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Abstract

Strict control over the scheduling and execution of processor
resources is essential for many fixed-priority real-time appli-
cations. To facilitate this common requirement, the Real-Time
CORBA (RT-CORBA) specification defines standard middle-
ware features that support end-to-end predictability for oper-
ations in such applications. One of the most important fea-
tures in RT-CORBA is thread pools, which allow application
developers and end-users to configure and control processor
resources.

This paper provides two contributions to the evaluation of
techniques for improving the quality of implementation of RT-
CORBA thread pools. First, we describe the key patterns
underlying common strategies for implementing RT-CORBA
thread pools. Second, we evaluate each thread pool strategy
in terms of its consequences on (1) feature support, such as re-
quest buffering and thread borrowing, (2) scalability in terms
of endpoints and event demultiplexers required, (3) efficiency
in terms of data movement, context switches, memory allo-
cations, and synchronizations required, (4) optimizations in
terms of stack and thread specific storage memory allocations,
and (5) bounded and unbounded priority inversion incurred in
each implementation. This paper also provides results that il-
lustrate empirically how different thread pool implementation
strategies perform in different ORB configurations.

1 Introduction

The maturation of the CORBA specification [1] and standards-
based CORBA implementations has simplified the devel-
opment of distributed systems with complexfunctional re-
quirements. However, next-generation distributed real-time
and embedded (DRE) systems, such as command and con-
trol systems, manufacturing process control systems, video-
conferencing, large-scale distributed interactive simulations,
and testbeam data acquisition systems, have complexquality
of service(QoS) requirements, such as stringent bandwidth,
latency, jitter, and dependability needs. Historically, DRE sys-

tems were not well served by middleware like CORBA due to
its lack of QoS support.

The recent Real-time CORBA (RT-CORBA) 1.0 specifi-
cation [2, 3] in the CORBA 2.4 standard is an important
step towards defining standards-based, commercial-off-the-
shelf (COTS) middleware that can deliver end-to-end QoS
support at multiple levels in DRE systems. As shown in Fig-
ure 1, RT-CORBA ORB endsystems1 define standard capa-
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Figure 1: Standard Features in Real-Time CORBA ORB
Endsystems

bilities that support end-to-end predictability for operations
in fixed-priority CORBA applications. RT-CORBA features
allow applications to configure and control the following re-
sources:

� Processor resourcesvia thread pools, priority mecha-
nisms, and intraprocess mutexes

� Communication resourcesvia protocol properties and ex-
plicit bindings with non-multiplexed connections and

1An ORB endsystem consists of network interfaces, I/O subsystem and
other OS mechanisms, and ORB middleware capabilities.
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� Memory resourcesvia buffering requests in queues and
bounding the size of thread pools.

[3] presents an overview of the RT-CORBA features and [4]
explains how communication resources are configured and
controlled efficiently in TAO [5], which is our high-
performance, real-time implementation of CORBA.

There are two general strategies for implementing RT-
CORBA thread pools. The first strategy uses theHalf-
Sync/Half-Asyncpattern [6], where I/O thread(s) buffer the
incoming requests in a queue and a different set of worker
threads then process the requests. The second strategy uses
the Leader/Followerspattern [6] to demultiplex I/O events
into threads in a pool without requiring additional I/O threads.
Each strategy is optimal for certain application domains,e.g.:

� Internet servers may use the Half-Sync/Half-Async pat-
tern to improve scalability, at the expense of increased
average- and worst-case latency.

� Telecom servers may tolerate some degree of priority in-
version when using the Half-Sync/Half-Async pattern to
support buffering and borrowing across different priority
bands.

� Embedded avionics control system may trade resource
duplication to avoid any priority inversions by using the
Leader/Followers pattern.

The remainder of this paper is organized as follows: Section 2
describes the key features in RT-CORBA thread pools; Sec-
tion 3 illustrates how patterns can be applied to implement dif-
ferent RT-CORBA thread pool strategies; Section 4 provides
empirical results that compare different thread pool imple-
mentation strategies; Section 5 compares our work on TAO’s
thread pools with related work; and Section 6 presents con-
cluding remarks.

