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This paper appeared in the proceedingd!6fIEEE Real- is the component in the CORBA reference model that man-
time Technology and Applications Symposium (RTAS), Demges transport connections, delivers client requests to an Ob-

ver, Colorado, June 3-5, 1998. ject Adapter, and returns responses (if any) to clients. The
ORB Core also typically implements the transport endpoint
Abstract demultiplexing and concurrency architecture used by applica-

tions. Figure 1 illustrates how an ORB Core interacts with
There is increasing demand to extend Object Request Bither CORBA components. [2] describes each of these com-
ker (ORB) middleware to support distributed applications with
stringent real-time requirements. However, conventional ORE
implementations, such as CORBA ORBSs, exhibit substanti
priority inversion and non-determinism, which makes them un=
suitable for applications with deterministic real-time require-
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1 Introduction Figure 1: Components in the CORBA Reference Model

Meeting the QoS needs of next-generation distributed apffnents in more detail.
cations requires much more than defining IDL interfaces orThis paper is organized as follows: Section 2 presents em-
adding preemptive real-time scheduling into an OS. It requifigcal results from systematically measuring the efficiency
a Vertica”y and horizonta"y integrat@RB endsystem archi_and predICtablllty of alternative ORB Core architectures in
tecturethat can deliver end-to-end QoS guarantees at muffur contemporary CORBA implementations: CORBAplus,
ple levels throughout a distributed system. The key levéiniCOOL, MT-Orbix, and TAO; and Section 3 presents con-
in an ORB endsystem include the network adapters, OS fding remarks.
subsystems, communication protocols, ORB middleware, and
higher-level services [1]. :

The main focus of this paper is on software architecturgs Real-t_lme ORB Core Performance
that are suitable for real-time ORB Cores. The ORB Core ExperlmentS

*This work was supported in part by Boeing, CDI, DARPA contrac_}_ . . . .
9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and 8IS section describes the results of experiments that mea-

Sprint. sure the real-time behavior of several commercial and research



ORBs, including IONA's MT-Orbix 2.2, Sun miniCOOL 4:3 per-sec (Mbps) SONET multimode fiber. The Maximum
Expersoft CORBAplus 2.1.1, and TAO 1.0. MT-Orbix and@ransmission Unit (MTU) on the ENI ATM adaptor is 9,180
CORBAplus are not real-time ORBsg., they were not ex- bytes. Each ENI card has 512 Kbytes of on-board memory.
plicitly designed to support applications with real-time Qo& maximum of 32 Kbytes is allotted per ATM virtual circuit
requirements. Sun miniCOOL is a subset of the COOL ORBnnection for receiving and transmitting frames (for a total
that is specifically designed for embedded systems with snwlb4 K). This allows up to eight switched virtual connections
memory footprints. TAO was designed at Washington Univezer card.

sity to support real-time applications with deterministic and

statlstlcql quality of service requirements, as well as best 8f1 5 cjient/server Configuration and Benchmarking
fort requirements. Methodology

. Server benchmarking configuration: As shown in Fig-
2.1 BenChmarkmg Testbed ure 2, our testbed server consists of two servants within an

This section describes the experimental testbed we desig&B'’s Object Adapter. One servant runs in a higher priority

to systematically measure sources of latency and throughiigad than the other. Each thread processes requests that are
Overhead, priority inversion, and non-determinism in OR@nt to Its servant by client threads on the other UltraSPARC-2.
endsystems. The architecture of our testbed is depicted in FigSolaris real-time threads [3] are used to implement servant

ure 2. The hardware and software components in the expgfiorities. The high-priority servant thread has thighest
real-time priority available on Solaris and the low-priority ser-

— vant has théowestreal-time priority.
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Figure 2: ORB Endsystem Benchmarking Testbed

ments are outlined below.

