Evaluating and Optimizing Thread Pool Strategies for Real-Time CORBA

Irfan Pyarali, Marina Spivak, and Ron Cytron Douglas C. Schmidt
{irfan,marina,cytroh@cs.wustl.edu schmidt@uci.edu
Department of Computer Science Electrical and Computer Engineering Dept.

Washington University, St. Louis, MO 63130, USA University of California, Irvine, CA 92697, USA

Abstract tems were not well served by middleware like CORBA due to

. , i its lack of QoS support.
Strict control over the scheduling and execution of processofre recent Real-time CORBA (RT-CORBA) 1.0 specifi-

resources is essential for many fixed-priority real-time applixtion [2, 3] in the CORBA 2.4 standard is an important
cations. To facilitate this common requirement, the Real-Tirgn@p towards defining standards-based, commercial-off-the-
CORBA (RT-CORBA) specification defines standard middlge|t (cOTS) middleware that can deliver end-to-end QoS
ware features that support end-to-end predictability for OP&ypport at multiple levels in DRE systems. As shown in Fig-

ations in such applications. One of the most important fegze 1 RT-CORBA ORB endsystemgefine standard capa-
tures in RT-CORBA is thread pools, which allow application

developers and end-users to configure and control processor END-TO-END PRIORITY

resources. PROPAGATION
This paper provides two contributions to the evaluation of in_args
techniques for improving the quality of implementation of RT- operation()

out args + return value

CORBA thread pools. First, we describe the key patterns 5
underlying common strategies for implementing RT-CORBA
thread pools. Second, we evaluate each thread pool strategy STANDARD

in terms of its consequences on (1) feature support, such as re- EXPLICIT - SYNCHRONIZERS

quest buffering and thread borrowing, (2) scalability in terms BT PING p (OPIECT ADAPTER
of endpoints and event demultiplexers required, (3) efficiency

in terms of data movement, context switches, memory allo- [§§ J
cations, and synchronizations required, (4) optimizations in PROTOCOL

terms of stack and thread specific storage memory allocations, PROPERTIES
and (5) bounded and unbounded priority inversion incurred in
each implementation. This paper also provides results that il-
lustrate empirically how different thread pool implementation

strategies perform in different ORB configurations.

OS KERNEL OS KERNEL

0S 1/0 SUBSYSTEM
NETWORK ADAPTERS

Figure 1: Standard Features in Real-Time CORBA ORB
Endsystems

NETWORK

1 Introduction

] o bilities that support end-to-end predictability for operations
The maturation of the CORBA specification [1] and standargg-fixed-priority CORBA applications. RT-CORBA features

based CORBA implementations has simplified the devgliow applications to configure and control the following re-
opment of distributed systems with complexctional re- gqyrces:

guirements. However, next-generation distributed real-time

and embedded (DRE) systems, such as command and coft- Processor resourcesia thread pools, priority mecha-
trol systems, manufacturing process control systems, video- Nisms, and intraprocess mutexes

conferencing, large-scale distributed interactive simulations® Communication resourcesa protocol properties and ex-
and testbeam data acquisition SystemS, have Conm‘ab'(ty pI|C|t bindingS W|th non-multip|exed ConneCtionS and

of servigg(QoS) reqUiremen_t.Sa such as S'tring.ent bandwidth,1an ORB endsystem consists of network interfaces, /0 subsystem and
latency, jitter, and dependability needs. Historically, DRE sy&her OS mechanisms, and ORB middleware capabilities.

e Memory resourcesia buffering requests in queues and e
bounding the size of thread pools.

[3] presents an overview of the RT-CORBA features and [4]
explains how communication resources are configured and
controlled efficiently in TAO [5], which is our high-
performance, real-time implementation of CORBA.

There are two general strategies for implementing RT-
CORBA thread pools. The first strategy uses tHalf-
Sync/Half-Asyngattern [6], where I/O thread(s) buffer the
incoming requests in a queue and a different set of worker

threads then process the requests. The second strategy uses

the Leader/Followerspattern [6] to demultiplex 1/0O events
into threads in a pool without requiring additional I/O threads. ®
Each strategy is optimal for certain application domagng;

¢ Internet servers may use the Half-Sync/Half-Async pat-
tern to improve scalability, at the expense of increased
average- and worst-case latency.

Telecom servers may tolerate some degree of priority in-
version when using the Half-Sync/Half-Async pattern to
support buffering and borrowing across different priority
bands.

Embedded avionics control system may trade resource
duplication to avoid any priority inversions by using the
Leader/Followers pattern.

Thread pool without lanes In this basic thread pool
model all threads have the same assigned priority. This
model is illustrated in Figure 2.

Thread Pool

523272

PRIORITY
20

Figure 2: Thread Pool without Lanes

Thread pool with lanes In this more advanced model a
pool consists of subsets of threads (calkkeg that are
assigned different priorities. This model is illustrated in
Figure 3.

