stored discovery messages per
participant, as well as per domain (entire set of participants)
for both unicast and multicast.

3.2.1 SDP Complexity Analysis

In the case of multicast-enabled SDP, the number of mes-
sages sent from a participant is the number of endpoints
divided by participants, which yields the number of end-
points in a participant, E/P. Regardless of the number of
participants and endpoints in a domain, if multicast is used,



a message is sent to other participants only when a local
endpoint is created. The delivery of a message to multiple
destinations (one-to-many communication) is performed by
a network switch.

The number of messages received by a participant is the
number of endpoints except for local endpoints in a partic-
ipant (£ in Equation (1)). The number of messages sent
from a participant is the number of local endpoints multi-
plied by the number of remote participants (% -(P—=1)in
Equation (1)). As a result, in Equation (2), £ is cancelled
out and therefore the sum of sent and received number of
messages per participant can be simplified to the number of
endpoints in a domain, E in Equation (3). The total num-
ber of transfers in a domain is the number of transfers per
participant multiplied by the number of participants in a
domain, which is E - P as shown in Equation (4).

Nmulti,pa'rticipant - F + F : (P - 1) (1)
E E

_ L e £ 2

s TE- 5 (2)

=F (3)

Nouttitotal = £ - P (4)

Unicast-enabled SDP incurs more overhead when it sends
discovery messages because it handles one-to-many data dis-
tribution by itself, rather than using network switches. Each
participant disseminates the discovery message as many times
as the number of endpoints without including local end-
points (£ - (P—1) in Equation (5)). The number of received
messages is the same as when using multicast (£ - (P — 1)
in Equation (5)). The total number of network transfers in-

curred by the unicast enabled SDP is 2 times £ - (P — 1),

and therefore 2 £ - (P — 1), as shown in Equation (6).
E E
Nuni,pa'rticipant = F : (P - 1) + ﬁ : (P - 1) (5)
E
—2.2 . (P-1
Py
SP-1)~P (7
~2.E (8
Nuni,total ~2-E-P (9)

In the asymptotic limit (i.e., very large P), as shown in
Equation (7), (P—1) ~ P, and hence it can be approximated
as 2 - E in Equation (8), and accordingly the total number
of transfers in a domain is roughly 2 - £ - P as shown in
Equation (9).

Unicast-enabled SDP incurs more overhead (which grows
as a factor of E) compared to multicast-enabled SDP since
every participant in a domain must send more messages since
it uses point-to-point unicast data dissemination instead of
the one-to-many multicast dissemination. SDP keeps all dis-
covery objects of endpoints in the same domain, and there-
fore the memory consumption per participant for SDP is
directly tied to the number of endpoints in a domain, F in
Equation (10). The total memory capacity used by all par-
ticipants in a domain is thus E - P, as shown in Equation

(11).
Mpa'r‘ticipant =F (10)

Mtotal — E M P (11)
3.2.2 CFDP Complexity Analysis

We applied the same analysis as SDP to measure the num-
ber of transfers for CFDP, i.e., a sum of received and sent
network transfers. There is no change in the number of sent
messages because each participant with multicast sends one
message for each corresponding endpoint it contains (% in
Equation (12)). We can reduce the number of received mes-
sages, however, since only matched discovery messages are
received by the filtering mechanism. This factor is therefore
multiplied by the ratio of matching endpoints, R (for all,
0 < R < 1). Hence, the number of received messages can be
E . (P —1)- R as shown in Equation (12). From Equation
(12) to Equation (13), £ - (P — 1) - R can be transitioned
to E-R— £ .R. Then, £ — £. R in Equation (13) can be
£ .(1-R), and thus simply be F' - (1 — R) in Equation (14)

=

because % =F.
E FE
Nmulti,pa'rticipant = F + f . (P - 1) ‘R (12)
E E

= — E - [ — 1
s+E-R-5 R (13)
—F-(1-R+E-R (14
~E-R (15
Nmulti,tota.l ~E-P-R (16)

As shown above, the number of transfers per participant is
approximated by F - R in Equation (15) because F - (1 — R)
in Equation (14) can be a very small number in most cases
such that it can be ignored. Using the total transfers per
participant (E - R in Equation (15)), the total transfers in a
domain is E - P - R in Equation (16).