2.1.1 Hardware Configuration

I/0 SUBSYSTEM

The experiments in this section were conducted using a

FORE systems ASX-1000 ATM switch connected to tweigure 3: CORBAplus’ Worker Thread Pool Concurrency Ar-

dual-processor UltraSPARC-2s running SunOS 5.5.1. Tdfstecture

ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each

UltraSPARC-2 contains two 168 MHz Super SPARC CPusulti-threaded applications have an event dispatcher thread

with a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCPaR a pool of worker threads. The dispatcher thread receives

protocol stack is implemented using the STREAMS commifie requests and passes them to application worker threads,

nication framework. which process the requests. In the simplest configuration, an
Each UltraSPARC-2 has 256 Mbytes of RAM and an EN&pplication can choose to create no additional threads and rely

155s-MF ATM adaptor card, which supports 155 Megabitgon the main thread to process all requests.

1COOL was previously developed by Chorus, which was recently acquired® miniCOOL: WhiCh uses the |ea_der/f0||ower_thread pool
by Sun. architecture shown in Figure 4. Version 4.3 of miniCOOL al-




( SERVANTS ]
4: dispatch upcall()

ORB CORE

_,2 SERVANT
SKELp~====

LEADER FOLLOWERS ;
2: read() — _,2 SERVANT
3: dequeue, —] SKELETONS
. ﬁltert THREAD E 4: dispatch
: request,
1: select() 3: release() &enqueue HILTER upcall()
(mme) (5 OBJECT
(men) ADAPTER

I/0 SUBSYSTEM

@ E SERVANT DEMUXER
%

Figure 4: miniCOOL's Leader/Follower Concurrency Archi-
tecture

lows application-level concurrency control. The application
developer can choose between thread-per-request or thread- /O SUBSYSTEM
pool. The thread-pool concurrency architecture was used for
our benchmarks since it is better suited than thread-per-req '&Ere 5: MT-Orbix’s Thread Framework Concurrency Archi-
for deterministic real-time applications. In the thread—po‘éjcture '

concurrency architecture, the application initially spawns a

fixed number of threads. In addition, when the initial thread

pool size is insufficient, miniCOOL can be configured to dy-

namically spawn threads on behalf of server applications to

handle requests, up to a maximum limit.

e MT-Orbix:  which uses the thread pool framework ar-
chitecture based on the Chain of Responsibility pattern shown
in Figure 5. Version 2.2 of MT-Orbix is used to create two
real-time servant threads at startup. The high-priority thread is ( SERVANTS J
associated with the high-priority servant and the low-priority 3: dispatch upcall()
thread is associated with the low-priority servant. Incoming
requests are assigned to these threads using the Orbix thread
filter mechanism. Each priority has its own queue of requests
to avoid priority inversion within the queue. This inversion
could otherwise occur if a high-priority servant and a low-
priority servant dequeue requests from the same queue.
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e TAO: which uses the thread-per-priority concurrency
architecture described in [4]. Version 1.0 of TAO integrates
the thread-per-priority concurrency architecture with a non-
multiplexed connection architecture, as shown in Figure 6.
In contrast, the other three ORBs multiplex all requests from

client threads in each process over a single connection to the
server process. I/0 SUBSYSTEM

Figure 6: TAO'’s Thread-per-Priority Thread Pool Architecture
Client benchmarking configuration: Figure 2 shows how
the benchmarking test used one high-priority cli€gtandn
low-priority clients,C, ... C,,. The high-priority client runs
in a high-priority real-time OS thread and invokes operations

5
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at 20 Hz,i.e, it invokes 20 CORBA twoway calls per secor
All low-priority clients have the same lower priority OS thre S CORBApIuS Figh Priorly & MT-ORBIX Figh Priory  —8—miniCOOL Figh Prcry
priority and invoke operations at 10 Hize., they invoke 10 ooy X ThoLowerimy e
CORBA twoway calls per second. In each call, the client se
a value of typeCORBA::Octet to the servant. The serva
cubes the number and returns it to the client.
When the test program creates the client threads, they t 4 |
on a barrier lock so that no client begins work until the ¢
ers are created and ready to run. When all threads inforr
main thread they are ready to begin, the main thread unbl
all client threads. These threads execute in an arbitrary ¢
determined by the Solaris real-time thread dispatcher. [
client invokes 4,000 CORBA twoway requests at its prescri
rate.
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2.2 Performance Results on Solaris