2 An Overview of RT-CORBA Thread
Pools

Many real-time systems use multi-threading to

1. Distinguish between different types of service, such as
high-priority vs. low-priority tasks [7]

2. Support thread preemption to prevent unbounded priority
inversion and deadlock and

3. Support complex object implementations that run for
variable and/or long durations.

To allow real-time ORB endsystems and applications to lever-
age these benefits of multi-threading, while controlling the
amount of memory and processor resources they consume,
the RT-CORBA specification defines a serverthread pool
model [8]. There are two types of thread pools in RT-CORBA:

� Thread pool without lanes– In this basic thread pool
model all threads have the same assigned priority. This
model is illustrated in Figure 2.
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Figure 2: Thread Pool without Lanes

� Thread pool with lanes– In this more advanced model a
pool consists of subsets of threads (calledlanes) that are
assigned different priorities. This model is illustrated in
Figure 3.
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Figure 3: Thread Pool with Lanes

To create thread pools without and with lanes, developers of
real-time applications can configure thread pools in an RT-
CORBA server by using either thecreate threadpool
or create threadpool with lanes methods, respec-
tively, which are defined in the standardRTORBinterface.
Each thread pool is then associated with one or more POA
via theRTCORBA::ThreadPoolPolicy . The threads in
a pool perform processing of client requests targeted at its as-
sociated POA(s). While a thread pool can be associated with
more than one POA, a POA can be associated with only one
thread pool. Figure 4 illustrates the creation and association of
thread pools in a server.

When created via thecreate threadpool* methods
outlined above, thread pools can be configured with the fol-
lowing properties:

� Static threads, which defines the number of pool threads
pre-allocated at thread pool creation time.

� Dynamic threads, which defines the maximum number
of threads that can be created on-demand. If a request
arrives when all existing threads are busy, a new thread
is created to handle the request if the number of dynamic
threads in the pool have not exceeded thedynamicvalue
specified by the user.

The ability to configure the number of threads allows de-
velopers to bound the processing resources. Also, de-
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Figure 4: POA Thread Pools in Real-time CORBA

velopers can choose between dynamic and static threads
to trade off (1) the jitter introduced by dynamic thread
creation/destruction with (2) the wastefulness of under-
utilized static threads.

� Priority, which defines the CORBA priority with which
threads are created. There are two thread priority
schemes used in RT-CORBA: native priority and CORBA
priority. Native priority is the Real-Time Operating
System (RTOS) specific thread priority representation.
CORBA Priority, on the other hand, is a uniform rep-
resentation used to overcome different RTOS specific
thread priority representations. A priority mapping
scheme is used to map between native and CORBA pri-
orities and vice versa. The valid CORBA priority range
is 0 to 32767.

Depending on thepolicies configured in the ORB, this
priority can be changed subsequently. Priority of threads
in thread pools with lanes do not changes except when
thread borrowingis used as described below. The prior-
ity of a thread in a thread pool without lanes is changed
to match the priority of a client making the request. POA
B serviced by Thread Pool B in Figure 4 illustrates this
scenario. The priority of a thread in a thread pool without
lanes is also changed to match the priority of the servant
that uses this thread. POA C serviced by Thread Pool B
in Figure 4 illustrates this scenario. The priority of the
thread is restored after the client request has been pro-
cessed.

� Stack size, which defines the bytes of stack size allocated
for each thread.

� Request buffering, which bounds the maximum client re-

quest buffering resources used when all threads are busy,
specified in number of bytes or requests. If a request ar-
rives when all threads are busy and the buffering space
is exhausted, the ORB should raise aTRANSIENT ex-
ception, which indicates a temporary resource shortage.
When a client receives this exception it can reissue the
request at a later time. Figure 5 illustrates the thread pool
request buffering feature.
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Figure 5: Buffering Requests in RT-CORBA Thread Pools

� Thread borrowing, which controls whether a lane with
higher priority is allowed to “borrow” threads from a lane
with lower priority when it exhausts its maximum num-
ber of threads (both static and dynamic) and requires an
additional thread to service a new invocation. The bor-
rowed thread has its priority raised to that of the lane that
requires it. When the thread is no longer required, its pri-
ority is lowered once again to its previous value, and it is
returned to the lower priority lane. Naturally, this prop-
erty applies only to thread pools with lanes.

Static threads, dynamic threads, and priority are per-lane
properties in thread pool with lanes model.

