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Abstract

Context: A key challenge of using a software product-lifelL(So reuse software over long periods
of time is reasoning about configuration changes over meltgteps. For example, an SPL for an
automobile may have discrete model years that are releasqdestially over a series of years and
build on one another’s features.

Objective: This paper describes and evaluates a method @aleting the configuration of an SPL
over multiple steps, where each step yields a complete alidl a@nfiguration, as a constraint satis-
faction problem (CSP). The goal of modeling multi-step gumétion problem as a CSP is to automate
reasoning about configuration properties using a constraoiver.

Method: Formal modeling was used to map multi-step configmmao a CSP and empirical analyses
were conducted to measure the scalability.

Results: The results show that CSP-based multi-step coafign models can be used to reason about
changes spanning multiple steps and that the reasoningisitnactable for standard CSP solvers.

Conclusion: CSP-based multi-step configuration reasongpgesents a viable approach to deriving
solutions to multi-step configuration problems that spatiitiple product releases over a periods of time.

1. Introduction

The development and sustainment of software constitutagia+-and growing—expense in modern
information and embedded systems, such as avionics, midiiees, cloud computing environments,
and medical equipment [1]. The ability to reuse softwar@semultiple development projects is one
means to amortize the cost of software development andsostat. Reusable software artifacts include
design models, source code, test plans, and componenteatcines.

To reuse software, documentation, artifacts, and oth&tasystematically, organizations must em-
ploy techniques that facilitate not only the reuse of orgjgsoftware artifacts but also mass customiza-
tion [2], which involves customization of software on a ksgcale to handle a wide range of disparate
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tasks. Capturing customization opportunities, knowmpaists of variability is an important activity
that enables developers to catalog the valid ways in whittivace artifacts can be reused. In addition
to describing how software artifacts can be reused, it isrésd to document the assumptions an artifact
makes about its environment, as well as any constraintptkatude its reuse.

Software product-lines [3] (SPLs) are a paradigm for mamgginie complexity of tracking and cre-
ating reusable software artifacts, as well as describieg thoints of variability, and ensuring they are
reused appropriately. A key part of an SPL is scope, comntgnahd variability (SCV) analysis. The
scopedefines the collection of software artifacts that conitie SPL. Theommonalitydefines the
attributes that are common across different sets of arsifathevariability describes the differences
that exist across the artifacts, such as various implertienssand algorithms for different environments
and/or requirements.

SPL’s use models to codify the results of SCV analysis [4fedture mode]5] is a common type of
models used to capture commonality and variability infarorain an SPL. A feature model describe
points of commonality and variability in terms tdatures Each feature represents a unit or increment
in SPL functionality, ranging from high-level end-user abjities (such as the presence of an anti-lock
braking system in a car) to implementation details [6] (saslthe usage of a specific software library).

A common format for a feature model is a tree that describesessive refinements of the variability
in a product-line. For example, Figure 1 depicts the featnoglel of a flight avionics system that
contains configuration options for its sensors and flighbigis navigation capabilities. The plane can
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Figure 1: A Configuration Problem Requiring Multiple Steps

contain different types of advanced navigation systent) agl nerti al Navi gati on or GPS.

Each individual advanced navigation avionics system ti@atrcraft can be customized with requires
a different set of sensors and softwaeeg, the Laser Gyr 0 software requiresaser Gyr oHar dwar e.
These types of configuration rules are encoded into thercldal relationships in the tree. For ex-
ample, the filled circle aboviener ti al Nav. denotes that it is a required child feature of fue. Nav.
Avi oni cs feature.

To reuse software in a new context, developers use the éatodel to determine how the SPL can be
customized into a newonfiguration A configuration is a complete and unique set of the SPL's\sof



artifacts. In a feature model, a configuration is manifested selection of features that adheres to the
configuration constraints captured in the feature relatiqs.

A core aspect of reusing software artifacts from an SPL isrd@hing a complete and correct config-
uration of the SPL that satisfies the target requirementFatsimple feature models, such as the one
shown in Figure 1, developers can manually derive a seledfifeatures for a configuration. For more
complex feature models—or in situations where cost opation or resource constraints are involved—
automated mechanisms are needed.

Prior research has developed a variety of automated tesbsigr deriving SPL configurations to fit
a requirement set. For example, some techniques the maatatdeselection problem ascanstraint
satisfaction problenfwhich is a set of variables and a set of constraints over #n@abies) and use a
general-purpose constraint solver (which is an automatadar finding solutions to these problems) to
derive a suitable configuration [7, 8]. Other research hagateadl feature selection problems as boolean
satisfiability (SAT) problems or grammars and used SAT gslve derive configurations [9, 10, 11,
12] or Binary Decision Diagrams (BDDs) [13]. The common adp this prior research is that one
configuration is derived that satisfies a set of requiremierdssingle step.

Open problems.Not all software reuse scenarios are well-suited to a sistdp approach for choos-
ing an SPL configuration. In some cases, product features Ieusitroduced gradually over a series
of steps. For example, the Boeing 737 aircraft, introducetii66, has been continually upgraded and
adapted over time and is still currently in service. Eactcessive configuration of the 737, which is
called avarianthas been developed over multiple years and incorporatede@sures into the base air-
craft configuration [14]. For example, development of th&-3B0 configuration of the aircraft started
in 1979 and first flew in 1984. The configuration added a vanéfgatures, such as an Electronic Flight
Instrumentation System system. The 737 has been developathierous successive configurations,
such as the 737-400, 737-500, 737-600, 737-700, 737-8d, 21900, all planned and developed over
significant spans of time.

In many domains, such as aircraft, nuclear power plants, @afigurations and upgrades to those
configurations are planned years in advareg.the configurations of the 737 have spanned 46 years)
and must be reasoned about years in advance of their actuhigiron. Ideally, an aircraft manufacturer
would like to derive a sequence of successive configuratioatsbuild upon one another, as the 737
variants do, so that more advanced features are includédyese. A manufacturer, however, cannot
arbitrarily choose features to add in a given year. Insteach set of features for a year must constitute a
complete and correct configuration of the SPL to avoid sghinlefective and non-viable configuration.

Further complicating this scenario is that a manufactwennstrained in its introduction of features.
For example, a manufacturer must introduce features in anerahat ensures no two successive con-
figurations differ by more than the price increase a custaseilling to pay from one year to the next
(e.g, airline development or acquisition budget). Not only nthstindividual successive configurations
be correct, but the delta between any two successive coafigns must be valid.

Finally, when the product life spans years, such as the ca#deeal6 year history of the 737, the
availability and capabilities of the processors, softwaemsors, and other constituent components of the
product inevitably change. Not only must manufacturershide & plan and reason about configuration
over multiple steps but have plans that account for the édifieoof components and the significant
increases in capabilities of newer components, which pred¢hanges in the underlying feature model.
For example, the processing power and availability of thec@ssors used in the 737 have changed
dramatically from 1966 to 2012. In some cases, the featurdelmmay be specialized (g, adapted



so that its valid configurations at later steps are subsetiseo$tarting set of valid configurations). In
other cases, new features may be added to the feature mathelt $iois evolved to allow configurations
that were not initially possible or valid. Thus, when confafion is reasoned about over multiple steps
spanning years, manufacturers must deal with two distorat$ of change: 1) changes to configuration
and 2) changes to the underlying feature model, which distahat configurations are valid.

