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Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support distributed applications with
stringent real-time requirements. However, conventional ORB
implementations, such as CORBA ORBs, exhibit substantial
priority inversion and non-determinism, which makes them un-
suitable for applications with deterministic real-time require-
ments. This paper provides two contributions to the study and
design of real-time ORB middleware. First, it illustrates em-
pirically why conventional ORBs do not yet support real-time
quality of service. Second, it evaluates connection and concur-
rency software architectures to identify strategies that reduce
priority inversion and non-determinism in real-time CORBA
ORBs.

Keywords: Real-time CORBA Object Request Broker, QoS-
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1 Introduction

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining IDL interfaces or
adding preemptive real-time scheduling into an OS. It requires
a vertically and horizontally integratedORB endsystem archi-
tecturethat can deliver end-to-end QoS guarantees at multi-
ple levels throughout a distributed system. The key levels
in an ORB endsystem include the network adapters, OS I/O
subsystems, communication protocols, ORB middleware, and
higher-level services [1].

The main focus of this paper is on software architectures
that are suitable for real-time ORB Cores. The ORB Core

�This work was supported in part by Boeing, CDI, DARPA contract
9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and US
Sprint.

is the component in the CORBA reference model that man-
ages transport connections, delivers client requests to an Ob-
ject Adapter, and returns responses (if any) to clients. The
ORB Core also typically implements the transport endpoint
demultiplexing and concurrency architecture used by applica-
tions. Figure 1 illustrates how an ORB Core interacts with
other CORBA components. [2] describes each of these com-
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Figure 1: Components in the CORBA Reference Model

ponents in more detail.
This paper is organized as follows: Section 2 presents em-

pirical results from systematically measuring the efficiency
and predictability of alternative ORB Core architectures in
four contemporary CORBA implementations: CORBAplus,
miniCOOL, MT-Orbix, and TAO; and Section 3 presents con-
cluding remarks.

2 Real-time ORB Core Performance
Experiments

This section describes the results of experiments that mea-
sure the real-time behavior of several commercial and research



ORBs, including IONA’s MT-Orbix 2.2, Sun miniCOOL 4.31,
Expersoft CORBAplus 2.1.1, and TAO 1.0. MT-Orbix and
CORBAplus are not real-time ORBs,i.e., they were not ex-
plicitly designed to support applications with real-time QoS
requirements. Sun miniCOOL is a subset of the COOL ORB
that is specifically designed for embedded systems with small
memory footprints. TAO was designed at Washington Univer-
sity to support real-time applications with deterministic and
statistical quality of service requirements, as well as best ef-
fort requirements.

2.1 Benchmarking Testbed

This section describes the experimental testbed we designed
to systematically measure sources of latency and throughput
overhead, priority inversion, and non-determinism in ORB
endsystems. The architecture of our testbed is depicted in Fig-
ure 2. The hardware and software components in the experi-
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Figure 2: ORB Endsystem Benchmarking Testbed

ments are outlined below.

2.1.1 Hardware Configuration

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running SunOS 5.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each
UltraSPARC-2 contains two 168 MHz Super SPARC CPUs
with a 1 Megabyte cache per-CPU. The SunOS 5.5.1 TCP/IP
protocol stack is implemented using the STREAMS commu-
nication framework.

Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
155s-MF ATM adaptor card, which supports 155 Megabits

1COOL was previously developed by Chorus, which was recently acquired
by Sun.

per-sec (Mbps) SONET multimode fiber. The Maximum
Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
bytes. Each ENI card has 512 Kbytes of on-board memory.
A maximum of 32 Kbytes is allotted per ATM virtual circuit
connection for receiving and transmitting frames (for a total
of 64 K). This allows up to eight switched virtual connections
per card.

2.1.2 Client/Server Configuration and Benchmarking
Methodology

Server benchmarking configuration: As shown in Fig-
ure 2, our testbed server consists of two servants within an
ORB’s Object Adapter. One servant runs in a higher priority
thread than the other. Each thread processes requests that are
sent to its servant by client threads on the other UltraSPARC-2.

Solaris real-time threads [3] are used to implement servant
priorities. The high-priority servant thread has thehighest
real-time priority available on Solaris and the low-priority ser-
vant has thelowestreal-time priority.

