Object Interconnections

Scalable and Efficient Architecture
for CORBA Asynchronous Messaging
(Column x)

Alexander B. Arulanthu, Carlos O’Ryan, and Douglas C. Schmidt
{alex,coryan,schmid@cs.wustl.edu
Department of Computer Science
Washington University, St. Louis, MO 63130

1: request
This column will appear in the XXXX 1999 issue of the poLLING quu, TARGET
SIGS C++ Report magazine. CLIENT operation(args) OBJECT
1 Introduction DC] ol 2polkr %
4. L < 'm
To make informed choices amoung middleware alternatives, -gel {5 - 3 response :]
distributed object computing developers should understand R

how CORBA ORBs implement key features. Our last column

explored the design and performance of alternative collocat,: gure 1. Polling Model for CORBA Asynchronous Twoway

strategies [1]. In this column, we describe how the new OI\/F%Oe ations

Asynchronous Method Invocation (AMI) callback model can

be implemgnted scalgbly aqd efficiently by CORBA ORBSs. and check on the value of thiRoller when it's convenient.
As we discussed in earlier columns [2, 3], the CORBA

AMI callback model is an important feature that has been iQallback model: As illustrated in Figure 2, in this model

troduced into CORBA via the CORBA Messaging specifica-

. . . I

tion [4]. AMI allows operations to be invoked asynchronously cALLBACK Orequwt. TARGET
using thestatic invocation interfacé€Sll), thereby eliminat- CLIENT operation(callback, ar: OBJECT
ing much of the complexity inherent in thgynamic invo- 4 ﬁb

cation interface(DIl)'s deferred synchronous model. When [|] 3-'14’@111 C)
implemented properly, AMI helps improve the scalability of

CORBA applications because it minimizes the number of :] 2: response]

client threads required to perform two-way invocations. Figure 2: Callback Model for CORBA Asynchronous Twoway
The CORBA Messaging specification defines two AMI P'®perations

gramming models, thBolling model and th€allbackmodel,
which are outlined below:

the client passes an object reference fdkeplyHandler

Polling model: In this model, each asynchronous two-wagbject as a parameter when it invokes a two-way asynchronous
invocation returns &oller valuetype [5], which is very operation on an object reference to a server. When the server
much like a C++ or Java class in that it has both data meraplies, the client ORB receives the response and dispatches it
bers and methods. Operations ofPaller are just local to the appropriate operation on tReplyHandler servant,

C++ method calls and not distributed CORBA operation imhere the client then processes the reply. In other words, the
vocations. This model is illustrated in Figure 1. The client caftient ORB turns the response into a request on the client’s
use thePoller methods to check the status of the requdseplyHandler

and to obtain the value of the reply from the server. If the In general, the callback model can be more efficient than
server hasn't replied yet, the client can either (1) block awaiitre polling model because the client need not repeatedly in-
ing its arrival or (2) return to the calling thread immediatelyoke method calls on the ORB to poll for results. It does force

clients to behave as servers, however, which can increase the/* IDL compiler-generated stub code... */ }

complexity of certain applications, particularly “pure cllentsﬂ New stub for asynchronous invocations.

; ; ; ; . (described below).

_ The remainder of this column is organized as follows: Sgg- Stock-:Quoter:-sendc_get_quote

tion 2 presents an example that illustrates the CORBA AMI/; ReplyHandler object reference

callback programming model in more detail; Section 3 out-(Stock:AMI_QuoterHandler_ptr,

. . . const char *stock_name)

lines the IDL compiler and ORB support necessary to imple- ' |pL " compiler-generated stub code... */ }

ment the CORBA AMI callback model; Section 4 analyzes

the results of systematically benchmarking the performancam®f addition to having a slightly different name, note

the AMI callback implementation in TAO [6]; and Section fiow the asynchronousendc _get _quote method has

presents concluding remarks. a different signature than the synchronogst _quote
method. In particularsendc _get _quote is passed an

. AMI_QuoterHandler , which is an object reference that
2 Programmlng the CORBA AMI determines where the reply from the server will be dis-
Callback Model patched. Moreover, it doesn’t have a return value, because

the value of the stock will be passed back directly to the

In this section, we outline how the AMI callback model workget _quote callback method on the automatically generated

from the perspective of a CORBA application developer. TRl _QuoterHandler , which is shown below:

steps required to program CORBA AMI callbacks are simiI(g{aIss AMI_QuoterHandler :

to developing any CORBA applicationg., OMG IDL inter- ™ pjic Messaging::ReplyHandler {

face(s) must be defined first and a client then must be written, // Callback stub invoked by Client ORB

; /I to dispatch the reply.
as we describe below. virtual void get_quote (CORBA::Long stock_value)

Step 1: define the IDL interface and generate the stubs:, ~ { /* DL compiler-generated stub code... */ }

Throughout this column, we’ll use our familiguoter DL

interface to illustrate how to use and implement the AMI Calkgter the reply arrives from the server, the client ORB invokes
back model: theget _quote stub ontheAMI_QuoterHandler callback
object. This stub marshals the arguments and invokes the vir-
tual get _quote method on the servant that implements the

3

module Stock

interface Quoter { . AMI_QuoterHandler object. For more information on the
/I Two-way operation to retrieve current .
Il stock value. AMI callback mapping rules for OMG IDL to C++, please

long get_quote (in string stock_name); see [3].