Two categories of tests were used in our benchmarking e
iments:blackboxandwhitebox

Latency per Two-way Request in Milliseconds

Blackbox benchmarks: We computed the average twow.
response time incurred by various clients. In addition,
computed twoway operation jitter, which is the standard
viation from the average twoway response time. High le'
of latency and jitter are undesirable for deterministic real-t
applications since they complicate the computation of wc
case execution time and reduce CPU utilization. Section :
explains the blackbox results.

1 5 10 15 20 25 30 35 40 45 50

Number of Low Priority Clients

Whitebox benchmarks: To precisely pinpoint theourceof
priority inversion and performance non-determinism, we emigure 7: Comparative Latency for CORBAplus, MT-Orbix,
ployed whitebox benchmarks. These benchmarks used prefilniCOOL, and TAO

ing tools such as UNIXruss andQuantify [5]. These

tools trace and log the activities of the ORBs and measure the

time spent on various tasks, as explained in Section 2.2.” \

Together, the blackbox and whitebox benchmarks ind =
the end-to-end latencyl/jitter incurred by CORBA clients \
help explain the reason for these results. In genera
results reveal why ORBs like MT-Orbix, CORBAplus, ¢
miniCOOL are not yet suited for applications with deterr 250
istic real-time performance requirements. Likewise, th
sults illustrate empirically how and why the non-multiple;
priority-based ORB Core architecture used by TAO is r
suited for these types of real-time applications.
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2.2.1 Blackbox Results s0-]

As the number of low-priority clients increases, the numb
low-priority requests sent to the server also increases. Id
a real-time ORB endsystem should exhibit no variance i Number of Low Priority Clients 0 s
latency observed by the high-priority client, irrespective oi Ulgure 8: Comparative Jitter for CORBAplus, MT-Orbix,
number of low-priority clients. Our measurements of end-tgriniCOOL and TAO

end twoway ORB latency yielded the results in Figure 7.



Figure 7 shows that as the number of low-priority clients ifrom 0.55 msec to 10 msec. Section 2.2.2 reveals how this
creases, MT-Orbix and CORBAplus incur significantly highéehavior stems largely from the connection architecture used
latencies for their high-priority client thread. Compared withy the miniCOOL client and server.

TAO, MT-Orbix’s latency is 7 times higher and CORBAplus’ The jitter incurred by miniCOOL is also fairly high, as
latency is 25 times higher. Note the irregular behavior of teaown in Figure 8. This jitter is similar to that observed by the
average latency that miniCOOL displaysg., from 10 msec CORBAplus ORB since both spend approximately the same
latency running 20 low-priority clients down to 2 msec withercentage of time executing locking operation. section 2.2.2
25 low-priority clients. Such source of non-determinism isvaluates ORB locking behavior.

clearly undesirable for real-time bounds.

The low-priority clients for MT-Orbix, CORBAplus and TAO results:  Figure 7 reveals that as the number of low-
miniCOOL also exhibit very high levels of jitter. Compareg@riority clients increase from 1 to 50, the latency observed
with TAO, CORBAplus incurs 300 times as much jitter anBy TAO’s high-priority client grows by~0.7 msecs. How-
MT-Orbix 25 times as much jitter in the worst case, as shoWMer, the difference between the low-priority and high-priority
in Figure 8. Likewise, miniCOOL’s low-priority clients dis-clients starts at 0.05 msec and ends at 0.27 msec. In contrast,
play an erratic behavior with several high bursts of jitter, whidh miniCOOL, it evolves from 0.55 msec to 10 msec, and in
makes it undesirable for deterministic real-time application§&ORBAplus it evolves from 0.42 msec to 15 msec. Moreover,