This process of producing a series of intermediate configurs between a starting configuration
and a desired ending configuratiome; a configuration path—is shown in Figure 2. This sequence of
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Figure 2: Potential Configuration Paths

activities is called anulti-step configuration problentrior work on automated configuration [9, 10, 11,
12] focuses on selecting a single configuration in a singp ahd not determining a configuration path.
As a result, developers must manually derive a configurgiadh through feature models with hundreds
or thousands of features and complex constraints on hovessise configurations can differ.

Manually deriving configuration paths for a product-lineherd because developers must analyze a
myriad of tradeoffs related to the order that the featuressatected. For example, developers may
temporarily add a feature that is not in the desired endingigoration to yield a valid variant at a
particular step. Moreover, the costs of introducing feadunay vary over the steps.{, as suppliers
lower costs from one year to the next), making it hard to idemixactly the right step to introduce a
feature.

Solution overview and contributions. We have developed an automated method for deriving a set
of configurations that meet a series of requirements overaa sp configuration steps. We call our
technique théMUIti-step Software Configuration probLEm Sol{®tUSCLES). MUSCLES transforms
multi-step feature configuration problems ir@onstraint Satisfaction Problem{€SPs) [15]. Once a
CSP has been produced for the problem, MUSCLES uses a dohsodver to generate a series of
configurations that meet the multi-step constraints.

This paper extends our prior work on automated multi-steigaration of software product-lines [16].
The paper presents a new approach for handéagure model driftwhich is one or more changes in a
feature model’s constraints that occur over time. As paoimgt earlier, when configuration is reasoned
about over multiple steps spanning years, there are twe tyjpghanges that must be considered: 1) con-
figuration changes and 2) feature model changes, which wefeature model drift. This paper adds
new techniques for handling the second form of change, featadel drift, which was not addressed in



our prior work. We present a formal mapping of feature modi#l th a CSP and so that multi-step con-
figuration problems involving non-constant product-licaa be automated. We also show how ordering
and branching constraints can be applied to models of featadel drift.

The paper provides the following contributions to the statiigature model configuration over a span
of multiple steps:

1. We provide a formal model of multi-step configuration.

2. We show how the formal model of multi-step configuration ba mapped to a CSP.

3. We show how multi-step requirements, such as limits orctise of feature changes between two
successive configurations, can be specified using our C&Rufation of multi-step configuration.

. We present methods for modeling feature model drift asitufe model changes over time.

We describe mechanisms for optimally deriving a set ofigomations that meet the requirements

and minimize or maximize a property (such as total configomatost) of the configurations or

configuration process.

6. We show how multi-step optimizations can be performedhss deriving the series of configu-

rations that meet a set of end-goals in the fewest time steps.

[

Paper organization. The remainder of the paper is organized as follows: Sectisar@marizes
the challenges of performing automated configuration mr@agoover a sequence of steps; Section 3
describes a formal model of multi-step configuration; Sec#t explains MUSCLES’s CSP-based auto-
mated multi-step configuration reasoning approach; Seétidescribes how feature model drift can be
modeled as a CSP; Section 6 analyzes empirical results fkperienents that evaluate the scalability
of MUSCLES; Section 7 compares MUSCLES with related work] &ection 8 presents concluding
remarks.

2. Multi-step SPL Configuration Challenges

A multi-step configuration problem for an SPL involves ti#éioging from a starting configuration
through a series of intermediate configurations to a cordigum that meets a desired set of end state
requirements. The solution space for producing a seriesi@fessive intermediate configurations to
reach the desired end state can be represented as a direagpedas shown in Figure 3(a).
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Figure 3: Multi-step Configuration Graphs
Each successive series of points represents potentiafjcoations of the feature model at a given step.
For example, the configuratiomBy. .. B; represent the intermediate configurations that can be eeach
in one step from the starting configuration. This sectiorsube graph formulation of the problem’s
solution space to showcase the challenges of finding validisos.



2.1. Challenge 1: Graph Complexity

Developers attempting to derive solutions to multi-stepfiguration problems manually or via a
graph algorithm face an exponential number of potentiarmediate configurations and paths that could
be used to reach the desired end state. In the worst casey given intermediate step, there can be
O(2") points (wheren is the number of features in the feature model) and tRymential subsets of the
features in the feature model that could form a configuratMoreover, for a multi-step configuration
problem oveK time steps, there a®(K2") possible intermediate points.

Further compounding this problem is that for any intermedi@nfiguration at step, there are 2— 1
points at ste@ + 1 in the worst case that could be reached from it by addingrooweng features to its
feature selection. The intermediate configurations thatatgrecede the end point will therefore have
2" — 1 outgoing edges. Section 4 discusses how MUSCLES uses @&fe-lautomation to eliminate
the need for developers to find solutions to these multi-stegiguration problems manually, thereby
minimizing configuration time and effort.

2.2. Challenge 2: Point Configuration Constraints

To reason about configuration over multiple steps, devetopeist ensure that at each step the con-
figuration is in a valid statg,e., the feature selection of the configuration should not veotae rules
in the feature model. To plan the long-term configuratioateyyy, therefore, developers must devise a
series of valid configurations that incrementally build njpme another while moving towards a desired
end goal.

Figure 1 shows an example configuration problem with timeafoaircraft with no advanced naviga-
tion capabilities. In three years, the manufacturer woililelio add the advanced navigation capabilities
to the standard aircraft. The manufacturer’s cost (in onki) to add each feature to the aircraft config-
uration is shown in th€ost to Add Featuretable in Figure 1. The manufacturer has budgeted at most
35 million dollars per year to add features to the aircrafhe Thanufacturer would like to know what
features to add each year to reach the three year goal witkoeeding the budget or creating an invalid
configuration in any yeatr.

Although there are many potential intermediate configaretithat could be used to reach the desired
aircraft configuration, most configurations will not meeteleper requirements. For example, many of
the K2" arbitrary subsets of feature selections represent coafigms that do not adhere to the feature
model constraints. Moreover, other external constrasusl{ as safety constraints requiring a specific
feature to be selected at all times) may not be met. Tipesa configuration constraint8mit the
allowed configurations at a given step. The example in Figunas multiple configuration paths that
could be used to reach the end goal, although few of them areato

Point configuration constraints eliminate many potentiadfiguration paths. These constraints may
create small additional restrictions, such as that a pdatideature must always be selected. Complex
step-based constraints may also be present, such as aillgaréiccraft feature must be selected by a
specific step so that manufacturer wil be the first to markét thiat capability.

In addition, a multi-step configuration problem should nictate an exact starting and ending config-
uration, but merely a series of point configuration constsaihat must hold for the start and end points
of the configuration path. The myriad of possible point camfigion constraints significantly increases
the challenge of finding a valid configuration path for a mstép configuration problem. Section 4.3
describes how MUSCLES models these constraints using awd®¢h enables a CSP solver to derive



solutions automatically that adhere to these constrahmseby avoiding tedious and error-prone manual
configuration.