Step 2: programming the client application: After the
IDL compiler generates the synchronous and asynchronous
stubs, programmers can develop a client that works much like

After IDL interfaces are defined, they are passed througther CORBA applications. First, the client must obtain an ob-
an OMG IDL compiler, which generates a standard set of Ciect reference to a target object and invoke an operation. Un-
stubs and skeletons. For each two-way operation in the IDL lie & conventional synchronous two-way invocation, however,
terface, the IDL compiler generates the synchronous and ad¥)-client passes an object reference féreplyHandler
chronous invocation stubs that applications use to invoke @fectas a parameter when itinvokes a two-way asynchronous
erations. The skeletons generated by the IDL compiler areqRgration. The client ORB keeps track RéplyHandler
different for AMI than for synchronous method invocation@bjects for pending asynchronous invocations so that it can
we've covered before [7], so we'll ignore them in this columilispatch appropriate callback operations after servers reply.
Stubs for asynchronous operations, however, are defined byhe following code, excerpted from [3], illustrates how a
having the same name as the synchronous operations, wifita: Programmer would invoke thget _quote method us-
sendc _ prefix prepended. ing the AMI callback model. First, we’'ll define some global

For example, an IDL compiler would generate the followariables:
ing synchronous and asynchronous stubs forQuoter in-

...

/I NASDAQ abbreviations for ORB vendors.

terface: static const char *stocks[] =

/I Usual stub for synchronous invocations. "IONAY" /I IONA Orbix

CORBA::Long Stock::Quoter::get_guote "INPR" /I Inprise VisiBroker
(const char *stock_name) "IBM" // IBM Component Broker

/I Event loop to receive all replies as callbacks.
/I Set the max number of ORB stocks. while (reply_count > 0)
static const int MAX_STOCKS = 3; if (orb->work_pending ())
orb->perform_work ();
/I Global reply count.

int replies_received = 0; When a server responds, the client ORB receives the re-
Next, we'll define ouReplyHandler servant implementa- SPOnse and dispatches it to the appropriate C++ method on the
tion: ReplyHandler servant so the client can handle the reply.
In other words, the ORB turns the response into a request on
class My_Async_Stock_Handler . , .
. public POA_Stock::AMI_QuoterHandler the client’s correspondinBeplyHandler that was passed
{ o during the original invocation. Figure 3 illustrates how our
public: ; oot .
My Async_Stock_Handler (const char *stockname) client application uses the AMI Callback model. In the exam
0 : stockname_ (CORBA::string_dup (stockname)) CALLBACK
QUOTE (STOCK
/I Callback servant method. cumnt sende_get quo p dl,?r’ QUOTER
virtual void get_quote (CORBA::Long value) { handler IBM);
cout << stockname_ << " = " << value << endl; . oO—»
} C]D Jupcall . stock_name C]Dﬁ

private: +—0
CORBA::String_var stockname_; :] 2: value :]
h

Figure 3: AMI Callback Client
We storestockname _ in eachQuoterHandler servant

because otherwise we can't differentiate callbacks that retyig above, the client implements tReplyHandler object

from multiple invocations. _ locally. A ReplyHandler also can be a remote object, in
Finally, we define a function that issues asynchronous {ghich case its servant will receive “third-party” replies for the
quests: requests invoked by our client.

/I Issue asynchronous requests.
void get_stock_quote (void)

{ 3 Implementing the CORBA AMI

/I ReplyHandler servants.

My_Async_Stock_Handler *handlersfMAX_STOCKS]; Ca"baCk MOdel

/I ReplyHandler object references. .)

Stock::AMI_QuoterHandler_var Section 2 outlined how to program the AMI callback model
handler_refs[MAX_STOCKS] from a CORBA application developer's perspective. This sec-

for (i = 0; i < MAX_STOCKS; i++) { tion describes how key AMI callback components can be im-
/r< lr;jl}laIIZ_e ReplyHandler servants plemented from an ORB developer’s perspective. Generaliz-
an ngﬁ ['%A;_Asynch_Stock_Hand|er (stocksil); ing from the example in Section 2, an ORB must implement

the following functionality to support AMI callbacks:
/I Initialize ReplyHandler object refs.

handler_refs[i] = handlers[i]->_this (); 1. Asynchronous stubs: For each two-way operation in the
IDL interface, the ORB’s IDL compiler should generate an
/I Make asynchronous two-way calls using asynchronous invocation stub that applications can use to issue
/I the callback model. asynchronous operations. High-quality IDL compilers should
for (i = 0; I < MAX_STOCKS; i++) rovide an option to suppress the generation of asynchronous
quoter_ref->sendc_get_quote p p pp - g o Yy
(handler_refs[il, stubs to reduce the footprint of applications that do not use
stocksi]); them.
.. 2. Manage pending invocations: The client ORB must

After making the asynchronous invocation, a client typf€€P track oiReplyHandler objects for all asynchronous
cally performs other tasks, such as checking for GUI evelfi¥ocations. If theReplyHandler — object reference points
or invoking additional asynchronous methods. When tfx an object that's collocated with the client, the client ORB
client is ready to receive replies from server(s), it enters @res theReplyHandler associated with that invocation.
ORB event loop, using the standawbrk _pending and Thus, when a reply arrives the ORB will dispatch the reply to

perform _work methods defined in the CORBARBinter- "€ appropriate servant. If, however, ReplyHandler ob-
face. as follows: ject is remote, the client ORB’s Object Adapter will not store

any information about thReplyHandler

3. Explicit event loop methods: Implement the standardReplyHandler object, followed by then andinout ar-
CORBA work _pending and perform _work operations guments found in the signature of the original two-way IDL
that can be used to explicitly invoke the CORBA event loggperation. The return type for trendc - method isvoid

in a client. because the stub returns immediately without waiting for the

Sierver to reply.

