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Performance forecasting in cycling is most effective when it is personalized and course-specific to account for

the influence of individual and terrain factors. This paper empirically assesses various personalized and course-
specific performance forecasting models based on four machine learning models, including random forest, feed
forward neural networks (FFNNSs), recurrent neural networks (RNNs), and long short term memory (LSTM).
The mean square error (MSE) is selected as the metric for model comparison. The results of our experiments
show that despite the severely overfitted random forest models the LSTM models have the lowest MSE in the

heart rate forecasting on our test dataset.

1 INTRODUCTION

1.1 Background

Monitoring exercise intensity during cycling is impor-
tant. While insufficient exercise may slow improve-
ment in an athlete’s performance, excess exertion can
result in over-training or even muscle damage. Over-
training in cycling can result in a debilitating syn-
drome that degrades the performance of cyclists for
several months and may ultimately result in failure
to meet competition goals (Gleeson, 2002). More-
over, over-trained athletes—especially those involved
in endurance sports like cycling—are susceptible to
infections and require significantly longer time for
recovery than non-athletes (Gleeson, 2002; Nieman,
1994).

Several metrics are available to estimate exer-
cise intensity, including heart rate, power output,
and VOpmax. According to Jeukendrup et al’s
study (Jeukendrup and Diemen, 1998), heart rate is
a reliable indicator of cycling exercise intensity since
it is largely independent of a specific course. How-
ever, heart rate can be affected by terrain factors, such
as grade of the hill, which varies on different riding
courses.

Predicting heart rate at different points in time on
a cycling course is hard since heart rate is affected
by course-specific features, as well as other personal-
ized physiological factors. Research has shown that a
cyclist’s heart rate drifts upwards after exercising for

20 to 60 minutes despite unchanged work loads (Bian
et al., 2019; Le et al., 2009), which is a condition
called “cardiac drift.”

Cardiac drift is associated with an increase of
core body temperature during exercise (Dawson et al.,
2005; Collinson et al., 2001), which may cause ath-
letes to lower their speed to maintain their heart rate.
On the other hand, higher speed can yield a higher
heart rate in a given condition (Le et al., 2009). More-
over, heart rate responses vary with a cyclist’s individ-
ual factors, such as gender and age (Le et al., 2009),
as well as their cadence on different parts of a given
course.

It is hard to predict heart rate on a specific point
in a course at a target speed. Training plans therefore
focus on setting target heart rate or power goals (e.g.,
power applied to the pedals by the rider) and riding as
fast as possible without exceeding those targets. Ide-
ally, training plans could be developed where heart
rate at a given speed and point in a course is predicted
and riders are given a set of target speeds to ride in-
stead. Achieving this ideal, however, requires build-
ing heart rate forecasting models that are personalized
and course-specific, which yields the following bene-
fits:

¢ Achieve speed goals without over-training. A
personalized performance forecasting model for
specific courses is vital for cyclists to establish
achievable speed goals at different courses in ad-
vance and maximize training effects without over-
training.



» Improve course-specific estimation accuracy.
Riders can accurately estimate how much faster
they could ride in different sections of the course,
yet still remain within heart rate targets. For ex-
ample, a rider who has only ridden a course at
70-80% of max heart rate could estimate how fast
they would ride at a race intensity of up to 90%
of max heart rate. This estimate could give them
a benchmark of what they could currently achieve
without actually riding the course and potentially
over-exerting themselves.

A biker may need to climb up on a steep uphill
trail on uneven terrain with 6-8in rocks, which re-
quires significantly slower speeds and greater inten-
sity than a similar climb on smooth ground. Similarly,
a high-speed downhill ride on smooth terrain will
place less stress on a rider’s core muscle groups com-
pared to the same downhill speed across tree roots.
The individual terrain features, turns, gradients, and
other aspects of a course significantly impact a rider’s
speed and intensity, but current models are mainly
course-independent.

To maximize their efficacy, personalized and
course-specific heart rate models should be easily
trainable from limited data—ideally a single test ride
of a course by an athlete. If an athlete rides a course
multiple times at multiple target heart rates, they are
less likely to need a predictive model since they al-
ready know the course well. Therefore, new courses
(i.e., where the athlete has limited knowledge) are
those where personalized and course-specific predic-
tive models are most valuable. Ideally, a cyclist
should be able to ride a course once and then predict
how different target speeds would impact heart rate at
different points on the course.

1.2 Research Question: Which machine
learning approaches perform best
for personalized course-specific
heart rate prediction from a single
ride?