Thread Pool with Lanes
>3
S22 |(,2% 3
PRIORITY PRIORITY PRIORITY
10 35 50

Figure 3: Thread Pool with Lanes

The remainder of this paper is organized as follows: Section@ create thread pools without and with lanes, developers of
describes the key features in RT-CORBA thread pools; Segal-time applications can configure thread pools in an RT-
tion 3 illustrates how patterns can be applied to implement dfORBA server by using either thereate _threadpool
ferent RT-CORBA thread pool strategies; Section 4 providgscreate _threadpool _with _lanes methods, respec-
empirical results that compare different thread pool implgyely, which are defined in the standaRTTORBinterface.
mentation strategies; Section 5 compares our work on TAQ§ch thread pool is then associated with one or more POA
thread pools with related work; and Section 6 presents c@iz the RTCORBA:: ThreadPoolPolicy . The threads in
cluding remarks. a pool perform processing of client requests targeted at its as-
sociated POA(s). While a thread pool can be associated with
more than one POA, a POA can be associated with only one
thread pool. Figure 4 illustrates the creation and association of
thread pools in a server.

When created via thereate _threadpool* methods
outlined above, thread pools can be configured with the fol-

lowing properties:
o g prop

2 An Overview of RT-CORBA Thread
Pools

Many real-time systems use multi-threading to

1. Distinguish between different types of service, such
high-priority vs. low-priority tasks [7]

2. Support thread preemption to prevent unbounded priority
inversion and deadlock and .

3. Support complex object implementations that run for
variable and/or long durations.

Static threadswhich defines the number of pool threads
pre-allocated at thread pool creation time.

Dynamic threadswhich defines the maximum number
of threads that can be created on-demand. If a request
arrives when all existing threads are busy, a new thread

To allow real-time ORB endsystems and applications to lever- IS created to handle the request if the number of dynamic

age these benefits of multi-threading, while controlling the
amount of memory and processor resources they consume,
the RT-CORBA specification defines a sentbread pool
model [8]. There are two types of thread pools in RT-CORBA:

threads in the pool have not exceededdleamicvalue
specified by the user.

The ability to configure the number of threads allows de-
velopers to bound the processing resources. Also, de-

Default Thread Pool A Thread Pool B guest buffering resources used when all threads are busy,

Thread Pool e :
specified in number of bytes or requests. If a request ar-
> >
[DﬁT] [é)é] E)é’é 2] [’2] E)é’é 2 rives when all threads are busy and the buffering space
PRIORITY, 10 35 50 20 is exhausted, the ORB should raiSeETRANSIENT ex-

ception, which indicates a temporary resource shortage.
When a client receives this exception it can reissue the
request at a later time. Figure 5 illustrates the thread pool
request buffering feature.

/

POA A
EEEE
10 50 50 35

k\
N,

Thead Pool A Thead Pool B
‘ S| 272 2272
v M _)é é > 2 > 2
PRIORITY 10 PRIORITY 35 PRIORITY 20
S1 S2 S3
[(DEFAULT](DEFAULT](DEFAULT] ROOt POA] \ ,
L SERVER ORB CORE
THREADS

Figure 4: POA Thread Pools in Real-time CORBA

velopers can choose between dynamic and static threads SERVER ORB CORE
to trade off (1) the jitter introduced by dynamic thread . i : :

) . : Figure 5: Buffering Requests in RT-CORBA Thread Pools
creation/destruction with (2) the wastefulness of under- 9 greq
utilized static threads.

e Priority, which defines the CORBA priority with which
threads are created. There are two thread priority
schemes used in RT-CORBA: native priority and CORBA
priority. Native priority is the Real-Time Operating
System (RTOS) specific thread priority representation.
CORBA Priority, on the other hand, is a uniform rep-
resentation used to overcome different RTOS specific
thread priority representations. A priority mapping
scheme is used to map between native and CORBA pri-
orities and vice versa. The valid CORBA priority range

is 0 to 32767. Static threads dynamic threads and priority are per-lane
Depending on theolicies configured in the ORB, this properties in thread pool with lanes model.
priority can be changed subsequently. Priority of threads

in thread pools with lanes do not changes except whgn . .
thread borrowings used as described below. The prios Alternative Patterns for Des'Qnmg

ity of a thread in a thread pool without lanes is changed Optima| RT-CORBA Thread Pool
to match the priority of a client making the request. POA

B serviced by Thread Pool B in Figure 4 illustrates this Strateg|es

scenario. The priority of a thread in a thread pool without , .

lanes is also changed to match the priority of the servatiiough RT-CORBA defines a standard set of interfaces and
that uses this thread. POA C serviced by Thread PooP8!ICY types, it intentionally “underspecifies” magyality of

in Figure 4 illustrates this scenario. The priority of thinPlementatiordetails, such as the ORB's memory manage-

thread is restored after the client request has been pRENt @nd connection management strategies. Though this ap-
cessed. proach maximizes the freedom of RT-CORBA ORB develop-

) i i , ers, it requires that application developers and end-users un-
* Stack sizewhich defines the bytes of stack size allocatgflstand how that an ORB is designed and how its design af-
for each thread. fects the schedulability, scalability, and predictability of their
¢ Request bufferingvhich bounds the maximum client re-application.

e Thread borrowing which controls whether a lane with
higher priority is allowed to “borrow” threads from a lane
with lower priority when it exhausts its maximum num-
ber of threads (both static and dynamic) and requires an
additional thread to service a new invocation. The bor-
rowed thread has its priority raised to that of the lane that
requires it. When the thread is no longer required, its pri-
ority is lowered once again to its previous value, and it is
returned to the lower priority lane. Naturally, this prop-
erty applies only to thread pools with lanes.