The server benchmarking configuration is implemented in
the various ORBs as follows:

� CORBAplus: which uses the worker thread pool archi-
tecture shown in Figure 3. In version 2.1.1 of CORBAplus,
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Figure 3: CORBAplus’ Worker Thread Pool Concurrency Ar-
chitecture

multi-threaded applications have an event dispatcher thread
and a pool of worker threads. The dispatcher thread receives
the requests and passes them to application worker threads,
which process the requests. In the simplest configuration, an
application can choose to create no additional threads and rely
upon the main thread to process all requests.

� miniCOOL: which uses the leader/follower thread pool
architecture shown in Figure 4. Version 4.3 of miniCOOL al-
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lows application-level concurrency control. The application
developer can choose between thread-per-request or thread-
pool. The thread-pool concurrency architecture was used for
our benchmarks since it is better suited than thread-per-request
for deterministic real-time applications. In the thread-pool
concurrency architecture, the application initially spawns a
fixed number of threads. In addition, when the initial thread
pool size is insufficient, miniCOOL can be configured to dy-
namically spawn threads on behalf of server applications to
handle requests, up to a maximum limit.

� MT-Orbix: which uses the thread pool framework ar-
chitecture based on the Chain of Responsibility pattern shown
in Figure 5. Version 2.2 of MT-Orbix is used to create two
real-time servant threads at startup. The high-priority thread is
associated with the high-priority servant and the low-priority
thread is associated with the low-priority servant. Incoming
requests are assigned to these threads using the Orbix thread
filter mechanism. Each priority has its own queue of requests
to avoid priority inversion within the queue. This inversion
could otherwise occur if a high-priority servant and a low-
priority servant dequeue requests from the same queue.

� TAO: which uses the thread-per-priority concurrency
architecture described in [4]. Version 1.0 of TAO integrates
the thread-per-priority concurrency architecture with a non-
multiplexed connection architecture, as shown in Figure 6.
In contrast, the other three ORBs multiplex all requests from
client threads in each process over a single connection to the
server process.

Client benchmarking configuration: Figure 2 shows how
the benchmarking test used one high-priority clientC0 andn
low-priority clients,C1 . . . Cn. The high-priority client runs
in a high-priority real-time OS thread and invokes operations
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Figure 6: TAO’s Thread-per-Priority Thread Pool Architecture



at 20 Hz,i.e., it invokes 20 CORBA twoway calls per second.
All low-priority clients have the same lower priority OS thread
priority and invoke operations at 10 Hz,i.e., they invoke 10
CORBA twoway calls per second. In each call, the client sends
a value of typeCORBA::Octet to the servant. The servant
cubes the number and returns it to the client.

When the test program creates the client threads, they block
on a barrier lock so that no client begins work until the oth-
ers are created and ready to run. When all threads inform the
main thread they are ready to begin, the main thread unblocks
all client threads. These threads execute in an arbitrary order
determined by the Solaris real-time thread dispatcher. Each
client invokes 4,000 CORBA twoway requests at its prescribed
rate.

2.2 Performance Results on Solaris

Two categories of tests were used in our benchmarking exper-
iments:blackboxandwhitebox.

Blackbox benchmarks: We computed the average twoway
response time incurred by various clients. In addition, we
computed twoway operation jitter, which is the standard de-
viation from the average twoway response time. High levels
of latency and jitter are undesirable for deterministic real-time
applications since they complicate the computation of worst-
case execution time and reduce CPU utilization. Section 2.2.1
explains the blackbox results.

Whitebox benchmarks: To precisely pinpoint thesourceof
priority inversion and performance non-determinism, we em-
ployed whitebox benchmarks. These benchmarks used profil-
ing tools such as UNIXtruss andQuantify [5]. These
tools trace and log the activities of the ORBs and measure the
time spent on various tasks, as explained in Section 2.2.2.

Together, the blackbox and whitebox benchmarks indicate
the end-to-end latency/jitter incurred by CORBA clients and
help explain the reason for these results. In general, the
results reveal why ORBs like MT-Orbix, CORBAplus, and
miniCOOL are not yet suited for applications with determin-
istic real-time performance requirements. Likewise, the re-
sults illustrate empirically how and why the non-multiplexed,
priority-based ORB Core architecture used by TAO is more
suited for these types of real-time applications.