2.3. Challenge 3: Configuration Change/Edge Constraints

The aircraft example in Figure 1 requires that developedsrgdnew features spend no more than
35 million dollars in one year. The cost of selecting/desthg features can be captured as the length
or weight of the edges connecting two transitions. For exanp transition directly from the starting
configuration to the desired end configuration requires 88amidollars and has an edge weight of
88. We term these constraints on the selection/deseleatiteatures from one step to the negtige
constraints

Developers must not only find a path that reaches the desnmgdtate without violating the point
configuration constraints in Section 2.2, but also ensusé ahy constraints on the edges connecting
successive configurations are met. Transitioning direfctyn the start configuration to end config-
uration would violate the edge constraint of the 35 millicollar yearly development budget. Edge
constraints further reduce the number of valid paths andcaduplexity to the problem. Section 4.4
shows how these edge restrictions can be encoded as cotst@iMUSCLES’s CSP variables to plan
configuration paths that adhere to development budgetshvdhard to determine manually.

2.4. Challenge 4: Configuration Path Optimization

There may often be multiple correct configuration paths thath the desired end point. In these
cases, developers would like to optimize the path chosy,to minimize total cost (the sum of the
edge weights). In other cases, it may be more imperative tt the desired end point constraints in
as few time steps as possibéeg, in Figure 3(b) developers have an initial development letidd 35
million dollars and then a subsequent yearly budget of 50anibollars.

Although the cost of the path through intermediate configoma B; andC; is cheaper (70 million),
developers may prefer to pass throlggandCy since they will already have a configuration that meets
the end goals &p. Developers must therefore not only contend with numeroul$i+step constraints,
but must also perform complex optimizations on the propsrtif the configuration path. Section 4.5
shows how optimization can be performed on MUSCLES’s CSRfitaition of multi-step configuration
so developers can find the fastest and most cost-effectiaased achieving a configuration goal.

2.5. Challenge 5: Feature Model Drift

Over time, a feature model will invariably need readjustimgccount for changing external conditions
(such as the newly released software features from vendigpsecated APIs, or newly discovered bugs),
which we callfeature model driftIn the simplest case, new features are added to the featudtelmin
more challenging scenarios, it may be necessary to rematuerés from the feature model or add new
constraints between features to the model.

For example, the vendor that provides the software folLtser Gyr o feature, shown in Figure 1,
may be bought by a competitor that intends to discontinuengethe existing software component in
two years. In place of the existing component, a newer comrapowill be offered that is much more
expensive and uses a different and more precise algoritntwd years when the existing software con-
troller is discontinued, developers must update the feanwdel to include the new laser gyro type and
add a requires constraint from the new laser gyro to the gerhardware. As shown in this example,



feature model drift substantially complicates the procé$mding a sequence of configurations that will

both meet the requirements of each configuration checkpaohthe end configuration goal. Section 5.1
shows how MUSCLES’s CSP representation of multi-step candigon can be modified to account for

feature model drift .

3. A Formal Definition of Multi-step Configuration

This section presents a formal model of multi-step configomaused by MUSCLES to derive valid
configuration paths of SPLs. This paper presents the tegbsifipr modeling multi-step configuration
problems as CSPs. These techniques give modeling toolajesl the theoretical underpinnings to
develop tools that can reason about configuration over pielsteps. We have developed domain-
specific graphical modeling tools for our industry partnessng the Generic Eclipse Modeling System
(http://eclipse.org/ gnt/gens), for describing these problems and each of the varioustins
types outlined in this paper and automating the transfaomab CSP. However, the process of building
domain-specific languages and tooling on top of MUSCLE ibelthe scope of this paper.

In its most general form, multi-step configuration involViesling a sequence of at mdstconfigura-
tions that satisfy a series of point configuration constsaimd edge constraints. This definition requires
the start and end configurations meet a set of point contgrdint does not dictate thatsangle valid
starting and ending configuration exist.

General formal model. We define a multi-step configuration problem using the 6elpsc=<
E,PC,A(Fr,Ry), K, Fstart, Fend >, Where:

E is the set of edge constraints, such as the maximum devetltmost per year for features,

e PCis the set of point configuration constraints that must beahetch step, such as the feature
model rules that developers may require to be adhered tesatbsteps (feature model rules do
not have to be enforced at each time step),

e A(Fr,Ry) is a function that calculates the change cost or edge wefghbwing from a configu-
rationFr at stepT to a configuratior at stepJ,

e K is the maximum number of steps in the configuration problem,

e Fsiart is a set of configuration constraints on the starting condijoim, such as a list of features
that must initially be selected,

e Fongis a set of configuration constraints on the final configuratguch as a list of features that

must be selected or maximum cost of the final configuration.

We define a configuration path from st€mverK steps as a K-tuple

P=< FT7|:|-+17"~|:|-+K71 >

, Where the configuration at st@pis denoted byr. Each configuratiorkT, denotes the set of selected
features at step.

Section 4 shows how this formal model can be specified as aAltBBugh we use CSPs for reasoning
on the formal model, we could also use SAT solvers, propwslilogic, or other techniques to reason
about this model. The formal model is thus applicable to eewahge of reasoning approaches.

Constraint and Optimization Functions. We now describe how the formal model presented above
can be used to model typical SPL configuration constrainesskiéw how common configuration needs,



such as the selection of specific features or budgetary reomist, can be mapped to portions of our
multi-step configuration problem tuple.

Edge constraints. We define an edge constraint as a bound on the selections aatkciens of
features over time. An edge constraigtc E, is defined as:

y<FT7 Fr+k)

whereyis a constraint defined over a set of features at stegusdT +k > T. The set of edge constraints
E can include numerous types of constraints on the transitamn one configuration to another. A
constrainte; € E may dictate that the maximum weight of any edge between saneeconfigurations
in Fr,Fr11 € P have at most weight 35 (for the automotive problem from FegLix.

VT € (0.K — 1), A(Fr,Fra) < 35

In this casey = A(Fr,Fr41) < 35. Edge constraints may also vary depending on the stepxé&mple
a development budget may start at $35 million and may expsadianction of the step:

35
VT € (0-K-1), AFFrn) < 761,

Edge constraints may also be attached to specific time steps:

VT €(0.4,6.K—1), A(Fr,Fri) < 35
A(Fs,Fs) < 40

Point configuration constraints. The point configuration constraints specify properties thast hold
for the set of selected features at a given step. A point cordigpn constraint is defined as a set of
feature selection statek;, for step T,Fr = .. Both the starting and ending points for the multi-step
configuration problem are defined as point configuration tamgs on the first and last steps. For
example, we want to start at a specific configuratgg,: and reach another configuratibg,q:

(FO = I:start> A (FK = I:end)

Another general constraimic; € PC could require that for any step, the feature selectiofRy satisfies
the feature model constrairf: T € (0.K—1), Fr = Fc

Developers could also require that a specific set of feakygg such as safety critical braking features,
be selected at all times:
\V/T S (OK—].), Fstart C Fr

Change calculation functions.A change function, defined @8 Fr,Fr k), whereK > 0, calculates
the cost of changing from one configuration to another cordition at a different step. For example, the
following change calculation function computes the costt@nging from one configuration to another:

Fadded = Frik —Fr
A(Fr,Frix) = Y fixc, fi € Fadded

wheref; is theiy, selected feature arglis the price of selecting that feature.



4. A CSP Model of Multi-step Configuration

This section describes how MUSCLES uses CSPs to derivaauditb multi-step configuration prob-
lems automatically. To address the challenges outlinecesti@ 2 we show how deriving a config-
uration path for a multi-step configuration problem can bedeted as a CSP [15] using the formal
framework from Section 3. After a CSP formulation of a mgligp configuration problem is created,
MUSCLES can use a CSP solver to derive a valid configuratidh patomatically, which addresses
Challenge 1 in Section 2.1. Moreover, the CSP solver can ée wesperform optimizations that would
be hard to achieve manually.