The blackbox results for each ORB are explained below. the rate of increase of latency with TAO is significantly lower
than MT-Orbix, Sun miniCOOL, and CORBAplus. In partic-

CORBAplus results: CORBAplus incurs priority inversion ylar, when there are 50 low-priority clients competing for the
at various points in the graph shown in Figure 7. After di€PU and network bandwidth, the low-priority client latency
playing a high amount of latency for a small number of lovebhserved with MT-Orbix is more than 7 times that of TAO, the
priority clients, the latency drops suddenly at 10 clients, th&finiCOOL latency is~3 times that of TAO, and CORBAplus
eventually rises again. Clearly, this behavior is not suitalde~25 times that of TAO.

for deterministic real-time applications. Section 2.2.2 revea|5|n contrast to the other ORBS, TAO’s h|gh_pr|0r|ty client al-
how the poor performance and priority inversions stem largglys performs better than its low-priority clients. This demon-
from CORBAplus’ concurrency architecture. Figure 8 showgrates that the connection and concurrency architectures in
that CORBAplus generates high levels of jitter, particulariyno's ORB Core can maintain real-time request priorities
when tested with 40, 45, and 50 low-priority clients. These rgnd-to-end. The key difference between TAO and other ORBs
sults show an erratic and undesirable behavior for applicatiggi$hat its GIOP protocol processing is performed on a dedi-
that require real-time guarantees. cated connection by a dedicated real-time thread with a suit-

MT-Orbix results:  MT-Orbix incurs substantial priority in- able end-to-end real-time priority. Thus, TAO shares the mini-
version as the number of low-priority clients increase. Afté?al amount of ORE endsystem resources, which substantially

the number of clients exceeds 10, the high-priority client p (rn_duces opportunities for priority inversion and locking over-

forms increasingly worse than the low-priority clients. Thi ead. )
behavior is not conducive to deterministic real-time applica—The TAO ORB produces very low jitter (less than 11 msecs)

tions. Section 2.2.2 reveals how these inversions stem lard@fyihe low-priority requests and negligible jitter (less than 1
from the MT-Orbix’s concurrency architecture on the serv&fSec) for the high-priority requests. The stability of TAO's

In addition, MT-Orbix produces high levels of jitter, as shomﬁtency is clearly desirable for applications that require pre-
in Figure 8. This behavior is caused by priority inversions f{ctable end-to-end performance.

its ORB Core, as explained in Section 2.2.2. In general, the blackbox results described above demon-

miniCOOL results:  As the number of low-priority clients Strate thatimproper choice of ORB Core concurrency and con-

increase, the latency observed by the high-priority client af3gCtion software architectures can play a significant role in ex-

increases, reaching10 msec, at 20 clients, at which point igcerbating priority inversion and non-determinism.

decreases suddenly to 2.5 msec with 25 clients. This erratic

behavior becomes more evident as more Iow'-pr.iority clie!'gfsz_z Whitebox Results

are run. Although the latency of the high-priority client is

smaller than the low-priority clients, the non-linear behavigior the whitebox tests, we used a configuration of ten con-

of the clients makes miniCOOL problematic for deterministurrent clients similar to the one described in Section 2.1.

real-time applications. Nine clients were low-priority and one was high-priority. Each
The difference in latency between the high- and the lowtient sent 4,000 twoway requests to the server, which had a

priority client is also non-deterministic. For instance, it growsw-priority servant and high-priority servant thread.