2.2.1 Blackbox Results

As the number of low-priority clients increases, the number of
low-priority requests sent to the server also increases. Ideally,
a real-time ORB endsystem should exhibit no variance in the
latency observed by the high-priority client, irrespective of the
number of low-priority clients. Our measurements of end-to-
end twoway ORB latency yielded the results in Figure 7.

0

4

8

12

16

20

24

28

32

36

40

44

48

52

1 5 10 15 20 25 30 35 40 45 50

Number of Low Priority Clients

L
at

en
cy

 p
er

 T
w

o
-w

ay
 R

eq
u

es
t 

in
 M

ill
is

ec
o

n
d

s

CORBAplus High Priority MT-ORBIX High Priority miniCOOL High Priority
CORBAplus Low Priority MT-ORBIX Low Priority miniCOOL Low Priority
TAO High Priority TAO Low Priority

Figure 7: Comparative Latency for CORBAplus, MT-Orbix,
miniCOOL, and TAO

1 5 10 15 20 25 30 35 40 45 50

TAO High Priority

TAO Low Priority

miniCOOL High Priority

miniCOOL Low Priority

MT-ORBIX High Priority

MT-ORBIX Low Priority

CORBAplus High Priority

CORBAplus Low Priority

0

50

100

150

200

250

300

Ji
tt

er
 in

 m
ill

is
ec

o
n

d
s

Number of Low Priority Clients

Figure 8: Comparative Jitter for CORBAplus, MT-Orbix,
miniCOOL and TAO



Figure 7 shows that as the number of low-priority clients in-
creases, MT-Orbix and CORBAplus incur significantly higher
latencies for their high-priority client thread. Compared with
TAO, MT-Orbix’s latency is 7 times higher and CORBAplus’
latency is 25 times higher. Note the irregular behavior of the
average latency that miniCOOL displays,i.e., from 10 msec
latency running 20 low-priority clients down to 2 msec with
25 low-priority clients. Such source of non-determinism is
clearly undesirable for real-time bounds.

The low-priority clients for MT-Orbix, CORBAplus and
miniCOOL also exhibit very high levels of jitter. Compared
with TAO, CORBAplus incurs 300 times as much jitter and
MT-Orbix 25 times as much jitter in the worst case, as shown
in Figure 8. Likewise, miniCOOL’s low-priority clients dis-
play an erratic behavior with several high bursts of jitter, which
makes it undesirable for deterministic real-time applications.

The blackbox results for each ORB are explained below.

CORBAplus results: CORBAplus incurs priority inversion
at various points in the graph shown in Figure 7. After dis-
playing a high amount of latency for a small number of low-
priority clients, the latency drops suddenly at 10 clients, then
eventually rises again. Clearly, this behavior is not suitable
for deterministic real-time applications. Section 2.2.2 reveals
how the poor performance and priority inversions stem largely
from CORBAplus’ concurrency architecture. Figure 8 shows
that CORBAplus generates high levels of jitter, particularly
when tested with 40, 45, and 50 low-priority clients. These re-
sults show an erratic and undesirable behavior for applications
that require real-time guarantees.

MT-Orbix results: MT-Orbix incurs substantial priority in-
version as the number of low-priority clients increase. After
the number of clients exceeds 10, the high-priority client per-
forms increasingly worse than the low-priority clients. This
behavior is not conducive to deterministic real-time applica-
tions. Section 2.2.2 reveals how these inversions stem largely
from the MT-Orbix’s concurrency architecture on the server.
In addition, MT-Orbix produces high levels of jitter, as shown
in Figure 8. This behavior is caused by priority inversions in
its ORB Core, as explained in Section 2.2.2.

miniCOOL results: As the number of low-priority clients
increase, the latency observed by the high-priority client also
increases, reaching�10 msec, at 20 clients, at which point it
decreases suddenly to 2.5 msec with 25 clients. This erratic
behavior becomes more evident as more low-priority clients
are run. Although the latency of the high-priority client is
smaller than the low-priority clients, the non-linear behavior
of the clients makes miniCOOL problematic for deterministic
real-time applications.

The difference in latency between the high- and the low-
priority client is also non-deterministic. For instance, it grows

from 0.55 msec to 10 msec. Section 2.2.2 reveals how this
behavior stems largely from the connection architecture used
by the miniCOOL client and server.

The jitter incurred by miniCOOL is also fairly high, as
shown in Figure 8. This jitter is similar to that observed by the
CORBAplus ORB since both spend approximately the same
percentage of time executing locking operation. section 2.2.2
evaluates ORB locking behavior.