This paper presents our research on comparing per-
sonalized multivariate models to forecast the heart
rate of a cyclist on a specific course using data from
a single ride. These models consider course-specific
factors at each part of the course (such as the grade of
road and the altitude), as well as current rider details
(such as the cadence), and then forecast the heart rate
of the athlete based on them. We compare the results
of heart rate and speed forecast by the following ma-
chine learning models from a single ride and report
which models perform best:

* The first type of model experimented with is ran-
dom forest, which is a traditional machine learn-
ing model. Forecasting results show that random
forest models have severe overfitting and there-
fore cannot be utilized in heart rate forecasting
from a single ride.

e To mitigate the random forest overfitting prob-
lem, we implement feed forward neural networks
(FFNNs). FFNNSs do not exhibit overfitting prob-
lems on the dataset, though their forecasting ac-
curacy is lower. In particular, FFNNs do not
consider historical information when forecasting
heart rate.

e To address the limitations with FFNNs, we also
implemented two other types of neural networks:
simple recurrent neural networks (RNNs) and
long short term memory (LSTM) networks.

We empirically compare all these models via ex-
periments in our testbed. The results of these exper-
iments indicate that the LSTM models have the low-
est mean square error among machine learning mod-
els despite severely overfitted random forest models
and produce predictions that closely match real-world
heart rate sequences.

1.3 Paper Organization

The remainder of this paper is organized as follows:
Section 2 describes prior work on heart rate forecast-
ing; Section 3 reviews the data processing methods
and all the models applied in this paper, including ba-
sic concepts of each model and their pros and cons;
Section 4 describes how we built random forest, feed
forward neural network (FFNN), recursive neural net-
work (RNN), and long short term memory (LSTM)
models to forecast the heart rate of athletes on a spe-
cific route and then compares the best models among
these four types with two course-independent models
(FitRec (Ni et al., 2019) and Minmin’s LSTM-based
model (Luo and Wu, 2020)); Section 5 summarizes
the results from our experiments in Section 4; and
Section 6 presents concluding remarks and outlines
future work.

2 RELATED WORK

Researchers have built various models to predict the
performance of elite cyclists. Le et al. (Le et al., 2009)
proposed a mathematical model to evaluate athletes’
heart rate response under moderate exercise intensity
based on physical and physiological principles. Lu-
cia et al. (Lucia et al., 2001) analyzed the preferred



cadence of elite cyclists and found that on flat stages
they tend to adopt higher cadences (around 90 rpm)
while on mountain ascents cadences are around 70
rpm. However, their models focus on laboratory con-
ditions. Course-specific factors, such as the slope of
the road in real courses, are not consider, though these
factors significantly influence a cyclist’s heart rate re-
sponse.

Due to the advent of wearable devices, large
amounts of data can be collected and processed via
mobile devices, which offers an opportunity to build
personalized performance forecasting models. Mo-
hammadzadeh et al. (Mohammadzadeh et al., 2018)
applied a support vector machine predictor to pre-
dict the breathing rate based on the 3-D accelerations,
heart rate, body temperature, electrodermal activity,
humidity etc. in a controlled lab environment. Ming
et al. (Ming and Jun, 2008; Xiao et al., 2010) used
an FFNN to investigate the relationship between heart
rate and physical activity in daily life with the help of
a wearable physical activity recorder that monitors the
3-D accelerations of the body.

RNNs exhibit sequential correlation and can
seamlessly model problems with multiple inputs.
These models are therefore widely used in natural
language processing and time series prediction (Cho
et al., 2014). In athletic performance forecasting,
RNN based models can take personalized factors
(such as blood pressure and running speed during ex-
ercise) to make a heart rate predictions. Ni et al. (Ni
et al., 2019) proposed an LSTM-based model to learn
a user’s heart rate profile during exercise and offer
workout route recommendation and short term heart
rate prediction. Luo et al. (Luo and Wu, 2020) also
proposed an LSTM-based model to predict heat rate
based on heart rate signal, gender, age, accelerations
and mental state. Bian et al. (Bian et al., 2019) tracked
facial key points from each frame of facial videos to
estimate heart rate.

In summary, although there are other performance
forecasting models, most studies focus on the heart
rate profile collected either during daily activities or
under laboratory conditions. There are few models
that are course-specific and personalized to forecast a
cyclist’s heart rate and speed. However, such models
can be beneficial to both cyclists and coaches.

For example, a cyclist needs a model to establish
various speed goals at different parts of a course be-
fore a competition or predict their heart rate based on
given speed goals. A coach can use such a model to
evaluate the heart rate of a given athlete on a given
course at a given speed to ensure the exercise inten-
sity and avoid over-training. Likewise, when given
specific heart rate goals, these models can be used to

predict how fast a cyclist can/should ride at different
parts of a course.

3 METHODOLOGY

To address the limited understanding of personal-
ized and course-specific heart rate forecasting from
a single ride, we evaluated the performance of prior
course/cyclist-independent models, course/cyclist-
specific traditional machine learning models, and
course/cyclist-specific neural networks on forecasting
rider heart rate on a single ride of a course. These
comparisons allowed us to investigate a number of
important research questions and collect important
lessons learned to guide future research, as discussed
in this section.