Our previous experience using CORBA for real-time avion-e¢ CORBAplus connection architecture: The COR-
ics mission computing [6] indicated that locks constitute BAplus ORB connection architecture multiplexes all requests
significant source of overhead, non-determinism and potentiaihe same server through one active connection thread, which
priority inversion for real-time ORBs. UsinQuantify and simplifies ORB implementations by using a uniform queueing
truss , we measured the time the ORBs consumed performechanism.

ing tasks like synchronization, 1/O, and protocol processing. CORBAplus concurrency architecture: The COR-

In addition, we computed a metric that recordsapius ORB concurrency architecture uses the thread pool
the number of calls made to userlevel lock&e( srchitecture with a single I/0 thread &xcept andread
mutex lock and mutex .unlock ) and kernel-level oqyests from socket endpoints. This thread inserts the request

locks (.e, -lwp mutex lock , Iwp mutex unlock , on 3 queue thatis serviced by a pool of worker threads.
_lwp _sema_post and _lwp _sema. wait ). This metric

computes the average number of lock operations per-requesth® CORBAplus connection architecture and the server
In general, kernel-level locks are considerably more expensig@currency architecture help reduce the number of simulta-
since they incur kernel/user mode switching overhead. ~ N€0OUS open connections and simplify the ORB implementa-

The whitebox results from our experiments are presenﬂQP' However, concurrent requests to the shared connection
below incur high overhead since each send operation incurs a con-

text switch. In addition, on the client-side, threads of different
CORBAplus whitebox results: Our whitebox analysis of priorities can share the same transport connection, which can
CORBAplus reveals high levels of synchronization overheaause priority inversion. For instance, a high-priority thread
from mutex and semaphore operations at the user-level fizay be blocked until a low-priority thread finishes sending its
each twoway request, as shown in Figure 13. Synchronimegquest. Likewise, the priority of the thread that blocks on
tion overhead arises from locking operations that impleméhe semaphore to receive a reply from a twoway connection
the connection and concurrency architecture used by CORay not reflect the priority of theequesthat arrives from the
BAplus. server, thereby causing additional priority inversion.

As shown in Figure 9, CORBAplus exhibits high synchrepinicooL whitebox results:  Our whitebox analysis of
nization overhead (52%) using kernel-level locks in the cliegfinicooL reveals that synchronization overhead from mu-
and the server incurs high Ieve_ls of processing overhead (4%%%) and semaphore operations consume a large percentage of
due to kernel-level lock operations. the total miniCOOL ORB processing time. As with COR-

For each CORBA request/response, CORBAplus’s cligB\plus, synchronization overhead in miniCOOL arises from
ORB performs 199 lock operations, whereas the server pgeking operations that implement its connection and concur-
forms 216 user-level lock operations, as shown in Figure ¥2ncy architecture. Locking overhead accountec56% on

This locking overhead stems largely from excessive dynamgig client-side and more than 40% on the server-side, as shown
memory allocation, as described in Section 2.3. Each dynaii¢igure 10).

allocation causes two user-level lock operatiares, one ac-

quire and one release.
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Getmsg
7% Getmsg
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Processing 21%
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Semaphores
Wites

Reads 6% Reads Writes
0% NoA ROA

Client-side Server-side Figure 10: Whitebox Results for miniCOOL

Semaphores

For each CORBA request/response, miniCOOL’s client
ORB performs 94 lock operations at the user-level, whereas

the server performs 231 lock operations, as shown in Fig-

The CORBAplus connection and concurrency architectutgs, 13 aAs with CORBAplus, this locking overhead stems
are outlined briefly below. '

Figure 9: Whitebox Results for CORBAplus



ORB

largely from excessive dynamic memory allocation. Each Processing e
namic allocation causes two user-level lock operatioms, wiies Processing
one acquire and one release. Muteres
The number of calls per-request to kernel-level locki
mechanisms at the server (shown in Figure 14) are unusi
high. This overhead stems from the fact that miniCOOL u
“system scoped” threads on Solaris, which require kernel
tervention for all synchronization operations [7]. Semaphor
The miniCOOL connection and concurrency architectu. .. . . = .
. . Client-side Server-side
are outlined briefly below.