3 Alternative Patterns for Designing
Optimal RT-CORBA Thread Pool
Strategies

Although RT-CORBA defines a standard set of interfaces and
policy types, it intentionally “underspecifies” manyquality of
implementationdetails, such as the ORB’s memory manage-
ment and connection management strategies. Though this ap-
proach maximizes the freedom of RT-CORBA ORB develop-
ers, it requires that application developers and end-users un-
derstand how that an ORB is designed and how its design af-
fects the schedulability, scalability, and predictability of their
application.
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The thread pool architecture is an essential dimension of
an RT-CORBA ORB that also falls into the category of qual-
ity of implementation detail. There are two general strategies
for implementing RT-CORBA thread pools:Half-Sync/Half-
AsyncandLeader/Followers. In this section, we usepatterns
to describe these two strategies in detail, outlining their struc-
ture, dynamics, implementation, and consequences for select-
ing optimal RT-CORBA thread pools for particular types of
applications.2 We focus on patterns in this paper to generalize
the applicability of our work. Pattern descriptions help appli-
cation developers and end-users understand the schedulabil-
ity, scalability, and predictability consequences of a particular
thread pool implementation used by their RT-CORBA ORB.

3.1 Half-Sync/Half-Async

The Half-Sync/Half-Async architectural pattern decouples
asynchronous and synchronous service processing in concur-
rent systems, to simplify programming without unduly reduc-
ing performance. The pattern introduces two intercommuni-
cating layers, one for asynchronous and one for synchronous
service processing.

3.1.1 Problem

Concurrent systems often contain a mixture of asynchronous
and synchronous processing. For example, asynchronous
events that an RT-CORBA server must react to include net-
work messages and software signals. However, there are sev-
eral components of an RT-CORBA server that require syn-
chronous processing, such as execution of application-specific
servant code.

Synchronous programming is usually less complex com-
pared to asynchronous programming because the thread of
control can block awaiting the completion of operations.
Blocking operations allow programs to maintain state informa-
tion and execution history in their run-time activation record
stack. If all tasks are processed synchronously within sepa-
rate threads of control, however, thread management overhead
can be excessive. Each thread contains resources that must
be created, stored, retrieved, synchronized, and destroyed by a
thread manager.

Conversely, asynchronous programming is generally more
efficient. In particular, interrupt-driven asynchronous sys-
tems may incur less context switching overhead [9] than syn-
chronous threaded systems because the amount of informa-
tion necessary to maintain program state can be reduced. In
addition, asynchronous services can be mapped directly onto

2For completeness, this paper contains abbreviated descriptions of the
Half-Sync/Half-Async and Leader/Followers patterns, focusing on the imple-
mentation of thread pools in RT-CORBA. A thorough discussion of these pat-
terns appears in [6].

OS asynchrony mechanisms, such as WinNT I/O completion
ports [10, 6]. However, asynchronous programs are harder to
develop, debug, and maintain. Asynchronous programs must
manage additional data structures that contain state informa-
tion and execution history, which must be saved and restored
when a thread of control is preempted by an interrupt handler.

Two forces must therefore be resolved when specifying an
RT-CORBA threading architecture that executes services both
synchronously and asynchronously:

� The architecture should be designed so parts of the
ORB that can benefit from the simplicity of synchronous
processing need not address the complexities of asyn-
chrony. Similarly, ORB services that must maximize per-
formance should not need to address the inefficiencies of
synchronous processing.

� The architecture should enable the synchronous and
asynchronous processing services to communicate with-
out complicating their programming model or unduly de-
grading their performance.

Although the need for both programming simplicity and high
performance may seem contradictory, it is essential that both
these forces be resolved in scalable RT-CORBA implementa-
tions.

3.1.2 Solution

An RT-CORBA ORB endsystem can be decomposed into two
layers [11], synchronous and asynchronous; a queueing layer
is introduced to mediate the communication between services
in the asynchronous and synchronous layers.