3.1 Key Research Questions

The key research questions we investigated in our
study include the following:

¢ Are current models that do not consider course-
specific features as good as models that consider
specific features, such as location?

* Do traditional machine learning or neural net-
works perform better on course-specific heart rate
forecasting?

* For traditional machine learning models, which
features are most salient for learning?

3.2 Experimentation Approach

We began our study by surveying prior work on heart
rate forecasting. We then selected and applied both
traditional machine learning models and neural net-
works to a cycling dataset that we collected. Impor-
tant cyclist and course-specific factors must be con-
sidered for cycling performance forecasting. It is nat-
ural to consider multivariate models for performance
forecasting, e.g., random forest and neural networks
are popular machine learning algorithms because they
work for both regression and classification and can
handle multiple inputs. The flow chart in Figure 1 out-
lines key procedures associated with heart rate fore-
casting.

According to Leijnen et al. (Leijnen and van Veen,
2020), there are 13 major neural network architec-
tures used by researchers. Among all these neural net-
works, three of them are widely used in performance
forecasting, including feed forward neural networks
(FFNN) (Ming and Jun, 2008; Xiao et al., 2010),
basic recurrent neural networks (RNN) (Chowdhury
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Figure 1: Heart Rate Forecasting Procedures

et al., 2019), and long short term memory (LSTM)
(Bian et al., 2019; Ni et al., 2019) models. We there-
fore selected these three neural networks and random
forest and built a personalized model to predict the
performance of a cyclist on a specific routes. LSTM
is a special type of RNN, so to distinguish these two
models we call basic RNN models “simple RNN”
models in this paper.

In the performance forecasting problem, an ath-
lete’s performance is affected by numerous features,
such as temperature and the grade of course. Not all
these factors, however, should be provided as input to
a traditional machine learning model. For example,
random forest models are sensitive to data variation,
so small differences in the dataset can cause a large
variance in the prediction.

Pruning irrelevant features to an athlete’s per-
formance can reduce model overfitting and improve
forecasting accuracy. Neural networks have built-in
mechanisms to mitigate overfitting and perform fea-
ture selection by assigning significant features larger
weights. This process, however, consumes a large
amount of time and requires a large amount of data.
Removing less important factors can accelerate the
training process of neural networks and reduce the
amount of data needed. This paper therefore uses fea-
ture selection for all four types of models.

In statistics, a correlation coefficient is used to
characterize how strong a relationship is between two

variables. This coefficient is a real number between
—1 and +1. The absolute value of correlation coeffi-
cient shows the strength of a relationship.

For example, assume there is a cyclist riding on a
plane with constant velocity and direction. Assume
there are two factors, one is the velocity of the cyclist,
denoted as v, and the other is the color of the bike,
denoted as c. Based on the property of uniform linear
motion, the distance d can be described as the product
of cyclist velocity v and time 7.

To build a distance forecasting model, v rather
than ¢ should be considered. The correlation coeffi-
cient between v and d is p, 4 = 1 while that between
c and d is p. 4 = 0, which shows there is a linear re-
lationship between v and d, whereas ¢ and d are un-
correlated. By calculating and comparing correlation
coefficients between features and the target value, sig-
nificant features can thus be extracted and irrelevant
features can be filtered.

Two common correlation coefficients are widely
used: the Pearson correlation coefficient and the
Spearman’s rank correlation coefficient. Pearson’s
correlation coefficient assesses linear correlation (Tu-
torials, 2018). In contrast, Spearman’s rank correla-
tion coefficient focuses on the monotonic relationship
between two random variables (McDonald, 2014).

According to Bishara et al. (Bishara and Hittner,
2017), calculating Spearman’s correlation coefficient
for non-normal data may be an optimal strategy when
the data size is larger than 20. For performance fore-
casting, the heart rate and velocity of a cyclist shows
complex non-linear relationships with factors like ca-
dence and the grade of the road when the total number
of data items is far more than 20. Spearman’s rank
correlation coefficient is more suitable for calculating
the correlation coefficient, so we therefore select this
approach to filter the personalized and terrain factors
compared with Pearson’s correlation coefficient.

For Spearman’s rank correlation coefficient, raw
data (such as heart rate, speed, and the grade of
course) should be converted to rank variables. Given
a heart rate sequence HR, where hr is a heart rate in
this sequence, the rank variable ry, of hr is obtained
as follows (Myers et al., 2010):

* Sort HR in ascending order and denote the sorted
heart rate sequence as HR;

* The position where hr is in HR; is the rank vari-
able ry, of hr

For example, given a heart rate sequence over 4 sec-
onds is {100,102,95,86}, the corresponding rank
value for this heart rate sequence is {3,4,2,1}.
Assume there are two data sequences (e.g., X and
Y) each of which has n examples. Based on the
method described above, two ranked sequences rgx



and rgy can be obtained. The formula for Spear-
man’s correlation coefficient (Myers et al., 2010) is
expressed in Formula 1,

cov(rgx,rgy)
Prex,rgy = (1)
Orgx Orgy
where cov(rgx,rgy) is the covariance of ranked se-
quences rgx and rgy, while G,¢, and G, are the stan-
dard deviations of the ranked sequences.