CFDP reduces both the number of sent and received trans-
fers proportional to the matching ratio if unicast is enabled,
so both the number of sent and received messages can be
£ .(P —1)- R in Equation (17). Accordingly, the number
of transfers per participant is 2 - % -(P—1)-R as shown in
Equation (18). This number can be approximated to 2-E-R
shown in Equation (19) via the same analysis used for SDP
(See Equation (7)). The total transfers in a domain is thus
2-E-P- R, as shown in Equation (20) because it is the total
number of transfers per participant (2 - E - R) multiplied by
the number of participants in a domain (P).

E E

Nuni,participant - F ° (P - 1) : R+ F . (P - 1) . R (17)
E

=2.5-(P=1)-R (18)

~2-E-R (19)

Nunitotat ~2-E-P-R (20)

CFDP also decreases memory use as a consequence of re-
ducing the number of remote endpoints by removing un-
matched ones. Similarly, CFDP conserves resources propor-
tional to the ratio of matching endpoints for cases per par-
ticipant as shown in Equation (22), as well as per domain
as shown in Equation (23).

+=Z.(P-1)-R (21)

Mparticipant =

e
ol

~E-R (22)



Mtotal ~E-P-R (23)

3.3 Implementing CFDP

We prototyped our solution at the application level, rather
than make invasive and non-standard changes to the under-
lying DDS middleware, which is RTI Connext [14]. In par-
ticular, our implementation leveraged DDS discovery event
callbacks using interfaces provided by the middleware, though
our approach could be incorporated inside the middleware
itself to optimize performance. Our prototype implemen-
tation assumes that when participants are created, users
determine which topics are published or subscribed by par-
ticipants (this decision is usually made when endpoints are
created).

We made this assumption in our prototype implementa-
tion of CFDP since it uses the DDS TRANSIENT_LOCAL dura-
bility QoS for both late joiners and CFTs. When a param-
eter in a filtering expression of a CFT is changed, however,
the changed value is not reflected in the list of late joiners.
For example, a peer filters a discovery message of topic z
because it does not have any endpoints interested in the
topic z. Later when an endpoint interested in the topic x
is created in the peer, then the peer should be considered
a late joiner, but it is not. If the discovery message for the
topic z is already filtered, it is not resent even though the
filtering expression is updated with having the interest of
topic z.

In addition, the prototype implementation of our CFDP
discovery plugin had to address the following two issues:

1. It needs to operate with the DDS middleware core by
interchanging discovery events since event information
is available on different threads. Section[B.3.1]describes
how we resolved this issue via the Pluggable Discovery
Framework (PDF) provided by RTI Connext DDS [14].

2. It needs to have a proper data model according to the
DDS RTPS specification for discovery messages ex-
changed between remote peers. Sectiondescribes
the data model we devised to address this issue.

3.3.1 CFDP Plugin Using the Pluggable Discovery
Framework (PDF)

The PDF allows DDS users to develop pluggable discovery
protocols, and utilize different discovery approaches under
various system environments, such as a network environ-
ment with limited bandwidth or high loss rates. The PDF
offers callback functions invoked when DDS entities are cre-
ated, deleted, or changed. It also provides a function to
assert a discovery object to internal database of the DDS
middleware to delegate managing discovery objects and the
matching process to the core level of the middleware. We
therefore provided interfaces in PDF between the discovery
plugins and associated participants as channels to exchange
information in both directions: local-to-remote (announcing
local entities) and remote-to-local (discovering remote enti-
ties).

Figure[f]shows the software architecture of our CFDP pro-
totype. In this figure, there are six built-in entities present
at the DDS core level. The CFDP uses SDP built-in entities
to discover application-level built-in entities. The discovery
plugin employs callback functions provided by the PDF to
retrieve discovery events from the middleware.

E CFDP Discovery Plugin
v
c CFDP Built-in Entities
o
k=1 CFDPPublication CFDPSubscription
g Built-in DataWriter Built-in DataWriter
a
Q
< CFDPPublication CFDPSubscription
8 Built-in DataReader Built-in DataReader 5
a Discovery
Event Callbacks/
Assertion
_ l Pluggable Discovery Framework (PDF)
[
>
9 SPDP Built-in Entities SEDP Built-in Entities
E DCPSParticipant DCPSPublication DCPSSubscription
8 Built-in DataWriter Built-in DataWriter Built-in DataWriter
w
=]
o DCPSParticipant DCPSPublication DCPSSubscription
Built-in DataReader Built-in DataReader Built-in DataReader

Figure 6: CFDP Prototype Software Architecture

Figuremintroduces a procedure of discovery with the PDF
enabled CFDP when a DataWriter is created.