3.1.3 Structure and Collaboration

The structure of the Half-Sync/Half-Async pattern is illus-
trated in Figure 6. This design follows the Layers pattern [11]
and includes the following participants:

Synchronous service layer: This layer performs high-level
processing services. Services in the synchronous layer run in
separate threads that can block while performing operations.
In an RT-CORBA server, this layer

1. Dequeues a request from the queueing layer
2. Finds the target servant for the request
3. Demarshal the request
4. Perform upcalls into application-specific code by calling

into the target servant registered in the POA by the appli-
cation

5. Marshals the reply (if any) to the client and
6. Enqueues the reply (if any) in the queueing layer.
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Async Pattern

Asynchronous service layer: This layer performs lower-
level processing services, which typically emanate from one
or more external event sources. Services in the asynchronous
layer cannot block while performing operations without un-
duly degrading the performance of other services. In an RT-
CORBA server, this layer

1. Reads the incoming request from the network
2. Find the target thread pool that will handle this request

and
3. Adds the request to the thread pool’s queue that has the

appropriate priority.

Queueing layer: This layer provides the mechanism for
communicating between services in the synchronous and
asynchronous layers. For example, messages containing data
and control information are produced by asynchronous ser-
vices, then buffered at the queueing layer for subsequent re-
trieval by synchronous services, and vice versa. The queueing
layer is responsible for notifying services in one layer when
messages are passed to them from the other layer. The queue-
ing layer therefore enables the asynchronous and synchronous
layers to interact in a “producer/consumer” manner, similar
to the structure defined by the Pipes and Filters pattern [11].
For an RT-CORBA server, this layer queues incoming requests
from and outgoing replies to clients.

External event sources: These sources generate events that
are received and processed by the asynchronous service layer.
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Figure 7: Collaboration between Layers in the Half-
Sync/Half-Async Pattern

For an RT-CORBA server, common sources of external events
include sensors, network interfaces, disk controllers, and end-
user terminals.

Figure 7 illustrates these collaborations among participants
in the Half-Sync/Half-Async pattern.

3.1.4 Implementation Synopsis

Figure 8 illustrates the architecture of a RT-CORBA ORB
where thread pools are designed using the Half-Sync/Half-
Async pattern. The asynchronous layer performs I/O process-
ing, demultiplexing of incoming requests, and multiplexing of
outgoing replies. It consists of the following components:

� Acceptor– An Acceptor [6] is used to service connec-
tion requests from clients. The client establishes multiple
connections to the server, one for every range of priorities
that will be used by the client when making requests. Af-
ter a connection has been established, it is moved to the
Reactor with the corresponding priority during the first
request.

� Reactors– Each priority supported by the server has a
corresponding Reactor [6], which is used to demultiplex
and dispatch incoming client requests.

� Threads– The Acceptor is serviced by a thread running
at an ORB-defined priority. Each Reactor is serviced by
thread(s) at the appropriate priority.

To avoid priority inversion, the queueing layer consists of mul-
tiple queues, one for every thread pool lane. I/O threads read
the incoming request, determine their target thread pool, and
deposit the request into the right queue for processing. The
synchronous layer consists of the threads in thread pool lanes.
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Figure 8: Implementing an RT-CORBA Thread Pool Using the
Half-Sync/Half-Async Pattern

These threads block on a condition variable, waiting for re-
quests to show up in their queue. After dequeueing the request,
the target servant is found in the target POA, the request is de-
marshaled and application-level servant code is then executed.

3.1.5 Consequences

The Half-Sync/Half-Async implementation of RT-CORBA
thread pools has the followingbenefits:

Simplified programming. The programming of the syn-
chronous phase is simplified without degrading the perfor-
mance of the asynchronous phase. Distributed systems based
on RT-CORBA often have a larger quantity and variety of
high-level processing services than lower-level services. De-
coupling higher-level synchronous services from lower-level
asynchronous processing services can therefore simplify ORB
development because complex concurrency control, interrupt
handling, and timing services can be localized within the asyn-
chronous service layer. The asynchronous layer can also han-
dle low-level details that are difficult to program robustly and
can manage the interaction with hardware-specific compo-
nents, such as DMA, memory management, and network I/O.

Support for request buffering and thread borrowing.
Since a request remains in the queueing layer until a thread
is available to service it, the queueing layer can be used to
buffer requests by bursty clients. Thread borrowing can also

be implemented relatively easily by buffering the request in a
queue that has threads available to process the request.