Writes
2%
Reads
6%

Mutexes
40%

Semaphores
39%

e miniCOOL connection architecture: The miniCOOL . ) )
ORB connection architecture uses a “leader/follower” model Figure 11: Whitebox Results for MT-Orbix
that allows the leader thread to blockselect on the shared

socket. All following threads block on semaphores waiting for bi q h he thread with th
one of two conditions: (1) the leader thread wilad their re- target object), and pass the request to the thread with the cor-

ply message and signal their semaphore or (2) the leader th'rggﬁpriority. The thread filter mechanism is implemented by a

will read its own reply and signal another thread to enter aHJP -priority real-tlme thrgaq to minimize dlspatch Iatenpy. .
block inselect , thereby becoming the new leader. The thread pool instantiation of the MT-Orbix mechanism is

o ] flexible and easy to use. However, it suffers from high levels

e miniCOOL concurrency architecture:  The Sun ot nriority inversion and synchronization overhead. MT-Orbix
miniCOOL  ORB  concurrency architecture also uses oides onlyonefilter chain. Thus, all incoming requests
leader/follower model that WaItS.fOI’ connect!ons_ in a singlgst be processed sequentially by the filters before they are
thread. Whenever a request arrives and validation of the gfesqeq to the servant thread with an appropriate real-time pri-
quest is complete, the leader thread (1) signals a followRlty As a result, if a high-priority request arrives after a low-
thread in the pool to wait for incoming requests and (2) S¢fiority request, it must wait until the low-priority request has
vices the request. been dispatched before the ORB processes it.

The miniCOOL connection architecture and the server condn addition, a filter can only be called after (1) GIOP pro-
currency architecture help reduce the number of simultanecassing has completed and (2) the Object Adapter has deter-
open connections and the amount of context switching wheined the target object for this request. This processing is
replies arrive in FIFO order. As with CORBAplus, howeveserialized since the MT-Orbix ORB Core is unaware of the re-
this design yields high levels of priority inversion. For ingquest priority. Thus, a higher priority request that arrived after
stance, threads of different priorities can share the same tranlew-priority request must wait until the lower priority request
port connection on the client-side. Therefore, a high-priorinas been processed by MT-Orbix.
thread may block until a low-priority thread finishes sending MT-Orbix’s concurrency architecture is chiefly responsible
its request. In addition, the priority of the thread that blocks éor its substantial priority inversion shown in Figure 7. This
the semaphore to access a connection may not reflect thefigjisre shows how the latency observed by the high-priority
ority of theresponsehat arrives from the server, which yieldglient increases rapidly, growing from2 msecs tev14 msecs
additional priority inversion. as the number of low-priority clients increase from 1 to 50.

The MT-Orbix filter mechanism also causes an increase in
MT-Orbix whitebox results:  Figure 11 shows the whiteboxsynchronization overhead. Because there is just one filter
results for the client-side and server-side of MT-Orbix. chain, concurrent requests must acquire and release locks to
be processed by the filter. The MT-Orbix client-side performs

e MT-Orbix connection architecture: Like miniCOOL, 75 level lock i ¢ while th
MT-Orbix uses the leader/follower multiplexed connection a}.- user-level fock operations per-request, while the server-
de performs 599 user-level lock operations per-request, as

chitecture. Although this model minimizes context SWitChinzLown in Figure 13. Moreover, MT-Orbix displays a high

overhead, it causes intensive priority inversions. N
) _ number of kernel-level locks per-request, as shown in Fig-
e MT-Orbix concurrency architecture: In the MT- e 14.