3.3 Overview of Our Dataset

For heart rate forecasting, the dataset used in this pa-
per contains the grade of course, speed, heart rate, al-
titude, cadence, and distance at each second. We are
interested in understanding how course-specific fea-
tures impacted forecasting performance. We therefore
use mountain biking data from trails in the Nashville,
Tennessee, USA region.

Mountain biking courses have significant terrain-
based variation, ranging from rocks and roots to very
steep up-hill sections, as well as to mud. These vari-
ations in terrain lead to large variation in the physio-
logical demands on the rider. These variations affect
the muscles used, such as core and shoulder muscle
engagement when riding over rocky terrain.

Our dataset was collected on a Ripmo AF moun-
tain bike instrumented with a Garmin 830 biking
computer connected to an accelerometer-based speed
sensor mounted to the front hub of the bike. The
bike’s crank arms included a Quarq Sram XX1 Eagle
Dub power meter that used embedded strain gauges
to measure the power applied to the pedals within +/-
2%. The Quarq power meter directly measured the
rider’s pedaling cadence from accelerometers embed-
ded in the crank arms. The Garmin 830 included GPS
positioning and improved location tracking using a
fusion of wheel rotation, speed, and GPS fix data. Fi-
nally, a Wahoo Tickr elctrode-based chest strap was
used to measure heart rate and communicate the data
to the Garmin 830.

For our study, we selected 8.71 miles of riding
on a 10-mile courses in the Nashville area. The
rider was a 40-year old male weighing approximately
210 pounds.! In cycling, functional threshold power
(FTP) is commonly used to measure cyclist fitness.
FTP estimates the maximum power that can be sus-
tained by a cyclist for one hour. The FTP for the data
collection cyclist was 240 measured using an indoor
cycling trainer with a ramp testing protocol.

'0ur current work focuses on a single rider to maxi-
mize understanding of how course-specific features could
be learned since individual riders have been more thor-
oughly studied in prior work.

The dataset and all the source code we used to
evaluate the machine learning and neural network
models discussed in this paper is available from
github.com/EricXQiu/SportDataProcessing.

3.4 Feature Selection

The first step in our dataset processing involved se-
lecting features for model training. Before selecting
these features their significance must be determined.
Spearman’s correlation coefficients (p) for each se-
quence are listed in Table 1. This table shows that the

Table 1: Spearman Correlation Coefficient Between Factors
and Heart Rate

Spearman correlation
Features .
coefficient

speed 0.1826
grade of course 0.2524
cadence 0.2389
distance 0.0466
altitude 0.2586

grade of course, cadence, speed, and altitude signifi-
cantly influence heart rate more than the other factors.
We therefore selected these four factors as the features
for our heart rate forecasting model.

We measured heart rate data with an electrode sen-
sor on a chest strap. During cycling, the sensor might
situate far apart from the skin due to motion, which
can cause error on heart rate data. To reduce the er-
ror and smooth the heart rate, the heart rate sequence
was therefore processed with a window average of 60
seconds. The grade of course, cadence, speed, and al-
titude features are also processed with the same win-
dow average process to ensure consistency with the
heart rate data.

We split the dataset between a training set and test
set. By convention, we used an 80% vs 20% train-test
split ratio to split data into the training set and test set.
For the LSTM-based model, the training set was the
first 80% of the data and the test set was the remaining
20% rather than a random selection to account for the
order dependence in heart rate data. To compare the
results with LSTM-based models, the same train-test
split process was also performed for the random forest
model and neural networks.

4 HEART RATE FORECASTING
MODEL COMPARISON

This section describes how we applied four machine
learning models (random forest, feed forward neu-



ral networks, simple recurrent neural networks, and
long short term memory) to build heart rate forecast-
ing models that predict an cyclist’s heart rate on a
given course. The results of applying these heart rate
forecasting models are then analyzed. We also com-
pare the mean squared error (MSE) of all four mod-
els to glean insights into which models perform best
and whether they have severe overfitting. Finally,
we compare our models with other models (i.e., Ni’s
model (Ni et al., 2019) and Luo’s model (Luo and
Wu, 2020)) that are not course-specific, but which we
trained on our dataset described in Section 3.3.