Prior work on automated feature model configuration [17,83,hBs yielded a framework for repre-
senting feature models and configuration problems as C3#ssé&ction shows how a new formulation
of feature models and configuration problems can be develapél) incorporate multiple steps; (2)
allow a constraint solver to derive a configuration path fesleing a feature selection over multiple
intermediate steps to meet an end goal; (3) permit the spatin of intermediate configuration con-
straints; (4) allow for change/edge constraints, whichegowhe selection/deselection of feature over
time; and (5) optimize configuration path properties, suepath length or cost.

4.1. CSP Automated Configuration Background

A CSP is a set of variables and a set of constraints over thablas. For examplgX —Y > 0) A
(X < 10) is a simple CSP involving the integer variabksandY. A constraint solver is an automated
tool that takes a CSP as input and producéabaling (which is a set of values) for the variables that
simultaneously satisfies all the constraints. The solveatso be used to find a labeling of the variables
that maximizes or minimizes a function of the varialdeg, maximizeX +Y yieldsX =9,Y = 8.

A feature model can be modeled as a CSP through a series géintariables-, where the variable
fi € F corresponds to thgy, feature in the feature model. A configuration is defined asresef
values for these variables such thifat= 1 implies that the;, feature is selected in the configuration.
If the ity feature is not selected; = 0. Configuration rules from the feature model are represente
as constraints over the variablesin More information on creating a CSP from a feature model are
described in [8, 17].

4.2. Introducing Multiple Steps into the CSP

The goal of automated configuration over multiple-steps f&id a configuration path that permutes
a given starting configuration through a sequence of intdiate configurations to reach a desired end
state. For example, the configuration paths in Figure 2 catequential modifications to the car con-
figuration (shown in Figure 1) that will incorporate higheefeatures into the base automobile model.
To reason about a configuration path over a span of steps,stéfiroduce a notion of a configuration
step into MUSCLES’s CSP model of configuration.

CSP model of configuration stepsTo introduce configuration steps into MUSCLES'’s configurati
CSP, we modify the configuration CSP formulation outline&éttion 4.1. We no longer use a variable
fi to refer to whether or not thig, feature is selected or deselected. Instealrefer to the selection
state of each feature at a specific step with the variablefit, i.e., if the i, feature is selected at step
T, fir = 1. We refer to an entire configuration at a specific step as afsetlues for these variables,
fir € Fr. A solution to the CSP is configuration path defined by a lalgetif all of the variables in the
K-tuple: < Fr,Fry1...Frak_1 >. All paths are of the same length, except that some paths miag a
at the desired configuration earlier than other paths.



For example, if the?BS feature (denotedj,) is not selected at step and is selected at step+ 1,

then: for =0
farrai=1
Figure 4 shows a visualization of how tlfi¢ € Fr variables map to feature selections.
Feature Model CSP
Feature fy is _
selected fo=1
T T+1
Feature f; is not _
5 J_ selected at step fir=0
T and selected firer =1
at step T+1
L] sl Feature f; is
1
selected at step fir=1
T and not fires = 0

selected at step
T+1

s

Figure 4: Representing Feature Selection State at Spetéfis S

4.3. CSP Point Configuration Constraints

To address Challenge 2 from Section 2.2, the point configurabnstraints (which are the constraints
that define what constitutes a valid intermediate configumaitcan be modeled as constraints on the
variablesfir € Fr. Each point configuration constraint has a specific set @issi., during which it
must be meti.e., the constraint must only evaluate to true on the precigesgtea which it is in effect.

A simple constraint would be that th8%and 39 configurations must have the featureselected. The
set of steps for which this constraint must hold wouldlge= {2, 3}.

CSP model of point configuration constraints. A CSP point configuration constrainpg € PC,
requires that:

VT € Tpe, Fr = pG

Arbitrary point configuration constraints can be built usthis model to restrict the valid configurations
that are passed through by the configuration path. This feegilint configuration constraint mechanism
allows developers to specify and automatically find sohgito problems involving the constraints from
Challenge 2 in Section 2.2.

CSP point configuration constraints. Assume that we want to find values fer . .. Fr,k such that
we never violate any of the feature model constraints at teyy. $urther assume that the constraints in
the feature model remain static over Kesteps (feature model changes over multiple steps can also be
modeled). If thej;, feature is a mandatory child of thg feature, we add the constraint:

¥T € (0...K), (fir =1) < (Fjr = 1)

That is, we require that at any stép if the iy, feature Fr) is selected, the, feature j7) is also
selected. Moreover, at any stépif the ji, feature 1) is selected, the, feature {ir) is also selected.
Other example point configuration constraints can be mappéte CSP as shown in Figure 5(a) and
Figure 5(b).
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Figure 5: Point Configuration Constraints

4.4. CSP Edge/Change Constraints

Challenge 3 from Section 2.3 described how developers neuabke to specify and adhere to con-
straints on the difference between two configurations &t mdiht steps. These change/edge constraints
can be modeled in the CSP as constraints over the variall@s iconfiguration$t andR,. By extend-
ing the CSP techniques we developed in past work [18], we paaifically capture which features are
selected or deselected between any two steps and conkgaadhanges via budget or other restrictions.

CSP model of edge/change constraintg.o capture differences between feature selections between
stepsT andU, we create two new sets of variablBg, andDty. These variables have the following
constraints applied to them:

Vstu € Sru, (sTu=1) & (fr=0)A(fu=1)

Vdity € Dru, (dtu=1) < (fr=1)A(fu =0)

If a feature is selected at time st€@nd not at time steld, thend;ty is equal to 1. Similarly, if a feature

is not selected at step and selected at stép, sty is equal to 1.
An edgeedg€T,U) between the configurations at st@pandU is defined as a 2-tuple:

edg€T,U) =< Dtuy, Sru >

An edge is thus defined by the features deselected and skteateach configuratioR, from configu-
rationFr. The weight of the edgeveight(edgeéT,U)) can then be calculated as a function of the edge
tuple. If thei;, feature costs; to select or deselect then

n n
weight(edgdT,U)) = %STU *Ci + %diTU * G
= =

CSP edge/change constraintsThe cost of including a particular feature may change oveeti
For example, the cost of selecting a GPS guidance systemndbesmain fixed, but instead typically
decreases from one year to the next as GPS technology is cdittmed. We can model and account
for these changes in MUSCLES’s CSP formulation and comstha configuration path so that it selects
features at times when they are sufficiently cheap. We thfisedan edge constraint that accounts for
changing feature modification costs and limits the changest between two successive configurations
to $35 million dollars.



Assume that the cost of selecting thefeature at step can be calculated by the the function:

We can then define the cost of selecting new features for thiggewation as:
n

weightedgeT, T +1)) = Z(sTTH xCost(i, T+ 1))

We can now limit the cost of any two successive configuratisashe edge constraint:
VT € (0..K — 1), weightedgdT,T +1)) < 35

4.5. Multi-step Configuration Optimization

Challenge 4 from Section 2.4 showed that optimizing the gométion path is an important issue.
CSP solvers can automatically perform optimization whitelifng values for the variables in a CSP
(though it may be impractical time-wise for some problenvgg.can define goal functions over the CSP
variables to leverage these optimization capabilitiesadtdtess Challenge 4.