The thread pool architecture is an essential dimension@® asynchrony mechanisms, such as WinNT 1/O completion
an RT-CORBA ORB that also falls into the category of quaborts [10, 6]. However, asynchronous programs are harder to
ity of implementation detail. There are two general strategi@svelop, debug, and maintain. Asynchronous programs must
for implementing RT-CORBA thread pool#ialf-Sync/Half- manage additional data structures that contain state informa-
AsyncandLeader/Followers In this section, we uspatterns tion and execution history, which must be saved and restored
to describe these two strategies in detail, outlining their strawehen a thread of control is preempted by an interrupt handler.
ture, dynamics, implementation, and consequences for selecfwo forces must therefore be resolved when specifying an
ing optimal RT-CORBA thread pools for particular types dRT-CORBA threading architecture that executes services both
applications’ We focus on patterns in this paper to generaliagnchronously and asynchronously:
the applicability of our work. Pattern descriptions help appli-
cation developers and end-users understand the schedulabé-The architecture should be designed so parts of the
ity, scalability, and predictability consequences of a particular ORB that can benefit from the simplicity of synchronous
thread pool implementation used by their RT-CORBA ORB. processing need not address the complexities of asyn-

chrony. Similarly, ORB services that must maximize per-

3.1 Half-Sync/Half-Async formance should not peed to address the inefficiencies of
synchronous processing.

The Half-Sync/Half-Async architectqral pattern depouples, The architecture should enable the synchronous and
asynchronous and synchronous service processing in concur- asynchronous processing services to communicate with-

rent systems, to simplify programming without unduly reduc- oyt complicating their programming model or unduly de-
ing performance. The pattern introduces two intercommuni- - grading their performance.

cating layers, one for asynchronous and one for synchronous

service processing. Although the need for both programming simplicity and high
performance may seem contradictory, it is essential that both

3.1.1 Problem these forces be resolved in scalable RT-CORBA implementa-
tions.

Concurrent systems often contain a mixture of asynchronous
and synchronous processing. For example, asynchronous

events that an RT-CORBA server must react to include nati-2 Solution

work messages and software signals. However, there are 3§YRT-CORBA ORB endsystem can be decomposed into two
eral components of an RT-CORBA server that require syRyers [11], synchronous and asynchronous; a queueing layer
chronous processing, such as execution of application-spe¢figitroduced to mediate the communication between services

servant code. o in the asynchronous and synchronous layers.
Synchronous programming is usually less complex com-

pared to asynchronous programming because the threa% cl)f3 Struct d Collaborati
control can block awaiting the completion of operations.™ ructure and L-offaboration

Blocking operations allow programs to maintain state inform@ihe structure of the Half-Sync/Half-Async pattern is illus-
tion and execution history in their run-time activation recofighted in Figure 6. This design follows the Layers pattern [11]
stack. If all tasks are processed synchronously within segad includes the following participants:

rate threads of control, however, thread management overhead)))

can be excessive. Each thread contains resources that my8ghronous service layer: This layer performs high-level

be created, stored, retrieved, synchronized, and destroyed B{P£€SSing services. Services in the synchronous layer run in
thread manager. separate threads that can block while performing operations.

Conversely, asynchronous programming is generally méedn RT-CORBA server, this layer

efficient. In particular, interrupt-driven asynchronous SEN Dequeues a request from the queueing layer

tems may incur less context switching overhead [9] than synz" _.
chronous threaded systems because the amount of inform%‘- Finds the target servant for the request

tion necessary to maintain program state can be reduced. th Démarshalthe request 3 _
addition, asynchronous services can be mapped directly onfb Perform upcalls into application-specific code by calling
into the target servant registered in the POA by the appli-
2For completeness, this paper contains abbreviated descriptions of the cation

Half-Sync/Half-Async and Leader/Followers patterns, focusing on the imple . .
mentation of thread pools in RT-CORBA. A thorough discussion of these patB' Marshals the reply (If_ any) t(? the client ahd
terns appears in [6]. 6. Enqueues the reply (if any) in the queueing layer.

External Async Message Syne

) Event Source Task Queue Task
% >~ SYNC EXTERNAL EVENT :M)»I I JI-
S 3 SyNC TASK3 —> é’ 8 I d : :
§ < | TASK] = 7 E RECY MSG : read(msg) :
% g / % A : work() |
5; = \ . SyYNC _»% / ® PROCESS MSG | T |
TASK / |
\ \ 2 | / % % ENQUEUE MSG : Wﬁ?)

2 E 1, 4: read(data) N | ! / S DEQUELEMSG : |
S < 0! - | | I work()
8 E é O @ EXECUTE TASK | | | —
% | MESSAGE QUEUEs | £ N : ! ! i

7 “ & [| | |
“ / f 3: enqueue(data)
S & .
% K ASYNC Figure 7: Collaboration between Layers in the Half-
S 3 TASK w: interrupt Sync/Half-Async Pattern
S &
Z EXTERNAL
; < EVENT SOURCES For an RT-CORBA server, common sources of external events
< include sensors, network interfaces, disk controllers, and end-

er terminals.