Sharing of I/O resources. ORB resources, such as reac-
tors and acceptors, are per-priority resources in the I/O layer.
Therefore, if a server is configured with many thread pools that
have similar lane priorities, I/O layer resources are shared by
these lanes.

Easier piece-by-piece integration into the ORB. Ease of
implementation and integration are important practical con-
siderations in any project. Due to its layered structure, this
approach is easier to design, implement, integrate, and test in
a incrementally.

The Half-Sync/Half-Async implementation of RT-CORBA
thread pools also has the followingliabilities:

Data exchange overhead. When exchanging data between
the synchronous and asynchronous layers, the queueing layer
can incur a significant performance overhead due to context
switching, synchronization, cache coherency management,
and data-copying overhead [9].

No memory management optimizations. Since a request
is handed off from an I/O thread in the asynchronous layer
to a thread pool thread in the synchronous layer, stack and
thread-specific storage (TSS) [6] cannot be used to optimize
memory management for clients requests. Instead, a shared
memory pool must be used to allocate storage for the requests.
Unfortunately, synchronization for this shared memory pool
can lead to extra overhead. Moreover, if the memory pool is
shared between threads of different priorities, it can lead to
priority inversion.

Table 1 summaries the evaluation for Half-Sync/Half-Async
implementation of RT-CORBA thread pools.

Criteria Evaluation

Feature Support Good: supports request buffering
and thread borrowing

Scalibility Good: I/O layer resources shared
Efficiency Poor: high overhead for data movement,

context switches, memory allocations, and
synchronizations

Optimizations Poor: stack and TSS memory not supported
Priority Inversion Poor: some unbounded, many bounded

Table 1: Evaluation of Half-Sync/Half-Async thread pools

3.2 Leader/Followers

The Leader/Followers architectural pattern provides an effi-
cient concurrency strategy where multiple threads take turns
sharing a set of event sources in order to detect, demultiplex,
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dispatch, and process service requests that occur on the event
sources.

3.2.1 Problem

Mission-critical RT-CORBA servers often process a high vol-
ume of requests that arrive simultaneously. To process these
requests efficiently, the following three forces must be re-
solved:

� Associating a thread for each connected client may be
infeasible due to the scalability limitations of applications
or the underlying OS and hardware platforms.

� Allocating memory dynamically for each request passed
between multiple threads incurs significant overhead on
conventional multiprocessor operating systems.

� Multiple threads that demultiplex events on a shared set
of event sources must coordinate to prevent race condi-
tions. Race conditions can occur if multiple threads try
to access or modify certain types of event sources simul-
taneously.

3.2.2 Solution

A pool of threads is structured to share incoming client re-
quests by taking turns demultiplexing the requests and syn-
chronously dispatching the associated servant code that pro-
cesses the request.

More specifically, this thread pool mechanism allows mul-
tiple threads to coordinate themselves and protect critical sec-
tions while detecting, demultiplexing, dispatching, and pro-
cessing requests. In this mechanism, one thread at a time—the
leader—waits for a request to arrive from the set of connected
clients. Meanwhile, other threads—the followers—can queue
up waiting their turn to become the leader. After the current
leader thread detects a new client request, it first promotes a
follower thread to become the new leader. It then plays the role
of a processing thread, which demultiplexes and dispatches the
request to application-specific code in the processing thread.
Multiple processing threads can handle requests concurrently
while the current leader thread waits for new requests. After
handling its request, a processing thread reverts to a follower
role and waits to become the leader thread again.

3.2.3 Structure and Collaboration

The key participants in the Leader/Followers pattern are
shown in Figure 9 and are described below:

Handles and handle sets. Handles are operating systems
objects, such as network connections, that indicate when new
requests arrive from clients. A handle set is a collection of
handles that can be used to wait for one or more clients to

HANDLE  SET

handle_events()
select()
suspend_handler()
resume_handler()

HANDLE

<<USES>>
<<

U
SES>>

0..*

CONCRETE

EVENT  HANDLER

EVENT  HANDLER

handle_event()
get_handle()

TTHREAD HREAD PPOOLOOL

join ()

promote_new_leader()

synchronizer(s)

<<demuxes>>

Figure 9: The Structure of Participants in the
Leader/Followers Pattern

send requests. A handle set returns to its caller when a new
request arrives from a client.