TAO results: Figure 7 reveals that as the number of low-
priority clients increase from 1 to 50, the latency observed
by TAO’s high-priority client grows by�0.7 msecs. How-
ever, the difference between the low-priority and high-priority
clients starts at 0.05 msec and ends at 0.27 msec. In contrast,
in miniCOOL, it evolves from 0.55 msec to 10 msec, and in
CORBAplus it evolves from 0.42 msec to 15 msec. Moreover,
the rate of increase of latency with TAO is significantly lower
than MT-Orbix, Sun miniCOOL, and CORBAplus. In partic-
ular, when there are 50 low-priority clients competing for the
CPU and network bandwidth, the low-priority client latency
observed with MT-Orbix is more than 7 times that of TAO, the
miniCOOL latency is�3 times that of TAO, and CORBAplus
is�25 times that of TAO.

In contrast to the other ORBs, TAO’s high-priority client al-
ways performs better than its low-priority clients. This demon-
strates that the connection and concurrency architectures in
TAO’s ORB Core can maintain real-time request priorities
end-to-end. The key difference between TAO and other ORBs
is that its GIOP protocol processing is performed on a dedi-
cated connection by a dedicated real-time thread with a suit-
able end-to-end real-time priority. Thus, TAO shares the mini-
mal amount of ORB endsystem resources, which substantially
reduces opportunities for priority inversion and locking over-
head.

The TAO ORB produces very low jitter (less than 11 msecs)
for the low-priority requests and negligible jitter (less than 1
msec) for the high-priority requests. The stability of TAO’s
latency is clearly desirable for applications that require pre-
dictable end-to-end performance.

In general, the blackbox results described above demon-
strate that improper choice of ORB Core concurrency and con-
nection software architectures can play a significant role in ex-
acerbating priority inversion and non-determinism.

2.2.2 Whitebox Results

For the whitebox tests, we used a configuration of ten con-
current clients similar to the one described in Section 2.1.
Nine clients were low-priority and one was high-priority. Each
client sent 4,000 twoway requests to the server, which had a
low-priority servant and high-priority servant thread.



Our previous experience using CORBA for real-time avion-
ics mission computing [6] indicated that locks constitute a
significant source of overhead, non-determinism and potential
priority inversion for real-time ORBs. UsingQuantify and
truss , we measured the time the ORBs consumed perform-
ing tasks like synchronization, I/O, and protocol processing.

In addition, we computed a metric that records
the number of calls made to user-level locks (i.e.,
mutex lock and mutex unlock ) and kernel-level
locks (i.e., lwp mutex lock , lwp mutex unlock ,
lwp sema post and lwp sema wait ). This metric

computes the average number of lock operations per-request.
In general, kernel-level locks are considerably more expensive
since they incur kernel/user mode switching overhead.

The whitebox results from our experiments are presented
below.

CORBAplus whitebox results: Our whitebox analysis of
CORBAplus reveals high levels of synchronization overhead
from mutex and semaphore operations at the user-level for
each twoway request, as shown in Figure 13. Synchroniza-
tion overhead arises from locking operations that implement
the connection and concurrency architecture used by COR-
BAplus.

As shown in Figure 9, CORBAplus exhibits high synchro-
nization overhead (52%) using kernel-level locks in the client
and the server incurs high levels of processing overhead (45%)
due to kernel-level lock operations.

For each CORBA request/response, CORBAplus’s client
ORB performs 199 lock operations, whereas the server per-
forms 216 user-level lock operations, as shown in Figure 13.
This locking overhead stems largely from excessive dynamic
memory allocation, as described in Section 2.3. Each dynamic
allocation causes two user-level lock operations,i.e., one ac-
quire and one release.
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Figure 9: Whitebox Results for CORBAplus

The CORBAplus connection and concurrency architectures
are outlined briefly below.

� CORBAplus connection architecture: The COR-
BAplus ORB connection architecture multiplexes all requests
to the same server through one active connection thread, which
simplifies ORB implementations by using a uniform queueing
mechanism.

� CORBAplus concurrency architecture: The COR-
BAplus ORB concurrency architecture uses the thread pool
architecture with a single I/O thread toaccept and read
requests from socket endpoints. This thread inserts the request
on a queue that is serviced by a pool of worker threads.