4.1 Random Forest Heart Rate Models

We used the scikit-learn library (Pedregosa et al.,
2011) to construct the heart rate forecasting models
based on random forest. The criterion is MSE and the
number of decision tree regressors can be modified.
Table 2 shows four random forest models with differ-
ent numbers of decision trees regressors.

Table 2: Number of Decision Tree Regressors in RF model

Model Number #Decision Tree
Regressors
1 5
2 10
3 15
4 20

Each decision tree regressor uses all factors in re-
gression. Their MSE on the training set and test set,
as well as the maximum depth of the decision tree re-
gressor, are shown in Table 3. For all four models,

Table 3: MSE and MaxDepth of RF Models on Data Set

MSE on MSE on | Max

RF Model Training Set | Test Set | Depth
Model 1 0.455 125.15 31
Model 2 0.245 120.39 30
Model 3 0.157 130.40 34
Model 4 0.289 128.92 34

the MSE on the test set are hundreds of times larger
than on the training set, which shows that these ran-
dom forest models have severe overfitting. Table 3
shows the depth of decision tree regressors are ap-
proximately six times larger than the number of fac-
tors. This result indicates some factors are split mul-
tiple times, which increases the complexity of the de-
cision tree, thereby yielding severe overfitting of the
random forest model.

The heart rate forecasting result of model 1 is cho-
sen and shown in Figure 2a. The predicted value fol-
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(a) Forecasting Result (b) Prediction Error
Figure 2: Heart Rate Forcasting of Random Forest Model 1

lows the trend of the heart rate and shows the model
learned some patterns in the heart rate sequence due
to the course. However, the predicted heart rate shows
a large error around time 8,900s. Moreover, the pre-
dicted heart rate remains stable for the time range
from 8,600s to 8,700s, whereas the real heart rate
shows a sharp decreasing trend. The error in percent-
age between predicted heart rate and real heart rate is
shown in Figure 2b, which shows a similar trend as
the forecasting result.

To investigate the structure of random forest
model, the Gini importance? of each factor is calcu-
lated. A factor with large Gini importance means that
more nodes are split by this feature in the decision tree
and therefore this feature is considered significant.

The average Gini importance of factors in each
model is listed in Table 4. This table shows that speed,

Table 4: Gini Importance of Random Forest Models

Gini Importance of Factors
RF Model (Time, Grade, Speed,
Cadence, Altitude)
Model 1 | 0.294, 0.0376, 0.531, 0.028, 0.108
Model 2 | 0.280, 0.0344, 0.536, 0.029, 0.120
Model 3 | 0.281, 0.0342, 0.540, 0.030, 0.113
Model 4 | 0.285, 0.0349, 0.536, 0.028, 0.115

time, and altitude are three major factors used to split
nodes in the first several layers of decision tree. Like-
wise, the table also shows the influence of cadence
and grade are less important in decision tree construc-
tion.

We hypothesize that the source of the error may
occur for the following reasons:

* The dataset only indirectly measures course fea-
tures via speed and position, so it does not ef-
fectively learn course-specific influences on heart
rate.

* There may be some internal rider conditions, such
as the mental activities of the cyclist over time.
For example, a cyclist may be anxious due to the

2The Gini importance is the average decrease of vari-

ance, which indicates the probability of whether there is a
split on this feature (Menze et al., 2009).



difficulty of the terrain, thereby increasing their
heart rate. All these features can influence heart
rate, though they are hard to measure and express
quantitatively.

* The random forest models may overfit on the
training set and provide erroneous predictions.

4.2 The FFNN Heart Rate Model

Due to the overfitting problems of the random forest
models, we built feed forward neural network (FFNN)
models with different hyper-parameters. The hyper
parameters of the FFNN models are listed in Table 5.

Table 5: Hyper-Parameters of FFNN Models

Model Number | #Layers in#EI::Illl f:;er
1 2 G5, 1)
2 2 (10, 1)
3 3 5,5, 1)
4 3 (10,5, 1)

An important phase of training a neural network
involves finding a proper learning rate. To search
the learning rate systematically, we employed Smith’s
method (Smith, 2017) and utilized learning rate finder
implemented by Pavel Surmenok et. al (Surmenok
and Mackenzie, 2017). By running at each learning
rate for 10 epochs, the loss vs learning rate curves
are plotted, as shown in Figure 3. According to the
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Figure 3: Learning Rate Search for FFNN Heart Rate Mod-
els

curves, the optimal start learning rate for these four
FFNN models are 3 x 1072,

Figure 4 shows the predicted heart rate and the real
heart rate of these four FFNN models applied to the
same sample as the random forest. The sample shows
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Figure 4: Heart Rate Forecasting of FFNN Models

that FFNN models can follow the trend of the cyclist’s
heart rate on the specific course. The error and error
percentage are plotted in Figure 5 and Figure 6, re-
spectively.
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Figure 5: Heart Rate Forecasting Error of FFNN Models