Figure 6: The Structure of Participants in the Half—Sync/HaIlil—S

Async Pattern Figure 7 illustrates these collaborations among participants

in the Half-Sync/Half-Async pattern.

Asynchronous service layer: This layer performs lower- 14 Imol tation S :
level processing services, which typically emanate from ohe” mplementation Synopsis
or more external event sources. Services in the asynchrongggre 8 illustrates the architecture of a RT-CORBA ORB
layer cannot block while performing operations without Uyhere thread pools are designed using the Half-Sync/Half-
duly degrading the performance of other services. In an Flsync pattern. The asynchronous layer performs I/O process-
CORBA server, this layer ing, demultiplexing of incoming requests, and multiplexing of

1. Reads the incoming request from the network outgoing replies. It consists of the following components:

2. Find the target thread pool that will handle this request. Acceptor— An Acceptor [6] is used to service connec-

and tion requests from clients. The client establishes multiple
3. Adds the request to the thread pool's queue that has the qu ' uitip
) o connections to the server, one for every range of priorities
appropriate priority.

that will be used by the client when making requests. Af-

ter a connection has been established, it is moved to the
¢ Reactor with the corresponding priority during the first
request.

Queueing layer: This layer provides the mechanism for
communicating between services in the synchronous an
asynchronous layers. For example, messages containing data
and control information are produced by asynchronous sere Reactors— Each priority supported by the server has a
vices, then buffered at the queueing layer for subsequent re- corresponding Reactor [6], which is used to demultiplex
trieval by synchronous services, and vice versa. The queueing and dispatch incoming client requests.
layer is responsible for notifying services in one layer when. Threads- The Acceptor is serviced by a thread running
messages are passed to them from the other layer. The queue- : o . :
: at an ORB-defined priority. Each Reactor is serviced by
ing layer therefore enables the asynchronous and synchronous : T

. . y . S thread(s) at the appropriate priority.
layers to interact in a “producer/consumer” manner, similar

to the structure defined by the Pipes and Filters pattern D‘i%‘avoid priority inversion, the queueing layer consists of mul-

Foran RT-CORBA server, this layer queues incoming requegige queues, one for every thread pool lane. /O threads read
from and outgoing replies to clients.

the incoming request, determine their target thread pool, and
External event sources: These sources generate events thdgposit the request into the right queue for processing. The
are received and processed by the asynchronous service Iay@chronous layer consists of the threads in thread pool lanes.

(POA A] (POAB][POAC | be implemented relatively easily by buffering the request in a
gueue that has threads available to process the request.

~

POA THREAD POA THREAD
PooL OOl Sharing of /O resources. ORB resources, such as reac-
LANE 1 i LANE 2 i LANE 3 LANE 1 [l LANE 2 [LANE 3 tors and acceptors, are per-priority resources in the 1/O layer.

10 15 10 15 20 Therefore, if a server is configured with many thread pools that

ééé é é ééé ééé é é ééé have similar lane priorities, 1/0 layer resources are shared by

these lanes.

Easier piece-by-piece integration into the ORB. Ease of
implementation and integration are important practical con-

.
siderations in any project. Due to its layered structure, this
approach is easier to design, implement, integrate, and test in

a incrementally.

MAX 5 15 The Half-Sync/Half-Async implementation of RT-CORBA
é ééé ééé 10 ééé ééézo thread pools also has the followiligbilities:

[A““;P'U) (REACTOR] [REACTOR} {REACTOR} [REACTOR}

Data exchange overhead. When exchanging data between

the synchronous and asynchronous layers, the queueing layer
can incur a significant performance overhead due to context

switching, synchronization, cache coherency management,

Figure 8: Implementing an RT-CORBA Thread Pool Using thg, 4 data-copying overhead [9].

Half-Sync/Half-Async Pattern L)
No memory management optimizations. Since a request

is handed off from an /O thread in the asynchronous layer

to a thread pool thread in the synchronous layer, stack and
These threads block on a condition variable, waiting for rdtread-specific storage (TSS) [6] cannot be used to optimize
quests to show up in their queue. After dequeueing the requesgmory management for clients requests. Instead, a shared
the target servant is found in the target POA, the request is deemory pool must be used to allocate storage for the requests.
marshaled and application-level servant code is then executéfortunately, synchronization for this shared memory pool
can lead to extra overhead. Moreover, if the memory pool is
shared between threads of different priorities, it can lead to
priority inversion.

The Half-Sync/Half-Async implementation of RT-CORBATable 1 summaries the evaluation for Half-Sync/Half-Async
thread pools has the followirgenefits implementation of RT-CORBA thread pools.