n Slecttlon 3.1, vvte fr)](platlnbthe features rtequlred |r][?hn IAMIIn ourQuoter application, for example, the IDL compiler
complier 1o generate the Sbs hecessary 1o support the .Ochenerates theendc _get _quote stub method in the client
Callback model. Then, in Section 3.2, we discuss the vari Sirce file. as outlined below:
components an ORB should support to implement the Al@l? ' '

functionality outlined above. /I Stub for asynchronous invocations.
void Stock::Quoter::sendc_get_quote
/I ReplyHandler object reference

3.1 IDL Compiler Support for CORBA AMI (StOCki1AhM|_(gU0te|£HandIer_ptr,
Callbacks const char *stock_name)

When AMI Callback model is enabled, an IDL file maps / Store ReolvHandl J
to an “implied-IDL" file. This “implied-IDL” will consist stt?k;eto ig%dlznreﬂya?smart_stub)
of the tt sendc method for each two-way method and the // in the ORB.
ReplyHandler interface for each interface found in the 0 M
. . arshal arguments.
original IDL file. request_buffer << stock_name;
The “implied-IDL” for the Quoter IDL will look as de-
scribed below: }

/I Setup connection.

/I Send request buffer to server and return.

| k
module Stoc Figure 4 examines each of these steps in more detail.

interface Quoter {
/I Original two-way operation.

long get quote (in string stock_name); 3.1.2 Generate ReplyHandler Classes

/I Implied asynch operation. For each interface in the IDL file, an IDL compiler gener-

void sendc_get_quote (in Am'_s?r‘ilr?tefs'jggf'ﬁ;nﬁg‘_'efv ates an interface-specific class that derives from the standard
. g - ‘ Messaging::ReplyHandler base class. The client ORB

uses this class to dispatch the reply to the servant that imple-
" ... ; :
ments theReplyHandler object. For example, the client
Il Implied type specific ReplyHandler. stub header file generated by TAO’s IDL compiler for the

interface AMI_QuoterHandler : Quoter interface contains the following class and methods:
Messaging::ReplyHandler {
/I Callback for reply.

:) nam k
void get_quote (in long result); amespace Stoc
; class AMI_QuoterHandler

} : public Messaging::ReplyHandler

{
An OMG IDL compiler that supports the AMI callback public:

. . - . /I Reply handler smart-stub.
model should provide the functionality described belofhe static void get_quote_smart_stub

IDL compiler may choose to generated the mapping code for (Input_CDR reply_buffer,

the “implied-IDL” directly from the original IDL file instead AMI_QuoterHandler_ptr);
of generating the “implied-IDL” file, thus avoiding the addi- // callback stub invoked by Client ORB
tional pass during the code generation. /I to dispatch the reply.

virtual void get_quote (CORBA::Long l);
h
3.1.1 Generate Stubs for Asynchronous Invocations by

For each two-way operation found in the IDL interface, afhe get _quote _smart _stub and get _quote methods
IDL compiler generates &endc _ method, which client are stubs generated automatically by TAO's IDL compiler. We
applications use to invoke methods asynchronously. Téxamine both of these methods below.

first argument of asendc - method is a reference t0 thegmart.stubs: When the reply for an asynchronous invoca-
1In view of simplicity, we will avoid the discussion about tBgception 10N arrives, the client ORB must demarshal the argume_nts and
Delivery [4] in this column. demultiplex to the corredReplyHandler callback, which

then dispatches the reply to the servant method defined3:y.3 Generate ReplyHandler Servant Skeletons
the client application developer. For synchronous invocations,
this dispatching is straightforward because demarshalin
performed by the stub that invoked the operation, which
blocked in the activation record waiting for the reply. Fof : i :
asynchronous invocations, however, the stub that invoked 'EH%‘“OO'S whose signatures define the result argumieniéhe

operation goes out of scope after the request is sent when d H.grn_ v_alulet, followed by t?eut andinout arguments of
trol returns to the client application. Thus, is does not blo ke onginal two-way operation. - . .
waiting for the server's reply. For each two-way operation in the IDL 'lnterface, a statlp
To simplify the demultiplexing and dispatching c)BeplyHandler servant skeleton method is generated. This
naethod demarshals the return value andiapyt andout

asynchronous replies, TAO's IDL compiler generates
ReplyHandler smart-stubstatic method for each two-wa arguments. It then calls tiReplyHandler callback opera-
jon in the servant, which must be implemented by the client

operation. These stubs are “smart” because they know hovU%]l. tion devel T devel ol ¢ thi
demarshal the arguements and invoke the callback methodBR}'calion CEVEIOpEr. 10 ensure developers implement this
ack operation, it is defined as a C++ pure virtual method.

i . C
the reply handler object using the demarshaled arguments: .
Py) g 9 or the Quoter interface, the TAO IDL generated

contrast, synchronous invocation stubs simply return cont,:_? vHand| t code in the client-side header fil
to the client when the demarshaling is complete. ~eplyrandier - servant code In the chent-side header file
is defined as follows:

When sending a request, tkendc _ stub for asynchronous
invocation passes a pointer to tReplyHandler smart- namespace POA_Stock
stub method and a pointer to tiReplyHandler object {
to the client ORB. When the reply is available, the ORB Clafsplﬁ,wé_gg%emjsnsﬂgirng::ReplyHandler
invokes this smart-stub, passing in the reply buffer and{ B
the ReplyHandler object. For theget _quote method p;‘/b';,cure virtual callback method (must be
of the Quoter interface, TAO's IDL compiler generates // overridden by client developer).
get _quote _smart _stub method in the client stub source Vvirtual void get_quote
file, as shown below: (CORBA:Long) = 0;

OMG IDL compiler that supports CORBA's AMI callback
odel also generates servant skeletonRfeplyHandler
asses. TheReplyHandler servant skeletons contain

/I Servant skeleton.