In some cases, developers may not want to just find any coafigarpath that ends in the desired
state. Instead, they may want a path that produces a corf@uthat meets the end goals as early
as possible. For example, in the automotive problem fronti@ed developers may want to find a
configuration path that meets their constraints and indude high-end features in the base model in
fewer than five years.

CSP model of path length.To support path length optimization, we define a measureeohtimber
of steps needed to reach a valid end state. We must theredtegardne if the constraints on the final
configurationFeng (Which is the goal state) are met by some configuration podné last configuration
(Fr whereT < K —1). We have found a configuration process that requires feargiguration steps if
we meet the final state constraints sooner than the final coafign.

To track whether or not a configuration has met the constaintthe ending configuratidf,g, we
create a series of variableg € W to represent whether or not the configuratiene P satisfieSeng.
For each configuratiorky € P, if Fenqis satisifed:

(Fr = Fend) = (Wr =1)
i.e, if at any step (up to and including the last step) we satiséyend state requirements, sgt equal

to 1. We also require that after one step has reached a cendrtg configuration, the remaining steps
also keep the correct configuration and do not alter it:

(wr=1) = (wry1=1)
wr=1) = (losTT+1+YLodiTT+1=0)

Path length optimization. We can optimize to find the shortest configuration path tolréhe goals
over K steps by asking the solver to maximize:

K—1
12 Wr
=0
The reason that maximizing this sum minimizes the numbetepisstaken to reach the desired end state
is that the sooner the state is reached, the more stepséll equal 1.



Cost optimization. We can instruct the solver to minimize the cost of the endimgfiguration by
defining an optimization goal over the variablesAn Assume that the cost o, feature at stef is
denoted by the variablg € Cx, minimizeCy, where:

n
Ck = fi * G
2

Path cost optimization. An optimization to minimize the costs of changes can be défbesed on
the weights of the edges. To find the configuration path wiéhlthvest development cost, where the

development cost is the edge weight the goal is to minimize:
K—1

TZ weight(edgeT, T +1))
=0

Optimization flexibility. A subset of the possible objective functions have been deébeve. Other
arbitrary objective functions can be defined over the véemmMsc

4.6. Catalog of Feature Model Constraints Over Multiple Stg@s

In this section, we show that any of the feature model comttrdescribed in the previously discussed
semantics by Benavides et al. [19, 20] can be converted intald-step constraint using MUSCLES.
Feature model constraint semantics are described by B¥sset al. [20] both in terms of propositional
logic and CSP semantics. Below is a table that includes efitte @onstraints described by Benavides
et al. and maps the constraint to a multi-step constraint.

Comprehensive List of Feature Model Constraints in MUSCLES

CSP (Single Step) CSP with Multiple StepsTy, To... Ty)
)
S
5
-8 Fi - Fj FiTl - Fsz
c
=
< .
5 if FjZO if FjTZZO
= then F=0 then Fr, =0
@]
if Fi=1 if Fr, =1
then S (Fj,F...F)in{l...n} then S (Fj1,, R, ... Fa)in{l...n}
else S (Fj,R...Fn) =0 else Y (Fjr,,Fm,---Fn1,) =0
g
= if Fi=1 if Fr,=1
= then Y (Fj,F,...Fn) =1 then ¥ (Fir,, ;.- Fny,) =1
= else S (Fj,R...Fn)=0 else y(Fjr,,Fm,---Fa1,) =0
o
E if Fi>0 if Fir, >0
u% then F=0 then Fr,=0
m . .
2 if F>0 if Fir, >0
=3 then F=1 then Fr,=1




A key aspect to note is that the constraint can be applied peaifsc step. In this casdpy =T, =
.. Th. That is, the constraint governs the selection state of afstatures all within a single time

step. However, the constraints may also govern the setestate of features at different points in time,
whereTy # Ty # ... Th. Moreover, the features and time steps can arbitrarilyssoos the steps where
portions of the constraint govern feature selection at o&e and other portions of the step relate to the
selection state of features at other steps. For exampleyréefat, can have an exclusive or relationship
with fyr, and fcTs. In this case, the constraint would dictate that if featfyes selected at stef, then
either f, has to be selected at stépor fc has to be selected at st&p The feature model constraints
governing selection can apply both, as with existing apghtea, within a single step, or span multiple
steps. MUSCLES supports all of the standard feature modwetraints but adds the added ability to
specify that the constraint applies to the selection stiafieadures at different steps.

5. Modeling Feature Model Drift

When configuration occurs over multiple steps, the confiamgrocess may span a substantial pe-
riod of time. For example, the automotive development exarfipm Section 1, where automated driv-
ing is being added to a car, spans several years. In moststeticonfiguration problems, developers
reason about configuration over a span of days, months, os.yea

Configuration time frames that span months or years intredle possiblity fofeature model drift
Feature model drift is the evolution of a feature model, tigtothe addition or removal of features and
constraints, after the initial configuration step. Autoiwv®manufacturers may rely on suppliers that plan
to introduce new features in a component at a specific timeeMer, suppliers may plan to discontinue
support for older features in the future.

In many cases, developers know ahead of time which featulebevintroduced or discontinued.
Moreover, developers often have an estimate of when thé&dnay of the feature will change based on
information provided by a supplier or other mechanism. Tai& on feature addition and removal times
allows developers to incorporate this knowledge into thestrmiction of a multi-step configuration prob-
lem. This section describes how feature model drift can loewatted for in a multi-step configuration
CSP.

5.1. Modifying the CSP Model of Multiple Steps

In the original formulation of the CSP, the set of features Hre present does not change over time. To
account for feature model drift, we show how we can relax equirement from Section 4.3 that feature
model constraints remain static. Once feature model c@nsthanges over multiple steps are modeled
in the CSP, the solver can derive a configuration path thaes the feature model constraints as they
drift. This eliminates the burden on developers to derivefigoiration paths that must meet complex
drifting feature model requirements. An important poirawever, is that this approach explicitly models
the addition and removal of features in the future. The apgtocassumes that the developers have
advance knowledge of the feature model changes that willrocc

As we showed in Section 2.3, we constrain the feature setestiriabled— to respect the feature
model constraints. Since each variable represents thetiselstate of a feature at a specific step,do
not have to apply the same constraints to every steg-or example, assume that a software vendor for
the automotive manufacturer announces that in two yearspftware package must be purchased with



a currently optional feature. If thgy, feature is an optional child of thg, feature (the software package)
at stepl and at stefK, the j;;, feature becomes mandatory, we can model this as:

(fr=1) = (fr=1
At StepK, the j, feature becomes mandatory, changing the constraints ectieel of the feature:

(fik =1) = (fix=1)
(fk=1 = (fix=1)

That is, at sted, if fj is selected {;r = 1) there is no constraint requirinfy to be selected. At stelg,
however, there is the constrant tdk = 1) = (fjk = 1), which makesf; mandatory.
Examples of other feature model drifts as CSP constraietstaswn in Figure 6.