3.1.5 Consequences

Simplified programming. The programming of the syn-T Criteria [Evaluation |
chronous phase is simplified without degrading the perfg
mance of the asynchronous phase. Distributed systems ba

"Feature Support | Good: supports request buffering
sed and thread borrowing

on RT-CORBA often have a larger quantity and variety @fscaiibility Good: I/0 layer resources shared
high'level processing SerViceS than IOWer'IeVel SerViCES. I eEfﬁciency Poor: h|gh overhead for data movement’
coupling higher-level synchronous services from lower-level context switches, memory allocations, anfl
asynchronous processing services can therefore simplify QRB synchronizations

development because complex concurrency control, interju@ptimizations Poor: stack and TSS memory not supporied
handling, and timing services can be localized within the asynPriority Inversion | Poor: some unbounded, many bounded
chronous service layer. The asynchronous layer can also han-

dle low-level details that are difficult to program robustly andTable 1: Evaluation of Half-Sync/Half-Async thread pools
can manage the interaction with hardware-specific compo-

nents, such as DMA, memory management, and network 1/O.

3.2 Leader/Followers

Support for request buffering and thread borrowing.

Since a request remains in the queueing layer until a thrddwk Leader/Followers architectural pattern provides an effi-
is available to service it, the queueing layer can be usedctent concurrency strategy where multiple threads take turns
buffer requests by bursty clients. Thread borrowing can alswaring a set of event sources in order to detect, demultiplex,

dispatch, and process service requests that occur on the ev§ CoNCRETE HANDLE SET
sources.
EvVENT HANDLER
handle events()
3.2.1 Problem select()
suspend _handler()
Mission-critical RT-CORBA servers often process a high vol- 0..* | resume_handler()
ume of requests that arrive simultaneously. To process these HANDLE
requests efficiently, the following three forces must be re-
solved: 7 (S
o . e \VV@& THREAD PooL
e Associating a thread for each connected client may b E 7 N8y -
infeasible due to the scalability limitations of applications |V ENT ZIANDLER N | 50 OnEe(s)
or the underlying OS and hardware platforms. handle_event() <| — — —Yjoin ()
o Allocating memory dynamically for each request passed &et_handle() <demuxes=romote_new_leader()

between multiple threads incurs significant overhead on

conventional multiprocessor operating systems. Figure 9: The Structure of Participants in the
)) Leader/Followers Pattern
e Multiple threads that demultiplex events on a shared set

of event sources must coordinate to prevent race condi-
tions. Race conditions can occur if multiple threads tend requests. A handle set returns to its caller when a new
to access or modify certain types of event sources simigguest arrives from a client.

taneously. Event Handlers. The ORB event handler dispatches the in-
coming request to the target servant. This process includes

3.2.2 Solution .
1. Reading the request from the network

A pool of threads is structured to share incoming client re . Finding the target servant for the request
quests by taking turns demultiplexing the requests and syrg. pemarshaling the request
chronously dispatching the associated servant code that pra: performing the upcall into application-specific code by

cesses the request. _ calling into the target servant registered in the POA by
More specifically, this thread pool mechanism allows mul- the application

tiple threads to coordinate themselves and protect critical seg; Marshaling the reply (if any) to the client and

tions while detecting, demultiplexing, dispatching, and pro-g_ Sending the reply (if any) back to the client.

cessing requests. In this mechanism, one thread at a time—the

leader—uwaits for a request to arrive from the set of connectfhe oy pool. At the heart of the Leader/Followers pattern
clients. Meanwhile, other threads—the followers—can qUeW, ,read pool, which is a group of threads that share a syn-
up waiting their turn to become the leader. After the curregyinizer, such as a semaphore or condition variable, and im-
leader thread detects a new client request, it first promotesdyant a protocol for coordinating their transition between

follower thread to become the new leader. Itthen plays the rglg;q s roles. A thread's transitions between states is shown
of a processing thread, which demultiplexes and dispatchesﬁhgigure 10.

request to application-specific code in the processing thréadeyq ¢ jahorations in the Leader/Followers pattern are illus-
Multiple processing threads can handle requests concurref}a{ed in Figure 11
while the current leader thread waits for new requests. After '
handling its request, a processing thread reverts to a follo

er . .
role and waits to become the leader thread again. \g'2'4 Implementation Synopsis

In this design, each RT-CORBA thread pool lane has an inte-
3.2.3 Structure and Collaboration grated I/O layeri.e., there is one acceptor and one reactor for
.) every lane. Clients connect to the acceptor endpoint with the
The key partlmpants in the Lgader/Followers pattern ajgsired priority and as shown in Figure 12, all client request
shown in Figure 9 and are described below: processing (as described in Section 3.2.3) is performed by the
Handles and handle sets. Handles are operating systemthread of desired priority from very beginning. Thus, there are
objects, such as network connections, that indicate when mawcontext switches and priority inversions are minimized.
requests arrive from clients. A handle set is a collection ofln addition, the ORB does not create any internal 1/O
handles that can be used to wait for one or more clientsthweads. This allows application programmers full control

PROCESSING

PROCESSING
COMPLETED;
NO LEADER
AVAILABLE

PROCESSING
COMPLETED;

AVAILABLE

EVENT
HANDOFF

LEADER

FOLLOWING

NEW LEADER

LEADING

Figure 10:
Leader/Followers Pattern

: THREAD

: HANDLE

: CONCRETE

: THREAD}

: THREAD)