The CORBAplus connection architecture and the server
concurrency architecture help reduce the number of simulta-
neous open connections and simplify the ORB implementa-
tion. However, concurrent requests to the shared connection
incur high overhead since each send operation incurs a con-
text switch. In addition, on the client-side, threads of different
priorities can share the same transport connection, which can
cause priority inversion. For instance, a high-priority thread
may be blocked until a low-priority thread finishes sending its
request. Likewise, the priority of the thread that blocks on
the semaphore to receive a reply from a twoway connection
may not reflect the priority of therequestthat arrives from the
server, thereby causing additional priority inversion.

miniCOOL whitebox results: Our whitebox analysis of
miniCOOL reveals that synchronization overhead from mu-
tex and semaphore operations consume a large percentage of
the total miniCOOL ORB processing time. As with COR-
BAplus, synchronization overhead in miniCOOL arises from
locking operations that implement its connection and concur-
rency architecture. Locking overhead accounted for�50% on
the client-side and more than 40% on the server-side, as shown
in Figure 10).
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Figure 10: Whitebox Results for miniCOOL

For each CORBA request/response, miniCOOL’s client
ORB performs 94 lock operations at the user-level, whereas
the server performs 231 lock operations, as shown in Fig-
ure 13. As with CORBAplus, this locking overhead stems



largely from excessive dynamic memory allocation. Each dy-
namic allocation causes two user-level lock operations,i.e.,
one acquire and one release.

The number of calls per-request to kernel-level locking
mechanisms at the server (shown in Figure 14) are unusually
high. This overhead stems from the fact that miniCOOL uses
“system scoped” threads on Solaris, which require kernel in-
tervention for all synchronization operations [7].

The miniCOOL connection and concurrency architectures
are outlined briefly below.

� miniCOOL connection architecture: The miniCOOL
ORB connection architecture uses a “leader/follower” model
that allows the leader thread to block inselect on the shared
socket. All following threads block on semaphores waiting for
one of two conditions: (1) the leader thread willread their re-
ply message and signal their semaphore or (2) the leader thread
will read its own reply and signal another thread to enter and
block in select , thereby becoming the new leader.

� miniCOOL concurrency architecture: The Sun
miniCOOL ORB concurrency architecture also uses a
leader/follower model that waits for connections in a single
thread. Whenever a request arrives and validation of the re-
quest is complete, the leader thread (1) signals a follower
thread in the pool to wait for incoming requests and (2) ser-
vices the request.

The miniCOOL connection architecture and the server con-
currency architecture help reduce the number of simultaneous
open connections and the amount of context switching when
replies arrive in FIFO order. As with CORBAplus, however,
this design yields high levels of priority inversion. For in-
stance, threads of different priorities can share the same trans-
port connection on the client-side. Therefore, a high-priority
thread may block until a low-priority thread finishes sending
its request. In addition, the priority of the thread that blocks on
the semaphore to access a connection may not reflect the pri-
ority of theresponsethat arrives from the server, which yields
additional priority inversion.

MT-Orbix whitebox results: Figure 11 shows the whitebox
results for the client-side and server-side of MT-Orbix.

� MT-Orbix connection architecture: Like miniCOOL,
MT-Orbix uses the leader/follower multiplexed connection ar-
chitecture. Although this model minimizes context switching
overhead, it causes intensive priority inversions.

� MT-Orbix concurrency architecture: In the MT-
Orbix implementation of our benchmarking testbed, multiple
servant threads were created, each with the appropriate pri-
ority, i.e., the high-priority servant had the highest priority
thread. A thread filter was then installed to look at each re-
quest, determine the priority of the request (by examining the
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Figure 11: Whitebox Results for MT-Orbix

target object), and pass the request to the thread with the cor-
rect priority. The thread filter mechanism is implemented by a
high-priority real-time thread to minimize dispatch latency.

The thread pool instantiation of the MT-Orbix mechanism is
flexible and easy to use. However, it suffers from high levels
of priority inversion and synchronization overhead. MT-Orbix
provides onlyone filter chain. Thus, all incoming requests
must be processed sequentially by the filters before they are
passed to the servant thread with an appropriate real-time pri-
ority. As a result, if a high-priority request arrives after a low-
priority request, it must wait until the low-priority request has
been dispatched before the ORB processes it.