Peer1 Peer 2

CFDP Discovery Plugin CFDP Discovery Plugin

CFDPPublication
Built-in DataWriter

CFDPPublication
Built-in DataReader

fterLocalDataWriterEnabledCallback ~assert_remote_datawriter

l Pluggable Discovery Framework (PDF) l l Pluggable Discovery Framework (PDF) l

Figure 7: CFDP Sequence with PDF

The PDF also furnishes a function to deliver discovery in-
formation from the application level to the core level of the
middleware. The CFDP exchanges discovery messages be-
tween peers with four built-in entities like SDP, and sets up
the same QoS configurations of SDP. For example, to deliver
discovery messages in a reliable way, the RELIABLE reliability
QoS is selected and the TRANSIENT_LOCAL durability QoS is
configured to guarantee durability of discovery messages for
late joiners as endpoints usually are not created at the same
time.

Interfaces of functions for DataWriter discovery provided
by the PDF are shown in Figure [§] The NDDS_Endpoint

typedef void(* NDDS_EndpointDiscovery_ AfterLocalDataWriterEnabledCallback) (
NDDS_EndpointDiscovery Plugin *discovery plugin,
const struct DDS PublicationBuiltinTopicData *local datawriter_data);
NDDS_Discovery AssertResult_t NDDS_ParticipantDiscovery_assert_remote_participant(
const NDDS_ParticipantDiscovery_Plugin *discovered_by,
const struct DDS_ParticipantBuiltinTopicData *remote_participant,
const struct NDDS_Discovery_Cookie_t *cookie);

Figure 8: PDF Functions for DataWriter Discovery

Discovery_AfterLocal Data WriterEnabledCallback is a callback
function invoked when a local DataWriter is created. CFDP
uses this function to add a topic name of a created DataWriter
to a proper filtering expression and to publish discovery in-
formation of the created DataWriter to announce to other re-



mote peers. NDDS_EndpointDiscovery _assert_remote_data-
writer is a function that asserts a discovery object of a dis-
covered remote DataWriter to the internal database in the
underlying middleware.

For example, if a DataWriter is produced in Peer? the Af-
terLocalData WriterEnabledCallback is invoked and the call-
back function sends Publication DATA (discovery data for
DataWriters) to other peers. The publication DATA then
arrives at Peer2 and is delivered to the core by calling the
function assert_remote_datawriter. Finally, the DDS mid-
dleware establishes the communication by matching topic,
type, and QoS policies stored in the publication DATA.

3.3.2 CFDP Data Model

A data model containing the required information for end-
points is needed to develop discovery built-in entities at
the application level. DDS supports diverse QoS configu-
rations and makes the data model for endpoint discovery
complicated because QoS configurations for endpoints are
exchanged at the endpoint discovery phase. Thus, defin-
ing the data model from scratch is hard. We therefore ex-
ploited OMG Interface Definition Language (IDL) defini-
tions already used in the DDS core middleware and gener-
ated source code for the data model, thereby reducing the
time and effort needed to define and implement the data
model.

Figures [J] and [I0] depict data models for publication and
subscription discovery defined in IDL. Attributes for keys to

PublicationBuiltinTopicData {
BuiltinTopicKey_t
BuiltinTopicKey_t
BuiltinTopicKey_t

key; //@key
participant_key;
publisher_key;

string topic_name;
string type_name;
DurabilityQosPolicy durability;

DurabilityServiceQosPolicy
DeadlineQosPolicy
LatencyBudgetQosPolicy
LivelinessQosPolicy

durability_service;
deadline;
latency_budget;
liveliness;

ReliabilityQosPolicy reliability;
LifespanQosPolicy lifespan;
UserDataQosPolicy user_data;

OwnershipQosPolicy
OwnershipStrengthQosPolicy
DestinationOrderQosPolicy

ownership;
ownership_strength;
destination_order;