POOL

EVENT HANDLER

join0 ! ‘

BECOME NEW LEADER THREADD
T

handle_events() |

join
i doin0 BECOME

THREAD
EVENT ARRIVES
t

FOLLOWER

<1 select()

promote_new_l

ader() N

BECOME NEW LEADER THREAD

handle_event()

join()

handle_events() l
1

|
BECOME

Figure

T
‘ THREAD

11:

Leader/Followers Pattern

; FOLLOWER

I
|
|
|
|
|
|
|
|
BECOME PROCESSING THREAD
|
|
|
I
|

HZ select()

[]
Collaboration Among Participants in the

(POA A] (PoAB | [POAC |
POA THREAD POA THREAD
POOL POOL
LANE 1 LANE 2 LANE 3 LANE 1 LANE 2 LANE 3
5 10 || 15 10 || 15 || 20

N

=

=

=

(S

J

REACTOR

=

REACTOR | | REACTOR REACTOR | | REACTOR | | REACTOR

NETWORK

Figure 12: Implementing an RT-CORBA Thread Pool Using
the Leader/Followers Pattern

over the number and properties of all the threads with the RT-
CORBA thread pool APIs. In contrast, the Half-Sync/Half-
Async implementation has 1/O layer threads, so either a pro-
prietary APl must be added or application programmer will
not have full control over all the thread resources.

3.2.5 Consequences
The Leader/Followers pattern provides seveeaiefits

Performance enhancements. Compared with the Half-
Sync/Half-Async thread pool strategy described in Sec-

A Thread’s State Transitions in thgon 3.1, the Leader/Followers pattern can improve perfor-

mance as follows:

¢ It enhances CPU cache affinity and eliminates the need
for dynamic memory allocation and data buffer sharing
between threads. For example, a processing thread can
read the request into buffer space allocated on its run-time
stack or by using the thread-specific storage (TSS) [6] to
allocate memory.

¢ It minimizes locking overhead by not exchanging data be-
tween threads, thereby reducing thread synchronization.

e It can minimize priority inversion because no extra
gueueing is introduced in the server. When combined
with real-time I/O subsystems [12], the Leader/Followers
thread pool implementation can reduce sources of non-
determinism in server request processing significantly.

It does not require a context switch to handle each re-
quest, reducing the request dispatching latency. Note that
promoting a follower thread to fulfill the leader role does
require a context switch. If two events arrive simultane-
ously this increases the dispatching latency for the sec-
ond event, but the performance is no worse than Half-
Sync/Half-Async thread pool implementations.

However, the Leader/Followers pattern has the followiag
bilities:

Implementation complexity. The advanced variants of the
Leader/Followers pattern are harder to implement than Half-
Sync/Half-Async thread pools. A thorough discussion of these
variants appears in [6].

Lack of flexibility. The queueing layer in the Half-
Sync/Half-Async thread pool implementation makes it easy to
support features like request buffering and thread borrowing.
In the Leader/Followers implementation, however, it is harder
to implement these features because there is no explicit queue.

Table 2 summaries the evaluation for Leader/Followers imple-
mentation of RT-CORBA thread pools.

| Criteria | Evaluation | and a small amount of work-per-request. As the number of

Feature Support | Poor: not easy to support request threads and the amount of Work-per-request increased the per-
buffering or thread borrowing centage improvement decreased8%. These results illus-
Scalibility Poor: I/O layer resources not shared trate that the Half-Sync/Half-Async thread pool strategy incurs
Efficiency Good: little or no overhead for data a higher amount of overhead for memory allocation, locking,
movement, memory allocations, or and data movement than the Leader/Followers strategy.
synchronizations Note that on a lightly loaded real-time system, using a small
Optimizations | Good: stack and TSS memory supported nymper of threads will generally yield better throughput than
Priority Inversion | Good: little or no priority inversion a higher number of threads. This difference stems from the

) higher context switching and locking overhead incurred by
Table 2: Evaluation of Leader/Followers thread pools {hreading. As workloads increase, however, addition threads
may help improve server throughput, particularly when the

4 Empirical results server runs on a multi-processor.

Figure 13 compares the performance of the Half-Sync/Ha§- Related Work

Async vs. the Leader/Followers thread pool implementations.

These benchmarks were conducted using TAO version Réal-time middleware is an emerging field of study. An in-
on a quad-CPU 400 MHz Pentium II Xeon, with 1 GBytereasing number of research efforts are focusing on integrat-
RAM, 512 Kb cache on each CPU, running Debian Linux réghg QoS and real-time scheduling into distribution middle-
lease 2.2.5, and g++ version egcs-2.91.66. Our benchmaylge, such as CORBA. Our previous work on TAO has exam-
ined many dimensions of ORB middleware design, including
static [5] and dynamic [13] operation scheduling, event pro-
cessing [7], I/O subsystem [12] and pluggable protocol [14]
integration, synchronous [8] and asynchronous [15] ORB
Core architectures, IDL compiler features [16] and optimiza-
tions [17], systematic benchmarking of multiple ORBs [18],
patterns for ORB extensibility [6] and ORB performance [19].
In this section, we compare our work on TAO's RT-CORBA
thread pools with related work on CORBA.