/I Reply handler smart-stub. static void get_quote_skel
void (Input_CDR input_buffer);
Stock::AMI_QuoterHandler::get_quote_smart_stub ¥
(Input_CDR reply_buffer, } '
AMI_QuoterHandler_ptr handler)
¢ /I Result arguments. The implementation of the generatgett _quote _skel ser-
CORBA:Long I; vant skeleton extracts the AMI return value ang /inout
/I Demarshal results from reply_buffer using parameters from thénput _CDRbuffer and dispatches the
/I CDR extraction operators. upcall on the appropriate servant callback method. For exam-
reply_buffer >> I; ple, the following code is generated by TAO’s IDL compiler
/I Call reply handler callback method via its for theQuoter interface:
Il stub. _
handler->get_quote (I); void
} POA_Stock::AMI_QuoterHandler::get_quote_skel

(Input_CDR cdr)

Stubs for ReplyHandler callback methods: The stubs { /I Demarshal the AMI “return value.”

for the ReplyHandler callback methods dispatch asyn- S£R>B>A:I:;L°”9 h

chronous replies to servants that implemaplyHandler

objects. These stubs are invoked by the smart-stubs on behalf!nvoke callback method on this servant.

of the client ORB; they maksynchronousnvocations on the this->get_quote (1)

ReplyHandler object to dispatch the reply. The first argu-

ment in the callback method is the result of the asynchronou§AQ’s IDL compiler has been designed to be scalable

operation, followed by all theut andinout arguments of and can be configured to support various optimization tech-

the original two-way operation defined in the IDL interface. niques [8]. The back end of TAO'’s IDL compiler uses several
For the Quoter interface, TAO IDL generates thedesign patterns, such as Visitor, Abstract Factory, and Strat-

get _quote callback method shown near the beginning egy [9], which makes it easier to enhance the compiler to gen-

Section 3.1.2. erate AMI stubs.

3.2 ORB Architecture Support for AMI Call- e Once the request is serwocation returns control
backs to theStub (8), which itself returns control to the client

(9).

When it is prepared to handle callbacks, the client
application calls the ORB’swork _pending and
perform _work (10) methods to receive and dispatch
replies associated with asynchronous invocations.

Below, we describe how an CORBA implementations can sup-

port the AMI callback model, focusing on the general collab- ¢

oration between ORB components. Then, to focus the dis-
cussion, we examine specifically how TAO implements this
feature.

e When the reply arrives, the ORB demarshals the re-
ply and demultiplexes it to the callback method on the
ReplyHandler object that was passed in by the ap-
plication when the AMI method was invoked originally
(12).

3.2.1 Collaborations Between ORB Components for
Asynchronous Invocation

After an OMG IDL compiler generates the AMI callback
stubs, the generated code must collaborate with internal ORB o)]
components to send and receive asynchronous invocatigiEtion 3.2.3 revisits these steps in more detail after we've
To demonstrate how this works, Figure 4 depicts the genef4Plained the components in TAO's ORB architecture.

sequence of steps involved when an asynchronous two-way
get quote operation is executed. As shown in this fig- 322 The Design of TAO’s AMI Callback Architecture

To make our discussion concrete, we now describe how the

Ty | AL il ORB architecture of TAO supports the AMI callback model.
sl X Below, we outline our resolutions to various problems encoun-
- ¢ rmibe | s tered when migrating to TAO new AMI-enabled architecture.
S T e o Determining how to process asynchronous replies:
17: gl _guols | T4 50 R - i)
I —-— =" [weacom e Context: Early TAO implementations only supported
= Foonm the Synchronous Method Invocation (SMI) model. In SMI, the

calling thread that makes a two-way invocation blocks waiting
for the server’s reply. Thus, the client ORB can use the calling
Figure 4: Interactions Between Client ORB Components fitiread to process the response.
Asynchronous Invocation For example, consider thieeader/Followersconcurrency
model [10] illustrated in Figure 5.

APPLICATION
1: invoke_twoway()

ure, the interactions between client ORB components for asyn-
chronous invocation consist of the following steps:

=
=]
e The client application invokes thgendc _get _quote 2 ’é
method on th&tub to issue the asynchronous operation E 5
(2). The client passes thRMI_QuoterHandler object 8l LEADER FOLLOWERS [
reference, along with the name of the stock we're inter- E 4: wait O | &
ested inj.e., IBM. % g
2 -
e TheStub marshals its string argument into a buffer and
instantiates amvocation (2), which is a facade that
delegates to internal ORB components to ensure that con- . ;
nections are established with the remote sef3g& (4),

store theAMI_QuoterHandler object in the ORK5), 2: writeQ
and send request§) & (7). I/0 SUBSYSTEM

2The names of certain objects in this discussion are specific to T, . ; ;
though the general flow of control and behavior is generic to other ORB ﬁhgalpure 5. Synchronous Two-way Invocations using the

implements AMI callbacks. Leader/Followers Concurrency Model

X i __l:':r"'r_:ll_rhll_F' S| -i
TAO uses this concurrency model to support multi-threaded —]

client applications efficiently. In this concurrency model,
the ORB borrows the application threads that are waiting for
replies, to receive and process the replies, instead of having ad-

Bynch ..E | .=- h |
ditional threads in the ORB to achieve that. One of the threads l,“;_;w:,: I ih;.,_.]:fﬁ:n |

is chosen as thieader which blocks on theselect oper- [Werepty_received dag| ih-m.-lw.-
ation. All the other threads block on semaphores. When the C | |
reply is available on any of the connections, the leader thread
signals the semaphore and wakes up the correct thread that is Figure 6: Reply Dispatching Strategy
waiting for the reply on that connection.
The following sequence of steps takes place in the . . . S
Leader/Followers concurrency model: each calling thread thne}/tocatlon. EactReply Dispatcher object maintains a