Orbix implementation of our benchmarking testbed, multiple

servant threads were created, each with the appropriate PA© whitebox results: As shown in Figure 12, TAO ex-
ority, i.e.,, the high-priority servant had the highest priorithibits negligible synchronization overhead. TAO performs 41
thread. A thread filter was then installed to look at each ngser-level lock operations per-request on the client-side, and
guest, determine the priority of the request (by examining th@0 user-level lock operations per-request on the server-side.
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Figure 12: Whitebox Results for TAO

This low amount of synchronization results from the design of
TAQO’s ORB Core, which allocates a separate connection for
each priority, as shown in Figure 6. Therefore, TAO's ORB

Core minimizes additional user-level locking operations per-
request and uses no kernel-level locks in its ORB Core.

e TAO connection architecture: TAO uses a non-
multiplexed connection architecture, which pre-establishes
connections to servants, as described in [4]. One connec-
tion is pre-established for each priority level, thereby avoid-
ing the non-deterministic delay involved in dynamic connec-
tion setup. In addition, different priority levels have their
own connection. This design avoids request-level priority in-
version, which would otherwise occur from FIFO queueing
acrossclient threads with different priorities.

e TAO concurrency architecture: TAO supports several
concurrency architectures, as described in [4]. Tiread-
per-priority architecture was used for the benchmarks in this
paper. In this concurrency architecture, a separate thread is
created for each priority levele., each rate group. Thus, the
low-priority clientissues CORBA requests at a lower rate than
the high-priority client (10 Hz vs. 20 Hz, respectively).

On the server-side, client requests sent to the high-priority
servant are processed by a high-priority real-time thread. Like-
wise, client requests sent to the low-priority servant are han-
dled by the low-priority real-time thread. Locking overhead is
minimized since these two servant threads share minimal ORB
resourcesi.e., they have separafeactor s, Acceptor s,
Object Adapters, etc. In addition, the two threads service sep-
arate client connections, thereby eliminating the priority inver-
sion that would otherwise arises from connection multiplex-
ing, as exhibited by the other ORBs we tested.

Locking overhead: Our whitebox tests measured user-level
locking overhead (shown in Figure 13) and kernel-level lock-
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Figure 13: User-level Locking Overhead in ORBs
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Figure 14: Kernel-level Locking Overhead in ORBs

ing overhead (shown in Figure 14) in the CORBAplus, MEommon example is dynamic memory allocation using global
Orbix, miniCOOL, and TAO ORBs. User-level locks are type++ operatorsiew anddelete . These operators allocate
ically used to protect shared resources within a process.m&mory from a globally managed heap in each process.



Kernel-level locks are more expensive since they typicalilocators require user-level locking. For instance, the C++
require mode switches between user-level and the kernel. Tibe operator allocates memory from a global pool shared by
semaphore and mutex operations depicted in the whiteboxakthreads in a process. Likewise, the Cdelete opera-
sults for the ORBs evaluated above arise from kernel-letieln, that releases allocated memory, also requires user-level
lock operations. locking to update the global shared pool. This lock sharing

TAO limits user-level locking by using buffers that are presontributes to the overhead shown in Figure 13.
allocated off the run-time stack. This buffer is subdivided to We recommend that real-time ORBs avoid excessive shar-
accommodate the various fields of the request. Kernel-leiej of dynamic memory locks via the use of OS features such
locking is limited due to the fact that TAO can be configureak thread-specific storage [14], which allocates memory from
so that ORB resources are not shared between its threads.separate heaps that are unique to each thread.

) . 4. Real-time ORB concurrency architectures should be
2.3 Evaluation and Recommendations flexible, yet efficient and predictable: Many ORBs, such

The results of our benchmarks illustrate the non-determinii MNICOOL and CORBAPIus, create threads on behalf of

performance incurred by applications running atop convaigrver applicatiqng. This design prevents applica'tion develop-
tional ORBs. In addition, the results show that priorit§"S from customizing ORB performance by selecting a custom

inversion and non-determinism are significant problems qﬁncurrencyarchitecture. Conversely, other ORB concurrency
conventional ORBs. As a result. these ORBs are not CBthitectures are flexible, but inefficient and non-deterministic,
rently suitable for applications with deterministic real-tim@S Shown by Section 2.2.2s explanation of the MT-Orbix per-
requirements. Based on our results, and our prior expéﬂr_mance results. Thus, a balance is needed between flexibility

ence [8, 9, 10, 11] measuring the performance of CORBRJ efficiency. _ _

ORB endsystems, we suggest the following recommendation¥/e recommend that real-time ORBs provide APIs that al-
to decrease non-determinism and limit priority inversion |gw application developers to select concurrency architectures
real-time ORB endsystems. that are flexible, efficientandpredictable. For instance, TAO