URI TDMI. Wolfe et al. developed a real-time CORBA
system at the US Navy Research and Development Labora-
tories (NRaD) and the University of Rhode Island (URI) [20].
The system supports expression and enforcement of dynamic
end-to-end timing constraints through timed distributed oper-
ation invocations TDMIs) [21]. A difference between TAO
Threads 5 . and the URI approaches is tHEDMIs express required tim-
ing constraints,e.g, deadlines relative to the current time,
Figure 13: Performance of Half-Sync/Half-Async vs. thghereas TAO's threading strategies are based on the fixed-
Leader/Followers thread pool implementations priority scheduling features defined in the RT-CORBA spec-
ification.
measure the total time required by each concurrency st@é—N QuO. The Quality Objects(QuO) distributed object
egy to process 100,000 CORBA request messages. We mﬁdleware is developed at BBN Technologies [22]. QuO is

ied the number of threads and the amount of application-legég‘:j:Ised on CORBA and provides the following support for QoS-
processing performed for each request. The results in 9= bled applications:

ure 13 illustrate the percentage improvement in performance

for the Leader/Followers thread pool strategy compared withe Run-time performance tuning and configuratitbnough

the Half-Sync/Half-Async thread pool strategy. the specification of operating regions, behavior alterna-
As shown in the figure, the Leader/Followers strategy out- tives, and reconfiguration strategies that allows the QuO

performed the Half-Sync/Half-Async approach for all combi- run-time to adaptively trigger reconfiguration as system

nations of threads and application workload. The largest im- conditions change (represented by transitions between

provements~2,800%, occurred for a small number of threads operating regions); and

Performance Improvement

e Feedbackacross software and distribution boundaries This paper describes the Half-Sync/Half-Async and the
based on a control loop in which client applications aricdtader/Followers strategies for implementing RT-CORBA
server objects request levels of service and are notifiedlokad pools. We evaluate these strategies using several differ-
changes in service. ent factors and present results that illustrate empirically how

o different thread pool implementation strategies perform in dif-

The QuUO model employs sevel@bS definition languagesterent ORB configurations. Our pattern-based descriptions are

(QDLs) that describe the QoS characteristics of various GRended to help application developers and end-users under-
jects, such as expected usage patterns, structural detailgi@dq the schedulability, scalability, and predictability conse-
objects, and resource availability. QuO’s QDLs are based Qfbnces of a particular thread pool implementation used by
the separation of concerns advocated by Aspect-Oriented Rk@ir RT-CORBA ORB.

gramming (AoP) [23]. The QuUO middleware adds significant 5| the source code, documentation, examples, and tests for

value to adaptive real-time ORBs such as TAO. We are Cyiy and its RT-CORBA mechanisms are open-source and can
rently collaborating [24] with the BBN QuO team to integratgs gownloaded fromwww.cs.wustl.edu/schmidt/
the TAO and QuO middleware as part of the DARPA QUOTrUffng himl .

project [25].

UCI TMO. The Time-triggered Message-triggered Objec;

(TMO) project [26] at the University of California, Irvine, sup—ﬁeferences
ports the integrated design of distributed OO systems and regl Object Management Groufhe Common Object Request Broker: Ar-
time simulators of their operating environments. The TMO chitecture and SpecificatioR.4 ed., Oct. 2000.

model provides structured timing semantics for distribute@ Object Management GroupRealtime CORBA Joint Revised Submis-
real-time object-oriented applications by extending conven- sion OMG Document orbos/99-02-12 ed., March 1999.

; ; ; ; ; : [3] D. C. Schmidt and F. Kuhns, “An Overview of the Real-time CORBA
tional invocation semantics for ObJeCt methotls, CORBA Specification,” [IEEE Computer Magazine, Special Issue on Object-

operations, to include (1) invocation of time-triggered oper- oriented Real-time Computingune 2000.
ations based on system times and (2) invocation and tinig c. o'Ryan, D. C. Schmidt, F. Kuhns, M. Spivak, J. Parsons, |. Pyarali,

n X ion of conventional m -tri r ra-and D. Levine, “Evaluating Policies and Mechanisms for Supporting
bounded execution of conventional essage-trigge ed opera Embedded, Real-Time Applications with CORBA 3.0,"Rnoceedings

tions. of the 6t" IEEE Real-Time Technology and Applications Symposium
TAO differs from TMO in that TAO provides a complete (Washington DC), IEEE, May 2000.