. .~ reply _received flag that indicates if the reply has been
invokes a two-way synchronous methdg uses a connection eceived. This flag is set when the reply is dispatched to this
to send the requeg®). The client ORB designhates one of i 9 Py P

the waiting threads thieaderand the others as tHellow- object and the thread waiting for the reply returns to the stub.

ers. The leader thread blocks on teelect operation(3), During an asynchronous invocation, Asynchronous

whereas the follower threads block on semaph@tgswhen Reply _Dlspatcher. IS c_reate_on .the heap by an
. ; Invocation object. This object is created on the
a reply arrives on a connection, the leader thread returns frﬁgq

select . If the reply belongs to the leader, it promotes ﬂ]e ap because the scope of the activation record where the

nvocation objectis created is exited before the reply is re-
next follower to become the new leader and returns to process . . :

ceived. The asynchronous invocation stub, thesendc _*
the reply. If the reply belongs to one of the followers, howev%r eration, stores thReplyHandler object given by the
the leader signals the corresponding semaphore to wake up pﬁication in theAsynchranous Reply Dispatcher

follower thread(5). The awakened follower thread reads tha)!) .
. . object. It also stores the pointer to the appropriate smart-stub
reply (6), completes the two-way invocati@i), and returns to e .
method in this object, as well.

its caller. ; : .
A Leader/Followers implementation using TACReply

.bP:jOb:fm: A“EOUQTI the Leade(;/FoIIowers rlr(mdel depispatcher architecture is illustrated in Figure 7. In this
scribed above works well for SMI, it does not work for AMI.
! Ve Works W ' W APPLICATION

The problem stems from the fact that the calling stub goes out .

. 1: invoke_twoway()
of scope as soon as the request is sent and the control returns _»2_»2_» _»2_»2
to client application code. Thus, the ORB must be prepared Y

. . 8a: callback 9: return_ 3§
to process an asynchronous reply in another context, possibly 5 £
within another client thread. Moreover, the ORB must main- g %
tain certain state information, suchReplyHandler object Al S DUPAICHERS.

) ply ject P
andReplyHandler smart-stub, to complete the processing g 2: create (E
of server replies to asynchronous invocations. % 7: dispatch (&
=}
e Forces: The mechanisms provided to support asyn- Gl | EEADER FRS
chronous replies should add no significant run-time overhead 6: read(
to existing SMI mechanisms. >

0000
:

¢ Solution — Strategizing the reply dispatching mecha-
nisms: The problem of processing asynchronous replies can
be solved bystrategizinghe reply processing and dispatching
mechanisms used for synchronous and asynchronous invoca-
tions. Figure 6 illustrates the components in TAGsply
Dispatcher hierarchy. ~ An Synchronous Reply Figure 7: TAO's AMI-enabled Leader/Followers Implementa-
Dispatcher is created during a synchronous invocatiogpn
on the local stack activation record by a&mvocation
object. When the reply is received, the reply buffee. architecture, when the application threads make the two-way
TAO'’s Reply CDR objecT) is placed in the dispatcher andhvocationq1), aReply Dispatcher object is created for
control returns first to the invocation object and then to tleach invocatiof2) and the request is sef®). The leader then
stub. At this point, the stub obtains the reply buffer from thdocks on theselect call (4) and the followers block on the
Invocation object, demarshals the reply, and completes teemaphoregs). When a reply arrives on a connection, the

leader thread itself reads the complete rglyand calls the 1. An ORB should implement connection multiplexing so
Reply Dispatcher object that was created for that invo- that multiple outstanding requests required to support the
cation to dispatch the repl§r). In the case of synchronous AMI model can be processed efficiently.

invocation, theSynchronous Reply Dispatcher sig-
nals(8s)the thread waiting for that reply and completes the in-
vocation(9). In the case of asynchronous invocation, however,

2. When multiple threads are accessing a connection, the
access should be synchronized so that requests are sent
one-by-one and not intermingled.

theAsynchronous Reply Dispatcher objectinvokes

the callback method in thReplyHandler object(8a). 3. Applications should be able to configure multiplexed and
non-multiplexed connection behavior statically and dy-

Minimizing connection utilization: namically to accommodate various use-cases.

e Context: Early implementations of TAO just supported e Solution — Strategize the transport multiplexing

a non-multiplexedconnection model. Thus, a connectiofhechanisms: To overcome the scalability limitations of a
could not be used for another two-way request until the repign-multiplexed connection architecture, we extended TAO to
for the previous request was received. This non-multiplexggkionally support multiplexed connections for SMI and AMI.
connection model is illustrated in Figure 8, where five threagsthis design, many requests can be sent Simu|taneous|y over
the same connection, even when replies are pending for earlier

CLIENT requests. In general, connection multiplexing yields better use
,z,z _,z_,z_,z of conljections and olther Iimited QS resources [10]. '

To implement this design in TAO, we applied the

Strategy pattern [9] and defined a new strategy called
Transport Mux Strategy that supports both multi-
plexed and the non-multiplexed connections. The components
in this design are illustrated in Figure 9.