PresentationQosPolicy presentation;

PartitionQosPolicy partition;
TopicDataQosPolicy topic_data;
GroupDataQosPolicy group_data;

TypeConsistencyEnforcementQosPolicy type_consistency;

h

Figure 9: IDL Definition for Publication Discovery
Data Model

identify discovery entities are contained and topic_name and
type_name attributes can be used to find matching endpoints
by topics and type structures. The data models include
the basic attributes required for the DDS specification, but
additional attributes can be added to support an advanced
discovery process. For example, the type name can be used
for type matching, but an object for type structure can be
used to realize extensible and compatible type definitions.
QoS policies required for endpoint matching are also de-
fined in the data models. The QoS policies are different
depending on the types of entities (publication or subscrip-
tion). For example, the time-based filter QoS controls data
arrival rates on the DataReader side even though DataWrit-
ers may publish at a faster rate. This QoS policy can there-

destination_order;

user_data;
time_based_filter;

presentation;
par

orcementQosPolicy type_consistency;

Figure 10: IDL Definition for Subscription Discov-
ery Data Model

fore be applied only to DataReaders (subscription). Like-
wise, the lifespan QoS validates how long samples are alive
on the DataWriter side, and is only applicable to DataWrit-
ers (publication). DDS QoS policies can be reconfigured
at run-time, and endpoint discovery messages are used to
propagate those changes.

4. EMPIRICAL EVALUATION OF CFDP AND

SDP

This section presents the results of empirical tests we con-
ducted to compare CFDP with SDP. We conducted these
tests to evaluate the scalability and efficiency of CFDP over
SDP in terms of discovery completion time, which is de-
fined as the duration of the discovery process to locate ev-
ery matching endpoint in a domain. We measured CPU,
memory, and network usage for both CFDP and SDP to de-
termine how discovery completion time is affected by com-
putation and network resource usage.

4.1 Overview of the Hardware and Software
Testbed

Our testbed consists of six 12-core machines. Each ma-
chine has a 1 GB Ethernet connected to a single network
switch. We implemented our CFDP plugin and the standard
SDP implementation with RTT Connext DDS 5.0 . We
concurrently created 480 applications for each test, where
each application contained a single participant. Specifically,
we maintain equal number of publishers and subscribers,
each with 20 endpoints (i.e., a data writer or reader, respec-
tively).

All test applications are evenly distributed and executed
across the six machines. Each participant has 20 endpoints
with an identical entity kind (only DataWriters or DataRead-
ers), and the total number of endpoints in a test is 9,600 (z.e.,
480 applications with 20 endpoints each). We set the default
matching ratio in each test to 0.1 (10%). It means two out
of 20 endpoints in each participant are matched with other
endpoints in a domain at a probability of 0.1. Our experi-
ments have tested other matching ratios also.

CFDP uses unicast to filter messages on the DataWriter
side because the filtering occurs on DataReader side if mul-
ticast is enabled. Filtering on the DataReader side filtering



does not reduce the number of discovery messages trans-
ferred over a network, so it may have little improvement on
performance. SDP uses multicast because it is the default
discovery transport for this protocol.

We also developed a test application that measures dis-
covery completion time. The application starts a timer af-
ter synchronizing distributed tests in a domain since we re-
motely execute the applications from a single machine se-
quentially. It then stops the timer when the expected num-
ber of endpoints are discovered. This implementation does
not count the discovery time incurred for discovering par-
ticipants, but measures only the time to discover endpoints
because we compare the performance of the endpoint discov-
ery phase (recall that the first phase of the discovery process
is common to both SDP and CFDP).

4.2 Measuring Discovery Time

Discovery completion time is a critical metric to mea-
sure performance of discovery protocols. In the context of
our tests, discovery completion time is defined as the time
needed to discover all endpoints in a domain. We measured
discovery completion time of 480 test applications for CFDP
and SDP, respectively. Figure[TT]presents the minimum, av-
erage, and maximum of discovery completion times for the
test applications.
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Figure 11: CFDP and SDP Discovery Time Com-
parison

The minimum discovery time for CFDP is 1.1 seconds and
the maximum discovery is 15.92 seconds. Most test applica-
tions for CFDP complete the discovery process within 1 to
2 seconds. The average discovery time for all applications is
5.2 seconds. Some of the worst-case results were caused due
to CPU saturation as discussed below.