Feature Model Drift CSP
T K Feature f- is a Constraints on
a a . configurations at time T:
£ figurations at time T
1 mandatory child (far=1) > (for = 1)
[, | offjattimeT (for=1)> (fr = 1)
anid i ttlimr? }f g Constraints on
S optiona configurations at time K:
(fox = 1) > (fax = 1)
A new child of A is introduced (far=1) > (for +fer=1)
at time K K (for=1)> (far=1)

(fer=1) > (far = 1)
(fak = 1) 2> (fox + fox + fax= 1)
(fox = 1) > (fax = 1)
(fox = 1) > (fax = 1)
(fac=1) > (fax = 1)

Figure 6: A CSP Model of Feature Model Drift

The approach described above can handle arbitrary modiisato a feature model as long as the
modifications yield a new feature model with at least onedvatoduct. If a contradiction is introduced
via feature model drift and no valid products are presemrtstiiver will not be able to derive a configu-
ration path. Another possibility contradiction is if thegedor point configuration constraints contradict
the changes introduced by feature model drift. For exanideeature that is mandated by a point con-
figuration constraint is removed by feature model drift, atcadiction occurs. The approach requires
that neither type of contradiction be present.

5.2. Feature Drift Epochs

Because feature model drift may take place far in the fuitineay not always be possible to precisely
predict the time step at which a particular feature becorvagiadble. For example, a supplier may
indicate that in the next 3-5 years, they plan to phase outishge of a particular component. In these
scenarios, SPL engineers need a way to be able to reasonandigiuration and place bounds, rather
than exact times, on feature model drift.

The formal model of feature model drift that we have presgtn be extended to account for these
types of inexact timeframes on the drift of a feature modehtbre model drift is a change to a feature



model at a future point in time. We introduce a new conceptclwvive call thechange epochwhich is
the period of time during which a change due to feature mouiitlislin effect.

Each change epoch includes both a start time and a duratboexemple, a supplier may phase out a
component in 3-5 years, causing the feature model to hawsaewodifications. Let; be the change
epoch of tha, set of changes that need to be applied to the feature modekssilhof feature model
drift. When theE; change epoch is in effect, it means that its starting poiEfi&" and 3< ESt" < 5,
The duration of the epoclEf"", is EIY" = co.

To express feature model epochs, constraints must be addwdind the values fdgt@" and EAW.
We introduce the function,

S(EiStart7 Eidur7 F07 F17 ceey Fend)

to determine the begining of a change epoch as a value of tidehee configurations of the feature
model at each step. For example, if a supplier was expecteldase out a part 3-5 years in the future,
then:

3 > S(EiStart7 Eidur7 F07 F17 ceey Fend) > 5

Similarly, a separate function,
W(Eidur7 Eidur7 F07 F17 ey Fend)

calculates the duration of the change epoch. In the caseat alpased out of existence, the duration of
the change epoch would be indefinite, or:

W(Eidurv Eidur7 F07 F17 DR Fend) = 00

An important note is that this approach assumes that thegelsathat are applied to the feature model
during a change epoch are assumed to be correct. For exafrpleature is removed in a particular
step, any other modifications to the feature model neededing it to a valid state €.g, removing
dependent cross-tree constraints, adding replacementdeaetc.) are also applied so that the feature
model does not have inconsistent or unsatisfiable consgrdoreover, the approach also assumes that
objective functions for the optimization process are na&c#ped in a manner that they are undefined
when one or more features are added or removed. At all stapsgssumed that the objective function
is defined and all features needed to calculate its valuerasept.

5.3. Epoch-based Feature Model Constraints

The feature model drift epochs make it possible to modeésitns in which the exact step in which
a change will occur to a feature model is not known. Insteadstaints are placed upon when the
feature model drift epochs will occur and their durationotder to account for epochs in the multi-step
configuration CSP, additional constraints must be addethdmprevious examples, if thig, feature is
an optional child of th&, feature (the software package) at stepnd at stefX, the j;, feature becomes
mandatory, we can model this as:

(ij =1 = (fr=1
At StepK, the ji, feature becomes mandatory, changing the constraints ectieel of the feature:

(fik =1 = (fix=1)
(fix=1) = (fk=1)



Now, assume that thgy, feature is an optional child of thg, feature (the software package) at the start
and at some stefX, where 3< K <5, the j;, feature becomes mandatory, we can no longer directly
model this as before. Instead, we must define the enforceofieheé new feature model constraint in
terms of its feature drift epoch. In this situation, we maithés as:

(fr=1) = (fir=1)

If StepK is within the time period of the feature drift epoch, fagfeature becomes mandatory, changing
the constraints on selection of the feature:

((fiK — 1) = (ij — 1)) — (Eistart <K< Eistart+ Eidur)
(k=1 = (fix=1)) «= (EMM <K <EMat4 EIW)

where:
3 S Eistart S 5

Using the concept of a feature model epoch, developers aaderamiguity into the feature model
drift. Developers can model periods of time during whichrales are expected and reason about how
variations in when those epochs occur will impact configoraiMost importantly, feature model epochs
allow developers to create configuration scenarios thaermlosely mirror the uncertainty in real-world
development at when a particular feature will be completetiteecome part of a feature model.

5.4. Ordered Epochs

Another issue that developers face is that the developmedgmracation of a feature from a feature
model is dependent upon the development or depracatiorvefaeother features. For example, de-
velopers may know that the next generation of a mobile phdatéopm is going to support connectors
that can communicate with an automobile’s CAN bus. Withiredaryfrom the time that this new mobile
phone platform is developed, they will be able to developegdostic interface for the car on the same
mobile platform.

In this scenario, the development of the mobile phone disgmmterface feature is dependent upon
the occurence of the mobile platform’s CAN bus feature. Thaeepoint in time at which the diagnostic
interface feature will be developed is only known relativette occurrence of another epoch. We term
these types of epoch constraintsjered epochs

Using the modified model of multi-step configuration, we cafirted an ordered epoch by constrain-
ing an epoch’s starEjSta”, and durationEf'“r, in terms of another epock;. For example, if we wish to
define the epoclk;, as occuring at least two steps after the ep&chwe can say:

Ejstart Z Eistart + 2
5.5. Feature Drift Branches

Using these CSP constraints, developers can encode aydietarnthe occurrence of epochs. Another
key attribute of epoch ordering is the ability to encode bhamg into the occurrence of epochs. For
example, developers may know that they will develop one af tifferent sets of features, but not
both. For example, developers might develop a mobile aubilsndiagnostic interface or a in-car LCD
diagnostic panel, but not both.



To encode branching constraints into feature model drétetbpers can use tHe*'" variable to
encode branching constraints. For example, if the changesrithed by thé, feature model drift are
mututally exclusive with the changes j, feature model drift, this constraint can be encoded as:

Eistart 2 0 «— Ejstart -1

Ejstart 2 0 «— Eistart -1

Where,EjStart = —1 indicates that thgy, feature model drift never is in effect. Using this same stygt
arbitrary constraints on the branching of feature moddi dain be encoded into the CSP.

6. Evaluating the Scalability of MUSCLES

As described in Section 2.1, configuring an SPL over mulspd@s is a highly combinatorial problem.
An automated multi-step SPL configuration technique shbeléble to scale to hundreds of features
and multiple steps. This section presents empirical re$udin experiments we performed to determine
the scalability of MUSCLES. We tested a number of hypotheskaged to the scalability of MUSCLES
using various SPL configuration parameters, such as thientataber of configuration steps.