In addition, a filter can only be called after (1) GIOP pro-
cessing has completed and (2) the Object Adapter has deter-
mined the target object for this request. This processing is
serialized since the MT-Orbix ORB Core is unaware of the re-
quest priority. Thus, a higher priority request that arrived after
a low-priority request must wait until the lower priority request
has been processed by MT-Orbix.

MT-Orbix’s concurrency architecture is chiefly responsible
for its substantial priority inversion shown in Figure 7. This
figure shows how the latency observed by the high-priority
client increases rapidly, growing from�2 msecs to�14 msecs
as the number of low-priority clients increase from 1 to 50.

The MT-Orbix filter mechanism also causes an increase in
synchronization overhead. Because there is just one filter
chain, concurrent requests must acquire and release locks to
be processed by the filter. The MT-Orbix client-side performs
175 user-level lock operations per-request, while the server-
side performs 599 user-level lock operations per-request, as
shown in Figure 13. Moreover, MT-Orbix displays a high
number of kernel-level locks per-request, as shown in Fig-
ure 14.

TAO whitebox results: As shown in Figure 12, TAO ex-
hibits negligible synchronization overhead. TAO performs 41
user-level lock operations per-request on the client-side, and
100 user-level lock operations per-request on the server-side.
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Figure 12: Whitebox Results for TAO

This low amount of synchronization results from the design of
TAO’s ORB Core, which allocates a separate connection for
each priority, as shown in Figure 6. Therefore, TAO’s ORB
Core minimizes additional user-level locking operations per-
request and uses no kernel-level locks in its ORB Core.

� TAO connection architecture: TAO uses a non-
multiplexed connection architecture, which pre-establishes
connections to servants, as described in [4]. One connec-
tion is pre-established for each priority level, thereby avoid-
ing the non-deterministic delay involved in dynamic connec-
tion setup. In addition, different priority levels have their
own connection. This design avoids request-level priority in-
version, which would otherwise occur from FIFO queueing
acrossclient threads with different priorities.

� TAO concurrency architecture: TAO supports several
concurrency architectures, as described in [4]. Thethread-
per-priority architecture was used for the benchmarks in this
paper. In this concurrency architecture, a separate thread is
created for each priority leveli.e., each rate group. Thus, the
low-priority client issues CORBA requests at a lower rate than
the high-priority client (10 Hz vs. 20 Hz, respectively).

On the server-side, client requests sent to the high-priority
servant are processed by a high-priority real-time thread. Like-
wise, client requests sent to the low-priority servant are han-
dled by the low-priority real-time thread. Locking overhead is
minimized since these two servant threads share minimal ORB
resources,i.e., they have separateReactor s, Acceptor s,
Object Adapters, etc. In addition, the two threads service sep-
arate client connections, thereby eliminating the priority inver-
sion that would otherwise arises from connection multiplex-
ing, as exhibited by the other ORBs we tested.

Locking overhead: Our whitebox tests measured user-level
locking overhead (shown in Figure 13) and kernel-level lock-
ing overhead (shown in Figure 14) in the CORBAplus, MT-
Orbix, miniCOOL, and TAO ORBs. User-level locks are typ-
ically used to protect shared resources within a process. A
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Figure 13: User-level Locking Overhead in ORBs
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Figure 14: Kernel-level Locking Overhead in ORBs

common example is dynamic memory allocation using global
C++ operatorsnew and delete . These operators allocate
memory from a globally managed heap in each process.



Kernel-level locks are more expensive since they typically
require mode switches between user-level and the kernel. The
semaphore and mutex operations depicted in the whitebox re-
sults for the ORBs evaluated above arise from kernel-level
lock operations.

TAO limits user-level locking by using buffers that are pre-
allocated off the run-time stack. This buffer is subdivided to
accommodate the various fields of the request. Kernel-level
locking is limited due to the fact that TAO can be configured
so that ORB resources are not shared between its threads.

2.3 Evaluation and Recommendations

The results of our benchmarks illustrate the non-deterministic
performance incurred by applications running atop conven-
tional ORBs. In addition, the results show that priority
inversion and non-determinism are significant problems in
conventional ORBs. As a result, these ORBs are not cur-
rently suitable for applications with deterministic real-time
requirements. Based on our results, and our prior experi-
ence [8, 9, 10, 11] measuring the performance of CORBA
ORB endsystems, we suggest the following recommendations
to decrease non-determinism and limit priority inversion in
real-time ORB endsystems.

