
30.11.1999 ScopedLocking.doc

Scoped Locking 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Scoped Locking

The Scoped Locking C++ idiom ensures that a lock is acquired when
control enters a scope and the lock is released automatically when
control leaves the scope.

Also Known As Synchronized Block, Object-Construction-is-Resource-Acquisition
[Str98]1, Guard

Example Commercial Web servers typically maintain a ‘hit count’ component
that records how many times each URL is accessed by clients over a
period of time. To reduce latency, a Web server process does not
maintain the hit counts in a file on disk but rather in a memory-
resident table. Moreover, to increase throughput, Web server
processes are often multi-threaded [HS98]. Therefore, public
methods in the hit count component must be serialized to prevent
threads from corrupting the state of its internal table as hit counts
are updated concurrently.

One way to serialize access to a hit count component is to acquire and
release a lock in each public method explicitly. For instance, the
following example uses the Thread_Mutex defined in the Wrapper
Facade pattern (25) to serialize access to critical sections in the
methods of a C++ Hit_Counter class that implements a Web server’s
hit count component.

class Hit_Counter {
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname) {

// Acquire lock to enter critical section.
lock_.acquire ();
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0) {

// Something’s gone wrong, so bail out.
lock_.release ();

1. The Scoped Locking idiom is a specialization of Stroustrup’s ‘Object-
Construction-is-Resource-Acquisition’ idiom [Str98] that is applied to locking. We
include this idiom here to keep the book self-contained and to illustrate how
Stroustrup’s idiom can be applied to concurrent programs.

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

30.11.1999 ScopedLocking.doc

// Return a ‘failure’ value.
return -1;

}
else

// Increment the hit count for this pathname.
entry->increment_hit_count ();

// Release lock to leave critical section.
lock_.release ();
// ...

}
// Other public methods omitted.

private:
// Lookup the table entry that maintains the hit count
// associated with <pathname>, creating the entry if
// it doesn’t exist.
Table_Entry * lookup_or_create (const char *pathname);

// Serialize access to the critical section.
Thread_Mutex lock_;

};

Although the C++ code example shown above works, the Hit_Count
implementation is unnecessarily hard to develop and maintain. For
instance, maintenance programmers may forget to release the lock_
on all return paths out of the increment() method. Moreover,
because the implementation is not exception-safe, lock_ will not be
released if a later version throws an exception or calls a helper
method that throws an exception [Mue96]. The first source of errors
could occur if a maintenance programmer revises the else branch of
the increment() method to check for a new failure condition, as
follows:

else if (entry->increment_hit_count () == -1)
return -1; // Return a ‘failure’ value.

Likewise, the lookup_or_create() method also might be changed to
throw an exception if an error occurs. Unfortunately, both of these
modifications will cause the increment() method to return to its
caller without releasing the lock_ . If the lock_ is not released,
however, the Web server process will hang when other threads block
indefinitely trying to acquire the lock_ . Moreover, if these error cases
occur infrequently, the problems with this code may not show up
during system testing.

Context A concurrent application containing shared resources that are
manipulated concurrently by multiple threads.

30.11.1999 ScopedLocking.doc

Scoped Locking 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Problem Locks should always be acquired and released properly when control
enters and leaves critical sections, respectively. If programmers must
acquire and release locks explicitly, however, it is hard to ensure the
locks are released in all paths through the code. For instance, in C++
control can leave a scope due to return, break, continue, or goto
statements, as well as from an unhandled exception being propagated
out of the scope.

Solution Define a guard class whose constructor automatically acquires a lock
when control enters a scope and whose destructor automatically
releases the lock when control leaves the scope. Instantiate instances
of the guard class to acquire/release locks in method or block scopes
that define critical sections.

Implementation The implementation of the Scoped Locking idiom is straightforward.

Define a guard class that acquires and releases a particular type of
lock automatically within a method or block scope. The constructor of
the guard class stores a pointer or reference to the lock and then
acquires the lock before the critical section is entered. The destructor
of this class uses the pointer or reference stored by the constructor to
release the lock automatically when leaving the scope of the critical
section. Due to the semantics of C++ destructors, guarded locks will
be released even if C++ exceptions are thrown from within the critical
section.