Transport

HE 5 BB

— _— 1 _—1 [T\

W

I/0 SUBSYSTEM Transport Mux Strategy

Figure 8: One Outstanding Request Per-Connection /7 V\

make two-way invocations to the same server, which creates Exclusive Transpart Muxed Transport
five connections. A newWransport objec is created for

each connection. 01 D\ /U”*

e Problem: Non-multiplexed connection architectures Reply Dispatcher
are well-suited for hard real-time applications that pos-
sess highly deterministic QoS requirements [10]. A non-
multiplexed connection model is inefficient for CORBA AMI, Figure 9: Transport Mux Strategy
however, because applications can issue thousands of asyn-
chronous requests before waiting for the replies. Thus, a nony

: : : he Exclusive Transport Strategy implements
multiplexed connection architecture would use a correspopd. non-multiplexed connection strategy by holding a ref-
ing number of connections.

erence to a singleReply Dispatcher object. This
strategy is “exclusive” because more than one request is

e Forces: . .
not possible at the same time. In contrast, #exed
3TAO's Transport object provides a uniform interface to the TAO'sTransport Strategy uses aHash Table that stores
pluggable protocols framework [11], which abstracts various un-multiple Reply Dispatchers , each representing a re-

derlying transport mechanisms, such as TCP, UNIX-domain sockets, ; ; ;
VME, implemented by TAO. TAO's pluggable protocols framework use st sent on the connection. As shown in Figure 9, the

key patterns and components, such as Reactor , Acceptor , and ran$p0rt Mux Strategy .base c'Iass provide's a com-
Connector , provided by ACE [12]. mon interface for these two different implementations. TAO

uses theService Configurator pattern [13] so that ap- the reply. If the reply is for an asynchronous request,
plications can select between these two strategies and config- the reply gets dispatched to the callback method in the

ure TAO’sTransport Mux Strategy either statically or reply handler object. For synchronous replies, the reply

dynamically. buffer is transferred to the synchronous reply dispatcher
To synchronize access to a multiplexed connection among from theTransport object. If a reply belongs to the

multiple threads, th&ransport object for that connection leader thread, it selects another thread as the leader and

is marked as “busy” while one thread is sending a request. returns from the event loop. If the reply belongs to some
During that time, if a thread tries to send another request, it ei- other thread, however, it signals this thread so that it can
ther recycles a cached connection or creates a new connection.wakeup from the semaphore and return to its stub to pro-
After the request is sent, tiigansport object is marked as cess the reply.

“idle” and cached so that it can be reused for sending subse-

quentrequests. e Problem: Pre-AMI-enabled versions of TAO imple-
Scalability of reply wait mechanisms: mented the three reply wait strategies described above
within Connection Handlers in TAO’s pluggable pro-

. . . tocols framework, as shown in Figure 10. However, ever
e Context: Quality ORB implementations should support g y

“nested upcalls,” which is the ability to process incoming re- Transport
guests while waiting for replies. This support can be imple-

mented usingelect to wait for both the reply and any in- ,\/] b
coming requests. However, this approach adds unnecessan S
overhead to “pure” clients that do not receive any requests at)= UIOF

all. Therefore, TAO provides the following three strategies
to wait for replies to allow developers to select a mechanism

that’'s most appropriate for their applications: L | =
Read Handler | LF Handler
1. Wait-on-Read- In this strategy, the calling thread blocks |
onread toreceive the reply. Thisis a very efficient strat- W
egy for the “pure” clients that do not have to receive up- Reactar Han dler
calls while waiting for replies.

2. Wait-on-Reactor: Reactor [14] is a framework im-
plemented in ACE [12] to provide event demultiplexing Figure 10: Earlier Implementation of Wait Mechanisms
and event handler dispatching. In this strategy, single-
threadedReactor is used to dispatch the events such d§ansport ~ mechanism, such as IIOP and UNIX-domain
reply arrivals and upcalls. sockets (UIOP), in TAO's pluggable protocols framework [11]

This strat Hicientl s sinale-threaded ¢l reimplemented thre€Eonnection Handler implementa-
s strategy efliciently supporis single-tnreaded ¢ efi%nsto support all the reply wait strategies inTitnsport
applications. In this approach, the waiting thread ru

~implementation. Not surprisingly, this approach did not scale
the event loop of the Reactor to check for server repli P P gy P

When there is out on a connection. tEansbort ‘?ﬁj when TAO incorporated additional transport mechanisms,
IS Inpu lon, P such as VME, Fibrechannel, or TP4. The original design also

object is notified and it reads the input message a mplicated the integration of AMI callback model, because

dispatches the reply_. The Walt-o_n-R.eactor Strategp{anges to the reply wait mechanisms had to be donesfcin
also works with multi-threaded applications that use ansport implementation

Reactor-per-thread to minimize contention and locking

overhead [10]. e Forces: The semantics of the existing wait mechanisms,

3. Wait-on-Leader/Followers- If the application is multi- as wellgs the existing optimizations, must be mamtamed .Wh"e
mgeégratmg the AMI callback model. Moreover, applications

threaded and several threads are sharing the same RehOl:Hd be able to configure TAO's reply wait mechanism ac-
tor, only one of them can run the Reactor loop at the same 9 Py

time. This strategy synchronizes access to the Reactorcuosr-dlng to their particular needs.

ing the Leader/Followers pattern [10]. In this pattern, the e Solution — Refactor reply wait strategies: As part of
leader thread runs the event loop of the Reactor. All ottmur enhancement to the ORB, therefore, we moved the re-
threads wait on a semaphore. When a reply is availalpg; wait mechanisms from th€onnection Handlers

the leader thread reads the complete reply and dispatdoethe newWait Strategy and decoupled it from the