In the case of SDP, the earliest discovery completion time
is 15.3 seconds and the latest finish time is 32.9 seconds. The
average discovery time is 15.3 seconds. As a result, the max-
imum discovery time of CFDP is 2 times faster than SDP;
the average time is about 5 times faster, and the minimum
discovery completion time is 15 times faster.

As mentioned above, the matching ratio used in this ex-
periment is 0.1 (10%). In fact, SDP does not filter any
discovery messages. So the different matching ratios make

no difference for SDP. The performance of CFDP can be
different based on the matching ratio, however, because it is
determined by the number of messages to be filtered and its
computational complexity.

If CFDP uses unicast as a transport, its performance can
sometimes be worse than SDP with a higher matching ratio
because it consumes computation resources for the filtering
process as well as delivering messages which requires seri-
alizing and deserializing messages. CFDP therefore cannot
always outperform SDP in a system with a smaller number
of topics and endpoints. On the other hand, in large-scale
DRE systems with many topics and endpoints, CFDP can
always perform the discovery process more efficiently and
scalably than SDP. Naturally, if the matching ratios are very
high, then the benefit accrued may not be significant but
we surmise that in general the matching ratios will remain
small.

4.3 Measuring Resource Usage

We measured CPU utilization used by the discovery pro-
cess by exploiting gnome-system-monitor. All distributed
test applications are executed nearly simultaneously and the
discovery process of each test application begins immedi-
ately after the endpoints are created. As shown in the Fig-
ure however, there is a spike at a specific time range that
occurs due to the discovery process overhead.

Figure shows that more CPU cycles of SDP are con-
sumed than for CFDP (10%). SDP’s CPU utilization is
higher since the number of transferred discovery messages is
larger than for CFDP, so it incurs more processing overhead.
These results indicate that the processing overhead incurred
by filtering messages on DataWriters is lower than the pro-
cessing costs incurred by transferring discovery messages.
We therefore conclude that the CFDP discovery scheme uses
fewer CPU resources than SDP.

The processing resources used by CFDP can be different
for different matching ratios, as shown by CPU utilization
results in the Figure [[2] As expected, CPU utilization in-
creases with higher matching ratios. This figure indicates
that CFDP is not effective for every case, especially with a
high matching ratio. It should therefore be used for large-
scale DRE system having many endpoints where the match-
ing ratio is lower than a small-scale system.

To analyze and compare network and memory usage of
CFDP and SDP, we counted the number of sent and re-
ceived messages for the discovery process by each proto-
col. The DataWriters and DataReaders provide detailed
messaging information, such as how many messages and
bytes are sent, received, or filtered via the functions named
get_datawriter_protocol_status() and get_datareader_protocol-
_status(). Based on this information, we counted the number
of messages, as shown in Figure

CFDP exchanges discovery messages via unicast and each
test application creates the same number of endpoints. The
number of received and sent messages are therefore identical.
CFDP (10%) sent and received 480 samples each and the
total was 960.

SDP uses multicast for discovery messages, so the number
of received messages is substantially more than the number
of sent messages. In this experiment, only 20 samples are
sent by a participant as each participant creates 20 end-
points. Although SDP sends fewer messages than CFDP,
the total number of messages transferred by a participant
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Figure 12: CFDP and SDP CPU Usage Comparison
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Figure 13: Number of Sent/Received Discovery
Messages

using SDP is still larger than any case of CEFDP because the
number of received samples is always large.

In this test the number of received transfers for SDP is
9,600, which is 10 times larger than CFDP. Even for 100%
matching ratio of CFDP, CEDP uses less messages than SDP
because filtering expressions for publication and subscription
exist separately, and discovery messages for the same kind
of endpoints are automatically filtered as they do not need
to communicate.

The size of publication DATA is 292 Bytes and the size
of subscription DATA is 260 Bytes. Based on these sizes,

we can calculate memory and network usage approximately.
The total transferred bytes of CFDP (10%) is 264.96 KB
and the total transferred bytes of SDP is 2808.4 KB. The
estimated memory consumed per participant for CFDP is
thus 124.8 KB, while SDP requires 2,496 KB.