6.1. Experimental Platform

Our first experiment was performed with an implementatiothefMUSCLES provided by the open-
source Ascent Design Studio (available framwde. googl e. conl p/ ascent - desi gn- studi 0). The
Ascent Design Studio’s implementation of MUSCLES is buding the Java Choco open-source CSP
solver (available fronechoco. sour cef or ge. net ). The experiments were performed on a computer with
an Intel Core DUO 2.4GHZ CPU, 2 gigabytes of memory, Window &nd a version 1.6 Java Virtual
Machine (JVM). The JVM was run in server mode using a heapiZ® megabytes (-Xms40m) and a
maximum memory size of 256 megabytes (-Xmx256m).

The second experiment was performed with an implementatiahe MUSCLES provided by the
open-source FAMA toolkit. FAMA is also built using the JavahdZo open-source CSP solver. The
experiments were performed on a rack-mounted DELL PowezEdgver with 12 cores, 2GB of RAM,
and running Ubuntu. The JVM was run in server mode using a Beapof 40 megabytes (-Xms40m)
and a maximum memory size of 256 megabytes (-Xmx256m).

To test the scalability of MUSCLES we needed thousands afifeanodels to test with, which posed
a problem since there are not many large-scale feature sadailable to researchers. A CSP solver’s
performance can vary widely, from extremely fast to expdiaétime, depending on the constraints of
a particular problem characteristic. In practice, CSPeamwslvend to perform very well. To be thorough,
we wanted to test the technique on a large number of modelsttargaccurate picture of the solving
time. To solve this problem, we used a random feature modwedrgéor developed in prior work [18].
The feature model generator and code for these experingealsa available in open-source form along
with the Ascent Design Studio. The feature model generat@d as input the desired total number of
features, maximum branching factor, total number of ctoss-constraints, and maximum depth for the
feature model tree. The generator produces a random feaidel that meets the requirements. We
used a maximum branching factor of 5 children per featureaam@ximum of 1/3 of the features were



in an XOR group:

We also needed the ability to produce valid starting andrendonfigurations that the solver could
derive a configuration path between. To produce these caafigus, we used the CSP technique devel-
oped by Benavides et al. [17] to derive valid configuratiohthe feature model. If the CSP technique
could not derive at least two different configurations frdra feature model, it was considered void and
thrown out.

Our experiments uncovered trends similar to what obsemeutior work [18]. In particular, the
branching factor, depth, and cross-tree constraints Ml diffect on configuration time. The key in-
dicator of the solving complexity was the number of XOR-fgatgroups in a model. The other key
indicators of solving complexity where whether or not opzation was used and the total number of
time steps involved in the configuration.

6.2. Experiment: Multi-step Configuration Scalability

Hypothesis.We hypothesized that MUSCLES could scale up to hundredsatdifes and 10 or more
time steps. We also believed that a CSP solver would be fastggnto derive a configuration path in a
few seconds.

Experiment design. We measured the solving time of MUSCLES by generating ranohutti-step
configuration problems and solving for configuration patiet involved larger and larger numbers of
steps. The problems were created by generating semi-rafeiare models with 500 features as well
as starting and ending configurations for each model. MUSEWAS used to derive a configuration
path between the two configurations.

Our experiments were performed wltrge-scale configuration pathe/hich were produced by forc-
ing the solver to find a configuration path that involved shiitg between two children of the root
feature that were involved in an XOR group. For a feature rhadté 500 features configured over 3
steps, the worst case solving time we observedw@seconds. The worst case solving time for feature
models configured over 10 steps was 16 seconds. These liagidts indicate that the technique should
be sufficiently fast for feature models with hundreds of dieas.

Figure 7 shows an example large-scale configuration patblgmmowhere the solver must derive a
configuration path that switches from including featArt featureB. With this type of configuration

Selected Feature T K
Root Root

Figure 7: Changing Between Two XOR Subtrees

problem, the solver was forced to change every featurets@bein the starting configuration to reach
the end statd,e., these experiments maximized the difference between énergf and ending configu-
rations.

1XOR feature groups are features that require the set of feddécted children to satisfy a cardinality constraint (the
constraintis 1..1 for XOR).



We generated and solved temporal configuration path prablenfeature models with 500 features.
We successively increased the number of time steps invaivigek configuration path to produce larger
and larger configuration paths. The maximum number of chepge configuration checkpoint were
bounded to 1/4 of the total number of features. We solved a8@amly generated configuration path
problems per problem size.

Results and analysis.The results from the experiment are shown in Figure 8. Thigéighows the
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Solving Time (ms,

Time Steps

Figure 8: Automated Configuration Time for Varying NumbefJime Steps

solving time in milliseconds for the configuration path @ation versus the total number of time steps
in the configuration problem. As shown in Figure 8, the sauime scales roughly linearly with the
number of time steps.

The apparent linear scaling of the technique with respettidoumber of time steps is a promising
result. Although more work is needed to show that this lireezaling continues for different configura-
tion path properties, these results indicate that the igakrmmay scale well as the number of time steps
grows. Our future work will further investigate the scalapiof the technique and improve MUSCLES's
CSP formulation. We also found that standard CSP solvingrdlgns, such as branch and bound appear
to work well for these problems. However, it may be possibléévelop new solving algorithms that
provide better performance.

6.3. Experiment: Feature Model Drift Scalability

Hypothesis. We hypothesized that MUSCLES could solve for configuratiathp that included fea-
ture model drift in several seconds.

Experiment design. As in the first experiment, we measured the solving time of MUES by
generating random multi-step configuration problems amdrepfor configuration paths that involved
larger and larger numbers of steps. In this second expetjmenintroduced changes to the feature
model at each step. At each step, one feature was added ovedmadhe feature model was then
checked to ensure that it included one or more valid produsitsy CSP analysis. If the new feature
model did not contain any valid products, the feature chamagreversed and another random change
attempted. The feature models were semi-randomly gemknatie 20-2000 features as well as starting
and ending configurations for each model. MUSCLES was usddrige a configuration path between
the two configurations over multiple steps. The propertiesefeature models described in Experiment
1 were also used for this experiment.

Results and analysis.The results from the experiment are shown in Figure 9. Thigéighows the
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Figure 9: Automated Configuration Time for Feature ModefRroblems

solving time in milliseconds for the configuration path @ation versus the total number of features.
Overall, the approach scaled well for large feature mod&4.,000 features, a solution could be found
in 4 seconds or less. We believe that for the majority of ilgugature models, 1,000 features will be
sufficient in scale.

7. Related Work

This section compares MUSCLES with related work, such asnaated single-step configuration,
staged configuration, legacy configuration evolution, iqpaltribute evaluation, and step-wise refine-
ment.

Feature Model Semantics.Prior research has laid out the formal semantics of featweets, vari-
ability, and configuration [19, 20]. MUSCLES builds upon dkepreviously described semantics and
introduces new approaches for dealing with configuraticer awltiple steps. Both the prior semantics
and MUSCLES are complementary research.

Constraint Optimization Techniques and the Scheduling Prblem. MUSCLES builds upon ex-
tensive prior work on constraint satisfaction problems aptimization [15]. Constraint satisfaction
programming techniques have been used for a wide varieglated problems in artificial intelligence,
process improvement, operations research, and other [dfsadn particular, thescheduling problem
is a well-known constraint optimization problem that lo@ktshow to schedule a finite set of resources
to complete a task in order to maximize or minimize an obyectunction. This problem is related to
MUSCLES but not specific to the multi-step configuration dation problem for feature models that
MUSCLES focuses on.