➥ The following class illustrates a guard designed for the
Thread_Mutex developed in the implementation section of the
Wrapper Facade pattern (25):

class Thread_Mutex_Guard {
public:

// Store a pointer to the lock and acquire the lock.
Thread_Mutex_Guard (Thread_Mutex &lock)

: lock_ (&lock) { owner_= lock_->acquire (); }

// Release the lock when the guard goes out of scope.
~Thread_Mutex_Guard (void) {

// Only release the lock if it was acquired
// successfully, i.e., -1 indicates that
// <acquire> failed..
if (owner_ != -1)

lock_->release ();
}

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

30.11.1999 ScopedLocking.doc

private:
// Pointer to the lock we’re managing.
Thread_Mutex *lock_;

// Records if lock_ is currently held by this object.
int owner_;

}; ❏

A pointer or reference to a lock, rather than a lock object, should be
used in a guard class implementation. This design prevents copying
or assigning a lock, which is erroneous as discussed in the Wrapper
Facade pattern (25).

In addition, it is useful to add a flag, such as the owner_ flag in the
Thread_Mutex_Guard example above, that indicates whether or not
a guard acquired the lock successfully. The flag can also indicate
failures that arise from 'order of initialization bugs' if static/global
locks are used erroneously [LGS99]. By checking this flag in the
guard's destructor, a subtle run-time error can be avoid that would
otherwise occur if the lock was released even although it was not held
by the guard.

Example
Resolved

The following C++ code illustrates how to apply the Scoped Locking
idiom to resolve the original problems with the Hit_Counter class in
our multi-threaded Web server.

class Hit_Counter {
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Thread_Mutex_Guard guard (lock_);
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so bail out.
return -1;
// Destructor releases <lock_>.

else
// Increment the hit count for this pathname.
entry->increment_hit_count ();

// Destructor for guard releases <lock_>.
}
// Other public methods omitted.

30.11.1999 ScopedLocking.doc

Scoped Locking 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

private:
// Serialize access to the critical section.
Thread_Mutex lock_;
// ...

};

In this solution the guard ensures that the lock_ is acquired and
released automatically as control enters and leaves the increment()
method, respectively.

Variants Explicit accessors. One drawback with the Thread_Mutex_Guard
interface described in the Implementation section is that it is not
possible to release the lock explicitly without leaving the method or
block scope. To handle these use cases, a variant of the Scoped
Locking idiom can be defined to provide explicit accessors to the
underlying lock.

➥ For instance, the following code fragment illustrates a use case
where the lock could be released twice, depending on whether the
condition in the if statement evaluates to true:

{
Thread_Mutex_Guard guard (&lock);
// Do some work ...
if (/* a certain condition holds */)

lock->release ()
// Do some more work ...
// Leave the scope.

}

To prevent this erroneous use case, we do not operate on the lock
directly. Instead, a pair of explicit accessor methods are defined in the
Thread_Mutex_Guard class, as follows:

class Thread_Mutex_Guard {
public:

// Store a pointer to the lock and acquire the lock.
Thread_Mutex_Guard (Thread_Mutex &lock)

: lock_ (&lock) {
acquire ();

}

int acquire (void) {
// If <acquire> fails <owner_> will equal -1;
owner_ = lock_->acquire ();

}

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

30.11.1999 ScopedLocking.doc

int release (void) {
// Only release the lock if it was acquired
// successfully and we haven’t released it
// already!
if (owner_ != -1) {

owner_ = -1;
return lock_->release ();

}
else

return 0;
}

// Release the lock when the guard goes out of scope.
~Thread_Mutex_Guard (void) {

release ();
}

private:
// Pointer to the lock we’re managing.
Thread_Mutex *lock_;

// Records if the lock is held by this object.
int owner_;

};

This variant exposes acquire() and release() methods that
keep track of whether the lock has been released already, and if so,
it does not release the lock in guard ’s destructor. Therefore, the
following code will work correctly:

{
Thread_Mutex_Guard guard (&lock);
// Do some work ...
if (/* a certain condition holds */)

guard.release ();
// Do some more work ...
// Leave the scope.