Models 3 and 4 show large errors from 8,500s to
9,000s. To investigate the error source, MSEs of the
training set and test set are calculated for these four
models, as shown in Table 6. Model 3 shows an obvi-

Table 6: MSE of FFNN models

MSE on MSE on

Model Number Training Set | Test Set
1 242.89 405.11

2 238.81 568.08

3 262.47 364.91

4 233.25 402.34

ous overfitting on the training set, while Models 1 and
2 show large bias on the training set. Among these
four models, Model 4 shows relatively low bias and
variance.
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Figure 6: Heart Rate Forecasting Error in Percent of FENN
Models

Compared with random forest models, the vari-
ances of FFNN models on the training set and test set
are much closer, indicating less overfitting severity.
We therefore expect the FFNN models to generalize
better than the random forest model because they do
not incur such severe overfitting.

4.3 The Simple RNN Model

Unlike FFNNs, recurrent neural networks (RNNs)
can utilize heart rate data in the past to forecast the
heart rate at the current moment. Figure 7 shows
the architecture of a simple RNN model for heart
rate forecasting. The number of simple RNN lay-

Figure 7: Structure of Simple RNN Heart Rate Forecasting
Model
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ers, m, and the number of fully connected layers (also
known as dense layers) n, are two important hyper-
parameters in a simple RNN heart rate forecasting
model. The heart rate sequence is divided by the max-
imum heart rate.

Simple RNN Models with different hyper param-
eters were built and their hyper-parameters are listed
in Table 7. The optimal start learning rates were iden-

Table 7: Hyper-parameters of Simple RNN models

Model #Simple
Number #Dense Layers RNN Lgyers
1 1 1
2 1 2
3 2 1
4 2 2

tified via Smith’s method and an exponential decay
learning rate function was utilized for learning rate
searching. The learning rate vs loss curves are plotted
in Figure 8. From the learning rate vs. loss curves

(a) Model 1
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(c) Model 3 (d) Model 4
Figure 8: Learning Rate Search for Simple RNN Models

shown in Figure 8, the optimal start learning rate was
selected as 2 x 1071,

Table 8 shows the MSEs of four simple RNN
models with different sets of hyper-parameters on the
training set and test set. For Model 3, the MSE on

Table 8: MSE of Simple RNN models

MSE on MSE on
Model Number Training Set | Test Set
1 275.11 248.83
2 628.48 237.68
3 210.31 655.18
4 1245.66 964.61

the test set is much larger than that on the training set,
which indicates overfitting.

The heart rate of the athlete is predicted in Fig-
ure 9 and the error and error in percentage are shown
in Figures 10 and 11. Compared with FFNN models,
simple RNN Models 1 and 3 exhibit fewer errors and
the forecasting results are closer to the real heart rate
sequence.
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Figure 9: Heart Rate Forecasting of Simple RNN Models
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Figure 10: Heart Rate Forecasting Error of Simple RNN
Models

4.4 The LSTM Model

Simple RNN models can suffer from vanishing gra-
dient problems, which limits their application when
the sequence of input data items is very long. To
address this issue, therefore, we also implemented
LSTM models. The hyper-parameters of these mod-
els are shown in Table 9. The error of the results for

Table 9: Hyper-parameters of LSTM models

Model Number | #Dense Layers | #LSTM Layers
1 1 1
2 1 2
3 2 1
4 2 2

two-layer LSTM models is large, which likely occurs
since models with two LSTM layers are so deep that
our current dataset is insufficient to train them.

The learning rate vs. loss function curves that uti-
lize the optimal learning rate finder are shown in Fig-
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Figure 11: Heart Rate Forecasting Error in Percent of Sim-
ple RNN Models

ure 12. The optimal start learning rate for models
with only one LSTM layer (i.e., Models 1 and 3) is
1 x 107! and the optimal start learning rate for mod-
els with two LSTM layers (Models 2 and 4) is 1 x 10"

The results for the four LSTM models with dif-
ferent hyper-parameters are shown in Figure 13. The
heart rate error and error in percentage are shown in
Figures 14 and 15, respectively.
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Figure 12: Learning Rate Search for LSTM Models

The MSE on the training set and test set is shown
in Table 10. As shown in this table, the models with

Table 10: MSE of LSTM models

MSE on MSE on
Model Number Training Set | Test Set
1 141.17 200.50
2 1240.60 1015.87
3 62.47 196.61
4 1480.36 1470.36

two LSTM layers exhibit large MSE over both the
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Figure 13: Heart Rate Forecasting of LSTM Models

Heart Rate Difference
Heart Rate Difference

30
8000 8250 €500 750 9000 9250 9500 9750 10000 8000 8250 8500 8750 9000 9250 9500 9750 10000
Time Time

(a) Model 1 (b) Model 2
(c) Model 3 (d) Model 4

Figure 14: Heart Rate Forecasting Error of LSTM Models

training set and test set. This larger error may occur
since our dataset is insufficient to train a neural net-
work with two LSTM layers. This result may also
indicate that the simple one-dimensional signals of
speed, position, and cadence are insufficient to learn
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Figure 15: Heart Rate Forecasting Error in Percent of
LSTM Models

course-specific heart rate variation.