Transport and the underlyingConnection Handler bulletContext: Now that we have discussed the various
objects. The new Wait Strategy architecture is illustrated edomponents in the ORB which the client stub can make use to

the UML diagram in Figure 11. achieve tasks such as setting up the connection, creating the
Reply Dispatcher s, sending the request, keeping track
I ol Sty of the Reply Dispatcher s andsmart-stub s, waiting
for replies, processing replies and delivering replies. The stub
v\ can either directly invoke methods on the various ORB compo-
Wal on Read \Wait On Reactor nents to achieve the above or it can go through helper classes
NoP which can be implemented as part of the ORB. The helper
classes can interact with the various components in the ORB
| W¥ait on Leader Follower on behalf of the stub and execute all the above functionalities.
\L /<7 ‘Q\ bulletProbelm: If the stubs are implemented to directly
Handlar T interact with the internal ORB components, the code size of
xclusive Muxed LF

the stub increases. This will lead to increase in the footprint
of the stub files, since stubs are generated by IDL compiler for

each method in the IDL interface.
Figure 11: TAO’s Enhanced Wait Strategy Implementation

bulletForces: Therefore, stubs should make use of helper
In TAO h d hitect ah ¢ classes which will factor out as much code as possible from the
n s enhanced archilecture, eadhanspor 'M" " stubs into the ORB core. The helper classes should efficiently

plements only ondConnection Handler . Due to the support both synchronous and the asynchronous invocations
patterns-based OO design used in TAO, this modification jus{Jp y y '

required changes in tHransport implementation and the bulletOptimized invocation helper facades: The
Connection Handler implementation and did not affecthelper classes Synchronous Invocation and
other ORB components. Asynchronous Invocation provide the stubs with

In addition to the refactoring of the wait strategies, a Va,facades that .encapsulate the details of the various features
ation on the Leader/Followers implementation has been inf@plemented internally to the ORB. _
grated onto thaVait-on-Leader/Followers strategy. When called by a stub on behalf of a client, the
This is because the Leader/Followers implementation métynchronous Invocation class establishes a connec-
tioned earlier was based on the assumption that the conriigl’ to the remote host, sends the request, waits for a reply,
tion is exclusive for one request at a time. Therefore tHRCeives the reply, and returns control to the stub once the re-
state variables such as tiemaphores etc were kept in PIY is received. ThéAsynchronous Invocation class
the Transport and theConnection Handler objects, is similar, but it returns control to the stub as soon as it sends
which are per-connection objects. This implementation worlk€ request.
fine in the Exclusive Transport case. Itis not suit- As we discussed earlier in thReply Dispatching
able for theMuxed Transport mechanism, however, be-Strategy , the Synchronous Invocation object cre-
cause there will be multiple threads waiting simultaneousies theSynchronous Reply Dispatcher on the lo-
for replies on a single connection. cal stapk activat.ion record whereas tAsynchronous

To address this problem, therefore, we enhanced tR¥ocation object creates thésynchronous Reply
Leader/Followers model described above to create a vAtispaicher —on the heap.

ation called Muxed-Wait-on-Leader/Followers As illustrated in Figure 12, TAO’s synchronous and asyn-
strategy ~ class. As shown in Figure 11, thghronous variants inherit from a common Invocation class,
Muxed-Wait-on-Leader/Followers model uses Which provides a uniform interface to other components in the

TAO’s thread specific storage implementation to keep tRRB- Both classes delegate the tasks described above to the
per-ORB-per-thread condition variable, which is created orf§€r components in the ORB that we discussed earlier.

once and also on demand by a factory method in @RB

Core. The ORB Core class provides a common place t8.2.3 Collaborations Between Components in TAO’s
keep the global ORB resources. AMI-enabled Architecture

The wait strategies have been implemented using TIQSW that we've described (1) the code generated by TAO's

Stra’gegy pattern gnd thSer\,/lce Conflgurator . pat- IDL compiler and (2) the components in its ORB architecture
tern is used to configure TAO’s wait strategy dgnamlcally.

Interaction betweenthe stub and the various ORB cOmpo- ~ 47a0 uses connection caching to avoid establishing new connections if
nents: one is already open to a particular ORB endpoint.

10

[mvoc ation

FleplsHardier | LClieel
jj R 1. iemdbon oo baoed
Synch Invocation Asynch Irvocation 12: cattaack || Stk
2 i il
1 1 + 1 CREld .
Faply | " | Jrescalian
1 1 | Paspatiches
S'_nlu'nch RD AS'_I,I'I"ICI"I RD i .1--3.--l B s el | | (4 boed S peats e
&semaphare Spreply_handler = £ hird P ek -
: . Trasspei ks ' | Transgnd | e | N
&reply received fag &smart-stub T -~ Slraiey
7. sl magees I'l read reply
Figure 12: Invocation Interface :

AR F oy praswprkcy

that process synchronous and asynchronous requests, we

present the overall AMI-enabled ORB architecture of TAO, as) . ,
shown in the UML diagram in Figure 13. Moreover, we can rt|-cl)gnusre 14: Sequence of Steps in TAO's SMI & AMI Invoca-

tion. In the case of asynchronous request, it passes the
reference to th®eplyHandler object(1).

e The stubs generated by TAO'’s IDL compiler are different
e ———— T rre—— for the synchronous and the asynchronous invocations.
| : | : | The synchronous and the asynchronous stubs instantiate
the correspondintmvocation objects(2).

e Thelnvocation object creates synchronous or asyn-
chronousReply Dispatcher depending on the type

[et Coigtcnar W s L Pl | of the reques(3). Thelnvocation object then binds

== . . theReply Dispatcher objectwith theTransport

Mux Strategy object@ & 5).

e The Invocation object calls Transport object
| which in turn uses TAQO'’s pluggable protocols framework
Flgggabis Framon Framsd and ACE [12] to send the reque&t& 7).