) ) ) . offers a range of concurrency architectures (such as thread-
1. Real-time ORBs should avoid dynamic connection es-per.priority, thread pool, and thread-per-connection) that can
tablishment:  ORBs that establish connections dynamically|ectively use thread-specific storage to minimize unneces-
suﬁer' from high Jltter.. Thus, performance seen by 'nd'_‘"%'ary sharing of ORB resources.
ual clients can vary significantly from the average. Neither
CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre->. Real-time ORB endsystem architectures should be
establishing connections; TAO provides these APIs as extgHided by empirical performance benchmarks: Our prior
sions to CORBA. research on pinpointing performance bottlenecks and opti-
We recommend that APIs to control the pre-establishméhizing middleware like Web servers [15, 16] and CORBA

of connections should be defined as an OMG standard for réRBs [9, 8, 11, 10] demonstrates the efficacy of a
time CORBA [12, 13]. measurement-driven research methodology. We recommend
2. Real-ime ORBs should avoid multiplexing requests that the OMG adopt standard real-time CORBA benchmark-

: ing techniques and metrics. These benchmarks will simplify

of different priorities over a shared connection: Sharing h L d ; f ‘ I
connections requires synchronization. Thus, high-priority rt © comm.un|cat|on and comparison of periormance resu ts

. o ' nd real-time ORB behavior patterns. The real-time ORB
guests can be blocked until low-priority threads release

shared connection lock. Moreover, priority inversion is eX_éanchmarking test suite described in this section is available
. ; ' . i atwww.cs.wustl.edu/ ~schmidt/TAO.html

acerbated if multiple thread with multiple levels of thread pri-

orities share common locks. For instance, medium priority

threads can preempt a low priority thread that is holdingsa Concluding Remarks

lock required by a high priority thread, which can lead to un-

bounded priority inversion [3]. _ Conventional CORBA ORBs exhibit substantial priority inver-
~ We recommend that real-time ORBs should allow applicggn, ang non-determinism. Consequently, they are not yet suit-
tion developers to determine whether requests with differgfifie for distributed, real-time applications with deterministic
priorities are multiplexed over shared connections. Curren@yos requirements. Meeting these demands requires that ORB

neither miniCOOL, CORBAplus, nor MT-Orbix support thig e software architectures be designed to reduce priority in-
level of control, though TAO provides this model by default., s sion and increase end-to-end determinism.

3. Real-time ORBs should minimize dynamic memory al- The TAO ORB Core described in this paper reduces priority
location: Thread-safe implementations of dynamic memoigversion and enhances determinism by using a priority-based



concurrency architecture and non-multiplexed connection gg8] A. Gokhale and D. C. Schmidt, “Measuring the Performance
chitecture that share a minimal amount of resources among ©f Communication Middleware on High-Speed Networks,” in
threads. The architectural principles used in TAO can be ap-
plied to other ORBs and other real-time software systems.
TAO has been used to develop a number of real-time éJpQ]
plications, including a real-time audio/video streaming ser-
vice [17] and a real-time ORB endsystem for avionics mis-
sion computing [6]. The avionics application manages sen-
sors and operator displays, navigate the aircraft’s course, An
control weapon release. To meet the scheduling demands o
real-time applications, TAO supports predictable scheduling
and dispatching of periodic processing operations [1], as well
as efficient event filtering and correlation mechanisms [§]2]
The C++ source code for TAO and ACE is freely available

atwww.cs.wustl.edu/
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