4.5 Comparison with Other Heart Rate
Models

Based on the results presented above, it appears that
two LSTM models with only one LSTM layer per-
form better than the other three types of model. We
therefore also compared these LSTM models with
Luo’s LSTM model (Luo and Wu, 2020) and Ni’s
LSTM-based model (Ni et al., 2019), which are
course-independent and rely only on personalized
factors and contextual factors. The input features to
these latter two models were cadence, speed, altitude,
and time.

Since Luo’s and Ni’s models are not course-
specific, the grade of a biking course is excluded in
the input factors. In particular, only the structure of
their models are utilized and some layers (such as
the encoding layers in Ni’s model) are removed since
heart rate forecasting is the main focus. The structure
of these models are shown in Table 11.

Table 11: Structure of Heart Rate Forecasting Models

Models Layer Structure of Models
Ni’s model LSTM + Dense + Dropout
, LSTM + Dropout +
Luo’s model LSTM + Dropout
LSTM model 1 LSTM + Dense
LSTM model 3 | LSTM + Dense + Dense

These two models were first trained on the same
training set as our heart rate forecasting models with
course-specific factors excluded. They were then
tested on the same test set. The MSE of all four of
these models is shown in Table 12.

Table 12: MSE of LSTM models

Models MSE on MSE on
Training Set | Test Set
Ni’s model 1822.23 407
Luo’s model 239.89 157.40
LSTM model 1 141.17 200.50
LSTM model 3 62.47 196.61

The forecasted heart rate is shown in Figure 16.
While Ni et al.’s model showed less error on both the
training set and test set, the heart rate it forecasted is
close to constant, except for several drop outs. Luo
et al.’s model captures the heart rate pattern at around
170 beats per minute, but cannot follow the heart rate
pattern overall.
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S SUMMARY OF OUR
EXPERIMENT RESULTS

This section summarizes the results from our experi-
ments described in Section 4.

5.1 Summary of Random Forest Model
Results

The random forest models presented in Section 4.1
exhibit severe overfitting, likely because these models
are based on decisions from an ensemble of tree re-
gressors, which are data sensitive. In particular, tiny
fluctuations in the input sequence can result in dra-
matically different outputs. Data fluctuation is com-
mon and unavoidable in real-world heart rate forecast-
ing for cycling due to the mechanical vibration and
the cyclist’s movement. The Gini importance anal-
ysis shows that random forest models value speed,
time, and altitude above grade and cadence, which is
responsible for most of the errors. Due to severe over-
fitting, therefore, random forest models are poorly
suited for personalized and course-specific heart rate
forecasting in our dataset.

5.2 Summary of FFNN Model Results

Compared with the random forest models described
above, feed forward neural networks (FFNNs) did
not incur overfitting issues. Their major error source
stems from the time dependency of heart rate, i.e., the
heart rate at 7-th second depends on what happened
in the past (e.g., the cyclist rode up a steep hill). Er-
rors also relate to the heart rate and other factors at
0,1,....,t — 1 seconds. Due to the nature of FFNNs,
however, these models cannot deal with time depen-
dencies efficiently.

5.3 Summary of the RNN Model Results

We tested two types of RNN models: a simple RNN
model and an LSTM model. Our results showed that
the simple RNN model captured the main trends of
the heart rate sequence. The error source in the RNN
models stemmed from either gradient vanishing or a
gradient explosion, as described below:

e Gradient vanishing occurs in a long sequence,
when the output value is large. In this case, the
gradient of the RNN’s sigmoid activation function
is close to zero, leading to slow or no update to
the weight matrices and bias vectors (Hochreiter,
1998).

 Gradient explosion occurs when an RNN is learn-
ing a long sequence and the gradient rises sharply,
resulting in an unstable neural network.

These two problems may be the error source for sim-
ple RNN models, depending on sequence size.

In all four types of models, LSTM models show
decent performance without severe overfitting. The
LSTM has three gates that reduce the likelihood of
vanishing or exploding gradients. For both simple
RNN and LSTM models, however, models with two
RNN/LSTM layers perform poorly since these two
layer models are too deep to train efficiently with our
dataset.