¢ In the AMI model, the stub returns control to the ap-
plication at this point. Later, th€lient object can
wait for the replies. In the SMI model, conversely,
thelnvocation object calls theTransport to wait
for the reply, which delegates this task to théait
Figure 13: AMI-enabled TAO ORB Architecture Strategy (8).

e When the reply arrives, th€ransport object is noti-
fied to read the replg9). It reads the complete reply and
calls theTransport Mux Strategy to dispatch the
reply(10). TheTransport Mux Strategy usesthe
correctReply Dispatcher object created for that in-
vocation and calls the dispatch method oflit).

| ek AL AiysihnD | [o i e L] L}

Fawrint, Comecion linncder oifes ACE Comprnenis

examine the sequence of steps that occur when an application
issues a synchronous or asynchronous invocation. Figure 14
illustrates an interaction diagram that shows the sequence of
steps in TAO, each of which is described below.

e TheClient object calls theStub to make an invoca- e If a Synchronous Reply Dispatcher is being

11

Figure 15: Blackbox Throughput for Synchronous vs. Asyn-
chronous Method Invocations

This supports our contention that AMI can be used to build
more scalable clients than traditional methods such as multi-
threading; as we will show next this is achieved without con-
siderable overhead over SMI for simple clients.

Figure 16 shows the latency for the synchronous and the
asynchronous invocations. It shows that the ORB introduces
verylittle overhead for the asynchronous invocations. Part of
the latency overhead is due to memory allocations for the Re-
plyDispatcher objects, in the future we plan to use specialized
memory pools to minimize this source of overhead. We also
expect that further white box analysis will allow us to identify
and eliminate other sources of overhead.

Figure 17 shows the throughput for the synchronous and

12

5 Concluding Remarks

The CORBA AMI model is an important feature that has been
integrated into CORBA via the CORBA Messaging specifi-
cation. A key aspect of AMI is that operations can be in-
voked asynchronously using thetatic invocation interface
(SII), thereby eliminating much of the complexity inherent in
thedynamic invocation interfacgll)’s deferred synchronous
model.

This column explains how IDL compilers and ORBs can
be structured to support the CORBA AMI callback model ef-
ficiently and scalably. The ORB should implement the syn-
chronous and asynchronous reply handling as transparent as
possible to the other components in the ORB. This makes the
ORB components to be more flexible and scalable. Optimiza-
tions such as connection multiplexing should be supported in
the ORB to efficiently support AMI clients. To avoid the foot-
print in the IDL generated stubs, ORB core implementation
should factor out as much code as possible out of the stubs.
The IDL compiler and ORB enhancements to support AMI
should be very carefully made so that they do not add over-
head to synchronous method invocations. The implementation
should be guided by benchmarks and profiling on the newer
enhancements. The existing optimizations in the ORB should
be preserved, while allowing flexibility to configure the ORB
based on the application needs.

We also showed how familiar design patterns can be ap-
plied to configure ORBs with policies and mechanisms ap-
propriate for particular application use-cases, while still pre-
serving key optimizations necessary to support stringent QoS
requirements. In particular, we repeatedly applied the Strat-
egy Pattern [9] to support both scalable connection multi-
plexing strategies, while still allowing configurations that en-
sure the determinism required for hard real-time applications.
Likewise, applications can configure these method invocation
strategies using the Service Configurator pattern [9], which
makes the TAO framework highly configurable and flexible.

As always, if you have any questions about the material we
covered in this column or in previous ones, please email us at

object_connect@cs.wustl.edu
Figure 17: Blackbox Throughput for Synchronous vs. Asyn—J - @

chronous Method Invocations
References

[1] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Opti-
mizations for CORBA,C++ Report vol. 11, October 1999.
the asynchronous invocations. As shown in the figure, thefg] D. C. Schmidt and S. Vinoski, “Introduction to CORBA Mes-
is a only a small decrease in the throughput for the sim- saging,’C++ Report, vol. 10, November/December 1998.
ple AMI client. However, the high-performance AMI client, [3] D. C. Schmidt and S. Vinoski, “Programming Asynchronous
which has dedicated threads to issue the requests and to han-mMethod Invocations with CORBA MessagingC++ Report,
dle the replies, achieves higher throughput compared to the vol. 11, February 1999.

other clients, since the calling thread does not spend time @4} Object Management Grou;ORBA Messaging Specification
waiting for replies. OMG Document orbos/98-05-05 ed., May 1998.

13

(5]
(6]

(7]

Object Management GroupQbjects-by-Value OMG Docu-
ment orbos/98-01-18 ed., January 1998.

D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request BrokeCamputer
Communicationsvol. 21, pp. 294-324, Apr. 1998.

D. C. Schmidt and S. Vinoski, “Object Adapters: Concepts and
Terminology,”C++ Report vol. 9, November/December 1997.

[8] A.Gokhale, D. C. Schmidt, C. O'Ryan, and A. Arulanthu, “The

E)

[10]

[11]

[12]

[13]

[14]

Design and Performance of a CORBA IDL Compiler Optimized
for Embedded Systems,” Bubmitted to the LCTES workshop
at PLDI '99, (Atlanta, GA), IEEE, May 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid@ssign Pat-
terns: Elements of Reusable Object-Oriented Softw&ead-
ing, MA: Addison-Wesley, 1995.

D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokedsyir-

nal of Real-time System$o appear 1999.

F. Kuhns, C. O'Ryan, D. C. Schmidt, and J. Parsons, “The De-
sign and Performance of a Pluggable Protocols Framework for
Object Request Broker Middleware,” Rroceedings of the IFIP

6" International Workshop on Protocols For High-Speed Net-
works (PfHSN '99)(Salem, MA), IFIP, August 1999.

D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” ifProceedings of the
6" USENIX C++ Technical ConferencgCambridge, Mas-
sachusetts), USENIX Assaociation, April 1994.

P. Jain and D. C. Schmidt, “Dynamically Configuring Commu-
nication Services with the Service Configurator Patte@#*
Report vol. 9, June 1997.

D. C. Schmidt, “The Object-Oriented Design and Implementa-
tion of the Reactor: A C++ Wrapper for UNIX 1/O Multiplexing
(Part 2 of 2),"C++ Report, vol. 5, September 1993.

14