} ❏

Strategized Scoped Locking. Defining a different guard for each type
of lock is tedious, error-prone, and excessive, because it may increase
the memory footprint of applications or components. Therefore, a
common variant of the Scoped Locking idiom is to apply either the pa-
rameterized type or polymorphic version of the Strategized Locking
pattern (237).

Known Uses Booch Components. The Booch Components [BV93] were one of the
first C++ class libraries to use the Scoped Locking idiom for multi-
threaded C++ programs.

30.11.1999 ScopedLocking.doc

Scoped Locking 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Adaptive Communication Environment (ACE) [Sch97]. The Scoped
Locking idiom is used extensively throughout the ACE object-oriented
network programming toolkit.

Threads.h++. The Rogue Wave Threads.h++ library defines a set of
guard classes that are modeled after the ACE Scoped Locking
designs.

Java defines a programming feature called a synchronized block that
implements the Scoped Locking idiom in the language.

Consequences There are two benefits of using the Scoped Locking idiom:

Increased robustness. By applying this idiom, locks will be acquired/
released automatically when control enters/leaves critical sections
defined by C++ method and block scopes. This idiom increases the ro-
bustness of concurrent applications by eliminating common pro-
gramming errors related to synchronization and multi-threading.

Decreased maintenance effort. If parameterized types or polymor-
phism is used to implement the guard or lock classes, it is straight-
forward to add enhancements and bug fixes. In such cases, there is
only one implementation, rather than a separate implementation for
each type of guard, which eliminates version-skew.

There are two liabilities of applying the Scoped Locking idiom to
concurrent applications and components:

Potential for deadlock when used recursively. If a method that uses
the Scoped Locking idiom calls itself recursively ‘self-deadlock’ will
occur if the lock is not a ‘recursive’ mutex. The Thread-Safe Interface
pattern (249) describes a technique that avoids this problem. This
pattern ensures that only interface methods apply the Scoped
Locking idiom, whereas implementation methods do not apply this
idiom.

Limitations with language-specific semantics. Because the Scoped
Locking idiom is based on a C++ language feature, it may not be
integrated with operating system-specific system calls. Therefore,
locks may not be released automatically when threads or processes
abort or exit inside of a guarded critical section.

➥ For instance, the following modification to increment() will
prevent the Scoped Locking idiom from working:

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

30.11.1999 ScopedLocking.doc

Thread_Mutex_Guard guard (&lock_);
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so exit the thread.
thread_exit ();
// Destructor will not be called so the
// <lock_> will not be released! ❏

As a general rule, therefore, it is inappropriate to abort or exit a
thread or process within a component. Instead, some type of
exception handling mechanism or error-propagation patterns should
be used [Mue96].

Excessive compiler warnings. The common use case of the Scoped
Locking idiom defines a guard object that is not used explicitly within
the scope because its destructor releases the lock implicitly.
Unfortunately, some C++ compilers print “statement has no effect”
warnings when guards are defined but not used explicitly within a
scope. At best, these warnings are distracting. At worst, they
encourage developers to disable certain compiler warnings, which
may mask other warnings that indicate actual problems with the
code. An effective way to handle this problem is to define a macro that
can eliminate the warnings without generating additional code.

➥ For instance, the following macro is defined in ACE [Sch97]:

#define UNUSED_ARG(arg) { if (&arg) /* null */; }

This macro can be placed after a guard to keep C++ compilers from
generating spurious warnings, as follows:

{ // New scope.
Thread_Mutex_Guard guard (lock_);
UNUSED_ARG (guard);
// ... ❏

See Also The Scoped Locking idiom is a special-case of a more general C++
idiom [Str98] where a constructor acquires a resource and a
destructor releases the resource when a scope is entered and exited,
respectively. When this idiom is applied to concurrent applications,
the resource that is acquired and released is some type of lock.

Credits Thanks to Brad Appleton for comments on the Scoped Locking idiom.