5.4 Mapping Our Results Onto
Research Questions 1, 2, and 3

For research question 1 in Section 3.1 both course-
independent models do not capture the heart rate trend
of the cyclist well from 8,000s to 10,000s, as dis-
cussed in Section 4.5. In particular, the LSTM model
proposed by Ni et al. (Ni et al., 2019) mainly outputs
a rectangular heart rate sequence due to the lack of
course-specific factors, such as grade. Ni et al. (Ni
et al., 2019) state that their model focuses primar-
ily on short-term predictions (typically in a window
of 10 seconds), so a 2,000-second sequence may be
too long for their model. Luo’s model forecasted a
somewhat continuous heart rate around 170 beats per
minute with small dips around 9000s and 9250s. In
general, our results show that these two models are
not as accurate as our LSTM models since they do
not consider course-specific factors.

For research question 2 in Section 3.1, random
forest models exhibit lower MSE on the dataset.
However, their substantial difference in MSE on the
training set and test set indicates that they all incur
severe overfitting. The maximum depth of each de-
cision tree regressor in random forest models are all



over six times the number of factors, which means
that the random forest models split some factors over
six times, which dramatically increases the complex-
ity of the forecasting models and can result in severe
overfitting.

Moreover, as the data size grows larger, the depth
of the decision tree regressors also grows because the
output decision tree regressor will cover all the heart
rate cases, including any erroneous data in the dataset
(e.g., due to sensor noise during collection). As the
data set grows larger, the number of erroneous read-
ings will unavoidably increase, thereby increasing the
probability of erroneous prediction due to the accu-
mulated influence of error. As a result, conventional
machine learning models have difficulty on course-
specific heart rate forecasting.

For research question 3 in Section 3.1 speed has
the highest Gini importance, which aligns with prior
work on heart rates for cyclists (Le et al., 2009) and is
utilized as the splitting factor for the first layer. The
three major factors are speed, time, and altitude. In
contrast, the influence of cadence and grade are con-
sidered less important in decision tree construction.

In summary, our LSTM models 1 and 3 do not
suffer from overfitting and offer reasonable heart
rate forecasting. Compared with course-independent
models, the forecasted heart rate of our course-
specific models are closer to the real-world heart rate
sequence.

6 CONCLUDING REMARKS

This paper presents an empirical analysis of personal-
ized and course-specific models to forecast heart rates
for cyclists. In particular, we explored the perfor-
mance and feasibility of learning a cyclist’s course-
specific heart rate model from a single ride on a
given course. We implemented models using long
short term memory (LSTM), recursive neural network
(RNN), random forest, and previously published ar-
chitectures and compared their performance learning
a cyclist. We also compared our model with Ni et al’s
(Ni et al., 2019) and Luo et al.’s (Luo and Wu, 2020)
models.

The following are key lessons learned from our re-
search on single-ride personalized and course-specific
heart rate forecasting in cycling:

* Overfitting is a challenge for traditional ma-
chine learning models. Our MSE analysis in
Section 4.1 showed the random forest models had
severe overfitting, due to the effect of erroneous
data (e.g., noise in commodity sensors) in the
training set. Likewise, as the data set grew, er-

roneous readings introduced poor performance in
the random forest forecasting models.

* Course-specific factors are crucial in heart rate
forecasting. In Section 3.4, the Spearman’s cor-
relation coefficient showed that the grade of the
course (which is a course-specific factor) was
highly correlated with heart rate. ~Moreover,
Section 4.5 showed that two course-independent
models captured heart rate patterns poorly com-
pared with our course-specific LSTM models.

¢ Course-specific models offer accurate heart
rate forecasting. The results from our compar-
isons indicated that our LSTM-based models ex-
hibit slightly lower mean square error (MSE) and
mean absolute percentage error (MAPE) com-
pared with Luo et al.’s model. Likewise, Jianmu
Ni et al’s model does not offer reasonable heart
rate forecasting on the given dataset compared
with our LSTM-based models.

¢ Personalized and course-specific LSTM mod-
els can be learned for a cyclist to forecast heart
rate from a single ride of a course. More work
is needed to validate this observation, but our ini-
tial results are promising. The heart rate fore-
casting results in Section 4 showed that the accu-
racy of the LSTM models outperformed the other
two neural network models and did not have as
severe overfitting as the random forest models.
In Section 4.5, the LSTM course-specific models
also performed better than the two LSTM-based
course-independent models.

Our future work focuses on scaling up our valida-
tion on a larger body of cyclists to determine whether
these results hold true across a range of riders. We
are also exploring how imagery of the course can aid
in understanding complicated course features, such as
terrain roughness. For personalized factors, we are
evaluating the extent to which learned course-specific
models transfer to other riders of the same gender and
age, as well as bike types. We are also considering
dynamic personalized factors, such as breathing rate.

For course-specific factors, image data and videos
are being collected and analyzed via neural networks.
We are analyzing roughness and course conditions at
different parts of the course from these images and
applying them in our heart rate forecasting model.
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