CORBA ORB, as well as CORBA ORB services and real-timgs] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-

extensions. Timer-based invocation capabilities are provided Mance of Real-Time Object Request Brokefsgmputer Communica-

h h TAO's Real-Ti E Servi 71 Wh he TM tions, vol. 21, pp. 294-324, Apr. 1998.
throug s Real-Time Event Service [7]. Where the TMQg) - o . stal, H. Rohnert, and F. Buschmarattern-
model creates new ORB services to provide its time-based in- oriented Software Architecture: Patterns for Concurrent and Networked

vocation capabilities [27], TAO provides a subset of these ca- Objects, Volume.2New York, NY: Wiley & Sons, 2000.

pabilities by extending the standard CORBA COS Event Sef@d T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and

vice. We believe TMO and TAO are complementary technolo- g%”ggTﬁ?g? (C’Aftgr'?tga'ggeA%%R%ﬁtEgg?tlgg;‘f ice,Pinceedings of

.gles'because (l) TMO, extends and generallzes TAOS, ex'%i D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale, “Software
ing time-based invocation capabilities and (2) TAO provides @ Architectures for Reducing Priority Inversion and Non-determinism in

configurable and dependable connection infrastructure neededggf‘i';tggee 3?55;%3%;2?&%3%%2 ng%?';ﬂg"svsgigg‘fﬁ She
by the TMO CNCM service. We are currently collaborating net vol. 21, no. 2, 2001.

with the UCI TMO team to integrate the TAO and TMO mid-(g p. c. schmidt and T. Suda, “Measuring the Performance of Paral-

dleware as part of the DARPA NEST project. lel Message-based Process Architectures Pioceedings of the Con-
ference on Computer Communications (INFOCONBoston, MA),
pp. 624-633, IEEE, April 1995.

. 10] J. RichterAdvanced Windows, Third EditioRedmond, WA: Microsoft
6 Concluding Remarks 1O 2 ee 1005,

. . . [11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Thread pools are an important RT-CORBA capability since Pattern-Oriented Software Architecture — A System of Patte¥hisey
they allow application developers and end-users to control and Sons, 1996.

and bound the amount of resources dedicated to concurrdidyF. Kuhns, D. C. Schmidt, C. O'Ryan, and D. Levine, “Supporting High-
. performance I/O in QoS-enabled ORB Middlewar€Juster Comput-
and queueing. There are various strategies for implementing ing: the Journal on Networks, Software, and Applicatiorg. 3, no. 3,

thread pools in the RT-CORBA. Since certain strategies are 2000.
optimal for certain application domains, users of RT-CORBA3] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Perfor-
middleware must understand the trade-offs between the differ- Mance of a Real-Time CORBA Scheduling ServicBgal-Time Sys-

- tems, The International Journal of Time-Critical Computing Systems,
ent strategies. special issue on Real-Time Middlewavel. 20, March 2001.

10

[14] C. O’'Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J. Parsons, “The
Design and Performance of a Pluggable Protocols Framework for Real-
time Distributed Object Computing Middleware,” Rroceedings of the
Middleware 2000 ConferencACM/IFIP, Apr. 2000.

[15] A. B. Arulanthu, C. O’'Ryan, D. C. Schmidt, M. Kircher, and J. Par-
sons, “The Design and Performance of a Scalable ORB Architecture for
CORBA Asynchronous Messaging,” Proceedings of the Middleware
2000 ConferenceACM/IFIP, Apr. 2000.

[16] A. B. Arulanthu, C. O'Ryan, D. C. Schmidt, and M. Kircher, “Apply-
ing C++, Patterns, and Components to Develop an IDL Compiler for
CORBA AMI Callbacks,”C++ Report, vol. 12, Mar. 2000.

[17] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA [IOP Proto-
col Engine for Minimal Footprint Multimedia Systemslpurnal on Se-
lected Areas in Communications special issue on Service Enabling Plat-
forms for Networked Multimedia Systerasl. 17, Sept. 1999.

[18] A. Gokhale and D. C. Schmidt, “Measuring the Performance of Com-
munication Middleware on High-Speed Networks,” Pmoceedings of
SIGCOMM 96 (Stanford, CA), pp. 306-317, ACM, August 1996.

[19] I. Pyarali, C. O’'Ryan, D. C. Schmidt, N. Wang, V. Kachroo, and
A. Gokhale, “Using Principle Patterns to Optimize Real-time ORBs,”
Concurrency Magazinevol. 8, no. 1, 2000.

[20] V.F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever, I. Zykh,
and R. Johnston, “Real-Time CORBA,” iRroceedings of the Third
IEEE Real-Time Technology and Applications Symposiimontréal,
Canada), June 1997.

[21] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-
time Method Invocations in Distributed Environments,” Tech. Rep. 95-
244, University of Rhode Island, Department of Computer Science and
Statistics, 1995.

[22] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA ObjectsTheory and Practice of Object
Systemsvol. 3, no. 1, 1997.

[23] G. Kiczales, “Aspect-Oriented Programming,” Rroceedings of the
11th European Conference on Object-Oriented Programmihgne
1997.

[24] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal, R. Shapiro,
C. Rodrigues, M. Atighetchi, and D. Karr, “Comparing and Contrasting
Adaptive Middleware Support in Wide-Area and Embedded Distributed
Object Applications,” inProceedings of the 21st International Confer-
ence on Distributed Computing Systems (ICDCS-HEEE, April 2001.

[25] DARPA, “The Quorum Program.” www.darpa.mil/ito/research/quorum/index.html,
1999.

[26] K. H. K. Kim, “Object Structures for Real-Time Systems and Simula-
tors,” IEEE Computerpp. 62—70, Aug. 1997.

[27] K. Kim and E. Shokri, “Two CORBA Services Enabling TMO Network
Programming,” inFourth International Workshop on Object-Oriented,
Real-Time Dependable SystentzEE, January 1999.

11