4.4 Discussion

The following is a summary of the lessons we learned from
this research and the empirical evaluations.

e CFDP is more efficient and scalable than SDP.
The experimental results show that CFDP is more ef-
ficient and scalable than SDP in terms of discovery
completion time, as well as in the use of computing
and network resources. In particular, for discovery
completion time, CFDP is 5 times faster than SDP on
average and minimum discovery completion time is 15
times faster when the matching ratio is 0.1 (10%). For
CFDP the computing and network usage linearly de-
creases as the matching ratio decreases. CFDP there-
fore disseminates and processes discovery of peers and
endpoints more efficiently and scalably than SDP.

e CFDP’s current lack of support for multicast
can impede scalability. Our empirical tests indi-
cated that the number of messages sent by SDP is
smaller than those sent by CFDP since CFDP does
not use multicast to filter messages on the data pub-
lisher side. SDP can seamlessly use multicast because
only a single multicast address is needed for all partic-
ipants to use. For CFDP, however, each content filter
used by CFDP will need a separate multicast address.
To overcome this limitation, our future work will en-
hance CFDP to support multicast thereby reducing
the number of discovery messages sent by delegating



the overhead to network switches. This approach will
group peers with a set of multicast addresses by topic
names so that built-in discovery DataWriters will pub-
lish data only to assigned multicast channels (groups).
We also plan to leverage Multi-channel DataWriters,
which is a DataWriter that is configured to send data
over multiple multicast addresses according to the fil-
tering criteria applied to the data [14]. By using this
feature, the underlying DDS middleware evaluates a
set of filters configured for the DataWriter to decide
which multicast addresses to use when sending the
data.

e Instance-based filtering can help to make CFDP
scalable in a large-scale system with a small set
of topics. DDS supports a key field in a data type that
represents a unique identifier for data streams defined
in a topic. A data stream identified by a key is called
instance. The current CFDP filters discovery messages
based on topic names, which limits its scalability in a
system where most data streams are differentiated by
a key of a topic, rather than by a topic itself. For ex-
ample, a regional air traffic management system may
have many endpoints that exchange data by using a
single topic (such as flight status), but are interested in
only a specific set of flights that are identified by their
keys. In such a system, even though all endpoints are
involved in the same topic, they do not need to be dis-
covered by each other because its interest is not based
on the topic name, but on the key value of the topic. In
future work we will enhance CFDP to filter discovery
messages based on topic names as well as instance IDs
(keys). This enhancement should provide performance
benefits for DRE systems that contain numerous end-
points and instances with a single or less number of
topics.

S. RELATED WORK

This section compares and contrasts our CFDP DDS peer
discovery mechanism with other discovery mechanisms re-
ported in the literature. Several DDS discovery protocols
have been developed to satisfy different system requirements
and deployment scenarios. The Simple Discovery Protocol
(SDP) [10] is the standard DDS discovery protocol. SDP is
a decentralized and distributed approach to discover remote
peers and their endpoints as each peer independently man-
ages discovery information. It requires no effort in discovery
configurations and avoids a single point of failure. The mo-
tivation for our work on the CFDP approach is to overcome
the limitations of scalability inherent in the standard SDP
approach.

OMG DDS also supports a centralized approach [14] (8],
which requires a dedicated service to manage all of the par-
ticipants and endpoints in a domain. This approach can be
more scalable than SDP in certain configurations because ev-
ery peer in a domain need not exchange discovery messages
with all other peers in a domain, but only communicate with
the central node where the dedicated service runs. This cen-
tralized scheme, however, has several drawbacks. First, its
centralized design can become a single point of failure. Sec-
ond, if the dedicated service is overloaded, the performance
of the discovery process of peers in a system can deteriorate
considerably.

To avoid the run-time overhead incurred by both the de-
centralized and centralized discovery protocols, an alterna-
tive is a static discovery protocol [13]. In this model users
manually configure the discovery information of peers and
their endpoints at design- and deployment-time, which re-
quires significant configuration efforts. Such approaches can
be useful, however, for closed DRE systems that are de-
ployed in networks with limited resources because no addi-
tional resources are used during the run-time discovery pro-
cess. The key distinction of this static approach with our
work on CFDP is that the latter is not a static approach
and operates in an open environment.