Automated single-step configuration.Several single-step feature model configuration and vadida
techniques have been proposed [7, 9, 10, 11, 12, 8]. Theseigees use CSPs and propositional logic
to derive feature model configurations in a single stage dsawassure their validity. These techniques
help address the high complexity of finding a valid featutec®n for a feature model that meets a set
of intricate constraints.

While these techniques are useful for the derivation anidiagbn of configurations in a single step,
they do not consider feature configuration over the courseudfiple steps. In many production sce-
narios (such as the automotive example from Section 1) thigéyab reason about configuration over
multiple steps is critical. MUSCLES provides this autontdlateasoning across multiple steps. Moreover,
MUSCLES can be used for single-step configurations sinsaispecial case of multi-step configuration



with only one stefX = 1.

Staged configuration. Czarnecki et al. [21] describe a method for using stagedifeatelection to
achieve a final target configuration. Their multi-staged@e considers cases in which the selection of
features in a previous stage impacts the validitiy of lategs feature selections.

MUSCLES is complementary to Czarnecki et al.’s work singé)texamines the production of a fea-
ture model configuration over multiple configuration stepd ) provides a general formal framework
that can be used to perform automated reasoning on stagéduwation processes. Moreover, MUS-
CLES can also be used to reason about other multi-step coatiign processes that do not fit into the
staged configuration model, such as the the example frono8ekctvhere each step must reach a valid
configuration.

Staged configuration can be modeled as a special instancaltfstep configuration. Specifically,
staged configuration is an instance of a multi-step conftopnmgproblem where:E = 0, Fsiart = 0,
Fenga= (Fk—1=-Fc), Kiis set to the number of stagésr, Ry ) is not defined, anB cis the set of feature
model constraintsi.e., there are no limitations on the changes that can be madesbptauccessive
configurations, the starting configuration has no featustescted, and the ending configuration yields a
valid feature model configuration. The staged configuratiefinition can be refined to guarantee that
successive stages only add featukéb:c (0..K — 1), Fr C Fry1.

Hwan et al. [22] have looked at mechanisms for synchronigpegializations of feature models as
changes occur over time. This problem is similar to the featnodel drift problem outlined in this
paper. MUSCLES focuses on a different and complementamgcag the problem, which is reasoning
in the face of changes to the feature model over time. Bothreygmization and automated reasoning in
the face of changes to the underlying feature model are destléeach approach addresses a different
aspect of the problem.

Classen et al. [23] have investigated creating a formal séosafor staged configuration. Moreover,
they provide a definition of a configuration path through a@eseof stages for a feature model. Whereas
Classen et al. focus on configuration paths that continuatlyce variability, MUSCLES is a formal
model that allows for both the reduction and introductionvafiability in the configuration process.
Moreover, MUSCLES can produce a complete configuration dtiphel points in the configuration
process.

Supply-chain Product-lines. Hartmann et al. [24] investigate methods of building modke&t in-
corporate the variability and constraints of multiple sigrg into a product-line feature model. The
approach described by Hartmann et al. is orthogonal to MUESEIHartmann’s work focuses on the
modeling aspects related to capturing and maintaining ¢instcaints from multiple suppliers whereas
MUSCLES provides a mechanism to reason about the consti@aret time.

Understanding Configuration Over Time. Elsner et al. [25] have looked at the variability over spans
of time and the issues related to understanding when and hoability points relate to each other.
MUSCLES focuses on automating three key tasks that Elsnalr etlentify as needed for managing
variability over time. Specifically, MUSCLES provides chfdies for automating and optimizing tasks
that Elsner et al. term: 1) proactive planning, 2) trackengd 3) analysis. Whereas Elsner et al. focus on
general identification of the issues in managing varigbditer time, MUSCLES focuses on providing
a framework for automating the specific tasks that Elsnek. éd@ntify as needed in this space.

Model-driven Feature Model Evolution. A number of approaches have looked at the development
of modeling tools to support feature model evolution. Péeesal. [26, 27] model coherent sets of
changes to a feature model as model fragments and allow Brsdeldescribe evolved versions of fea-



ture models at future points in time. Further, the undedyimodel-driven tooling allows developers to
check the correctness of the evolved models or interagtevdlve the model. Whereas these existing
approaches focus on the user-interface modeling and eamisthecking aspects, MUSCLES focuses
on complementary automated mechanisms for optimizingldrenmg steps of future evolutions of con-
figurations. For example, Pleuss et al.’'s techniques do mwige configuration evolution optimization
capabilities or automated non-interactive evolution dase objective functions, which the MUSCLES
technique provides. MUSCLES can be used to augment modelrdapproaches, such as Pleuss et al.’s
with automated optimization and configuration evolution\dgion capabilities.

Quality attribute evaluation. Several techniques have been proposed for evaluatingty)@édi
tributes [28, 29, 30] to guide a configuration process. ThHeskniques provide a framework for as-
sessing the impact of each feature selection on the ovexpdililities of the configured system. As
a result, quality characteristics, such as reliabilityy b& taken into account when selecting features.
These techniques are also designed for single step cortfmu@ocesses. These techniques could be
used in a complementary fashion to MUSCLES to produce thetpminfiguration, edge, and other
constraints in the multi-step configuration model.

Step-wise refinement.Batory[31] describes AHEAD, a technique for the configunatof of SPLs.
AHEAD utilizes step-wise refinement, in which SPLs are camiggl iteratively. Our technique is similar
in that it also selects additional features over the coufsewtiple-steps in order to reach a target
configuration.

8. Concluding Remarks

Many production SPL configuration problems require deveidspo evolve a configuration over mul-
tiple steps, rather than in a single step. Multi-step SPLfigamation, however, must take into account
constraints on the change between successive configulsasioch as the increase in cost of an automo-
bile’s configuration from one year to the next. Moreover,retreough configuration is performed over
multiple steps, a valid configuration must still be produaethe end of each step.@, prior to shipping
the new year’s model car), which further complicates manmg a functional system configuration.

It is hard to determine a sequence of feature model configmsaind feature selections such that an
initial configuration can be transformed into a desiredaaognfiguration. This paper introduces a tech-
nique, called theviUlti-step Software Configuration probLEm Sol@&USCLES), for modeling and
solving multi-step configuration problems. MUSCLES représ the problem as a CSP, which enables
CSP solvers to determine a path from a starting configuradi@target configuration. The output from
MUSCLES is a valid sequence of feature selections that edtifrom a starting configuration to the
desired target configuration, while accounting for resewanstraints.

The Ascent Design Studiagcent - desi gn- st udi 0. googl ecode. com)and FAMA (f amat s. googl ecode.
cont svn/ branches/ mul ti st ep) provide open-source implementations of MUSCLES.

2We would like to especially thank Jose A. Galindo for implerieg MUSCLE in FaMa and providing assistance in
experimentation.

3This work has been partially supported by the National Swefoundation (NSF), the Air Force Research Lab (AFRL
RI), European Commission (FEDER) and Spanish Governmetgru@ICYT project SETI (TIN2009-07366), and by the
Andalusian Government under ISABEL project (TIC-2533) aitEOS project (TIC-5906).
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