1. Real-time ORBs should avoid dynamic connection es-
tablishment: ORBs that establish connections dynamically
suffer from high jitter. Thus, performance seen by individ-
ual clients can vary significantly from the average. Neither
CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre-
establishing connections; TAO provides these APIs as exten-
sions to CORBA.

We recommend that APIs to control the pre-establishment
of connections should be defined as an OMG standard for real-
time CORBA [12, 13].

2. Real-time ORBs should avoid multiplexing requests
of different priorities over a shared connection: Sharing
connections requires synchronization. Thus, high-priority re-
quests can be blocked until low-priority threads release the
shared connection lock. Moreover, priority inversion is ex-
acerbated if multiple thread with multiple levels of thread pri-
orities share common locks. For instance, medium priority
threads can preempt a low priority thread that is holding a
lock required by a high priority thread, which can lead to un-
bounded priority inversion [3].

We recommend that real-time ORBs should allow applica-
tion developers to determine whether requests with different
priorities are multiplexed over shared connections. Currently,
neither miniCOOL, CORBAplus, nor MT-Orbix support this
level of control, though TAO provides this model by default.

3. Real-time ORBs should minimize dynamic memory al-
location: Thread-safe implementations of dynamic memory

allocators require user-level locking. For instance, the C++
new operator allocates memory from a global pool shared by
all threads in a process. Likewise, the C++delete opera-
tion, that releases allocated memory, also requires user-level
locking to update the global shared pool. This lock sharing
contributes to the overhead shown in Figure 13.

We recommend that real-time ORBs avoid excessive shar-
ing of dynamic memory locks via the use of OS features such
as thread-specific storage [14], which allocates memory from
separate heaps that are unique to each thread.

4. Real-time ORB concurrency architectures should be
flexible, yet efficient and predictable: Many ORBs, such
as miniCOOL and CORBAPlus, create threads on behalf of
server applications. This design prevents application develop-
ers from customizing ORB performance by selecting a custom
concurrency architecture. Conversely, other ORB concurrency
architectures are flexible, but inefficient and non-deterministic,
as shown by Section 2.2.2’s explanation of the MT-Orbix per-
formance results. Thus, a balance is needed between flexibility
and efficiency.

We recommend that real-time ORBs provide APIs that al-
low application developers to select concurrency architectures
that are flexible, efficient,andpredictable. For instance, TAO
offers a range of concurrency architectures (such as thread-
per-priority, thread pool, and thread-per-connection) that can
selectively use thread-specific storage to minimize unneces-
sary sharing of ORB resources.

5. Real-time ORB endsystem architectures should be
guided by empirical performance benchmarks: Our prior
research on pinpointing performance bottlenecks and opti-
mizing middleware like Web servers [15, 16] and CORBA
ORBs [9, 8, 11, 10] demonstrates the efficacy of a
measurement-driven research methodology. We recommend
that the OMG adopt standard real-time CORBA benchmark-
ing techniques and metrics. These benchmarks will simplify
the communication and comparison of performance results
and real-time ORB behavior patterns. The real-time ORB
benchmarking test suite described in this section is available
atwww.cs.wustl.edu/ �schmidt/TAO.html .

3 Concluding Remarks

Conventional CORBA ORBs exhibit substantial priority inver-
sion and non-determinism. Consequently, they are not yet suit-
able for distributed, real-time applications with deterministic
QoS requirements. Meeting these demands requires that ORB
Core software architectures be designed to reduce priority in-
version and increase end-to-end determinism.

The TAO ORB Core described in this paper reduces priority
inversion and enhances determinism by using a priority-based



concurrency architecture and non-multiplexed connection ar-
chitecture that share a minimal amount of resources among
threads. The architectural principles used in TAO can be ap-
plied to other ORBs and other real-time software systems.

TAO has been used to develop a number of real-time ap-
plications, including a real-time audio/video streaming ser-
vice [17] and a real-time ORB endsystem for avionics mis-
sion computing [6]. The avionics application manages sen-
sors and operator displays, navigate the aircraft’s course, and
control weapon release. To meet the scheduling demands of
real-time applications, TAO supports predictable scheduling
and dispatching of periodic processing operations [1], as well
as efficient event filtering and correlation mechanisms [6].
The C++ source code for TAO and ACE is freely available
atwww.cs.wustl.edu/ �schmidt/TAO.html .
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