An improvement to SDP is presented in [16] by utiliz-
ing bloom filters to address scalability problems incurred in
large-scale DRE systems. The peers send bloom filters to
other peers, where the bloom filter is a summary of end-
points deployed in a peer. Peers use the received bloom
filters to check if the matching endpoints are in the set rep-
resented by the filter. The peers store information about all
endpoints, but leverage the smaller size enabled by bloom
filters to use network and memory resources more efficiently.
Although this related work has similar goals as CFDP (i.e.,
both approaches attempt to solve the same problem), each
approach is designed and implemented differently. In partic-
ular, rather than using a bloom filter, CFDP uses a content
filter topic (CFT) to filter unmatched endpoint discovery
messages.

In [18], the authors investigate the challenges of using
DDS in large-scale, network-centric operations and suggest
an adaptive discovery service framework to meet key per-
formance requirements. This work also mentions the scala-
bility problem of DDS discovery, but focus on the discovery
scalability problems incurred in WANSs. Likewise, the work
presented by [5] outlines an extension to the IETF REsource
Location And Discovery (RELOAD) protocol |4] for content
delivery in WAN-based IoT systems using DDS. The au-
thors conducted experiments with 500 to 10,000 peers over
a simulated network to show its scalability. Although this
paper addressed the discovery scalability issue of DDS, their
approach centers on a structured P2P overlay architecture
in WANSs, which is different from our work on CFDP, which
is based on an unstructured P2P scheme.

Discovery is an important issue for the domain of peer-to-
peer (P2P) systems, which can be classified into structured
P2P and unstructured P2P schemes [|6]. The structured P2P
scheme, such as Chord [17] and Pastry [12], assigns keys to
data and organizes peers into a graph (a distributed hash ta-
ble) that maps each data key to a peer, and therefore realizes
efficient discovery of data using the keys. The standard dis-
covery approach for DDS in LANs based on SDP can be
classified as an unstructured P2P scheme since it organizes
peers in a random graph by allowing anonymously joining
and leaving participants via multicast. The unstructured
P2P scheme is not efficient compared to the structured one
because discovery messages must be sent to a large number
of peers in the network to build a graph of peers that remain
anonymous to each other, however, this approach is needed
to support the spatio-temporal decoupling of peers. Since
our CFDP solution is designed to improve SDP, it operates
in the unstructured P2P environment.

A taxonomy that compares and analyzes existing tech-
nologies for discovery services in Ultra-large-Scale (ULS)
systems [7] is presented in [3]. The authors evaluate dis-



covery services along four dimensions: heterogeneity, discov-
ery QoS, service negotiation, and network scope and type.
To support interoperability between heterogeneous systems,
the OMG DDS supports diverse operating platforms (i.e.
Linux(x86), Windows, and VxWorks), and also has stan-
dardized the Real-TimePublish-Subscribe (RTPS) proto-
col [10] for different DDS implementations by vendors. DDS
uses built-in DDS entities, such as topics and endpoints, to
discover peers, as explained in Section 2:2} DDS’ QoS poli-
cies can in turn be used by these entities to support QoS of
discovery. For service negotiation, DDS discovery protocols
compare the requested and offered QoS policies by data pro-
ducers and data consumers at the endpoint discovery phase.
DDS discovery mechanisms originally focused on the Local
Area Network (LAN) scope. Recent research [2] has broad-
ened their scope to support Wide Area Networks (WANs)
by deploying additional capabilities, such as the DDS Rout-
ing Service [15] that transform and filter local DDS traffic
to different data spaces (i.e., network domain).

6. CONCLUDING REMARKS

This paper motivated the need to improve the efficiency
and scalability of the standard Simple Discovery Protocol
(SDP) [10] used for DDS applications. We then presented
the design and implementation of our Content-based Filter-
ing Discovery Protocol (CFDP), which enhances SDP for a
large-scale systems by providing a content filtering mecha-
nism based on standard DDS features to eliminate unneces-
sary discovery messages for participants according to match-
ing topic names and endpoint types. We also analyzed the
results of empirical tests to compare the performance of SDP
and CFDP, which indicate that CFDP is more efficient and
scalable than SDP in terms of CPU, memory, and network
usage. Our future work will address the limitations with
CFDP presented in Section [£-4]
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