Event Handlers. The ORB event handler dispatches the in-
coming request to the target servant. This process includes

1. Reading the request from the network
2. Finding the target servant for the request
3. Demarshaling the request
4. Performing the upcall into application-specific code by

calling into the target servant registered in the POA by
the application

5. Marshaling the reply (if any) to the client and
6. Sending the reply (if any) back to the client.

Thread Pool. At the heart of the Leader/Followers pattern
is a thread pool, which is a group of threads that share a syn-
chronizer, such as a semaphore or condition variable, and im-
plement a protocol for coordinating their transition between
various roles. A thread’s transitions between states is shown
in Figure 10.

The collaborations in the Leader/Followers pattern are illus-
trated in Figure 11.

3.2.4 Implementation Synopsis

In this design, each RT-CORBA thread pool lane has an inte-
grated I/O layer,i.e., there is one acceptor and one reactor for
every lane. Clients connect to the acceptor endpoint with the
desired priority and as shown in Figure 12, all client request
processing (as described in Section 3.2.3) is performed by the
thread of desired priority from very beginning. Thus, there are
no context switches and priority inversions are minimized.

In addition, the ORB does not create any internal I/O
threads. This allows application programmers full control
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over the number and properties of all the threads with the RT-
CORBA thread pool APIs. In contrast, the Half-Sync/Half-
Async implementation has I/O layer threads, so either a pro-
prietary API must be added or application programmer will
not have full control over all the thread resources.

3.2.5 Consequences

The Leader/Followers pattern provides severalbenefits:

Performance enhancements. Compared with the Half-
Sync/Half-Async thread pool strategy described in Sec-
tion 3.1, the Leader/Followers pattern can improve perfor-
mance as follows:

� It enhances CPU cache affinity and eliminates the need
for dynamic memory allocation and data buffer sharing
between threads. For example, a processing thread can
read the request into buffer space allocated on its run-time
stack or by using the thread-specific storage (TSS) [6] to
allocate memory.

� It minimizes locking overhead by not exchanging data be-
tween threads, thereby reducing thread synchronization.

� It can minimize priority inversion because no extra
queueing is introduced in the server. When combined
with real-time I/O subsystems [12], the Leader/Followers
thread pool implementation can reduce sources of non-
determinism in server request processing significantly.

� It does not require a context switch to handle each re-
quest, reducing the request dispatching latency. Note that
promoting a follower thread to fulfill the leader role does
require a context switch. If two events arrive simultane-
ously this increases the dispatching latency for the sec-
ond event, but the performance is no worse than Half-
Sync/Half-Async thread pool implementations.

However, the Leader/Followers pattern has the followinglia-
bilities:

Implementation complexity. The advanced variants of the
Leader/Followers pattern are harder to implement than Half-
Sync/Half-Async thread pools. A thorough discussion of these
variants appears in [6].

Lack of flexibility. The queueing layer in the Half-
Sync/Half-Async thread pool implementation makes it easy to
support features like request buffering and thread borrowing.
In the Leader/Followers implementation, however, it is harder
to implement these features because there is no explicit queue.

Table 2 summaries the evaluation for Leader/Followers imple-
mentation of RT-CORBA thread pools.
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Criteria Evaluation

Feature Support Poor: not easy to support request
buffering or thread borrowing

Scalibility Poor: I/O layer resources not shared
Efficiency Good: little or no overhead for data

movement, memory allocations, or
synchronizations

Optimizations Good: stack and TSS memory supported
Priority Inversion Good: little or no priority inversion

Table 2: Evaluation of Leader/Followers thread pools

4 Empirical results

Figure 13 compares the performance of the Half-Sync/Half-
Async vs. the Leader/Followers thread pool implementations.
These benchmarks were conducted using TAO version 1.0
on a quad-CPU 400 MHz Pentium II Xeon, with 1 GByte
RAM, 512 Kb cache on each CPU, running Debian Linux re-
lease 2.2.5, and g++ version egcs-2.91.66. Our benchmarks
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Figure 13: Performance of Half-Sync/Half-Async vs. the
Leader/Followers thread pool implementations

measure the total time required by each concurrency strat-
egy to process 100,000 CORBA request messages. We var-
ied the number of threads and the amount of application-level
processing performed for each request. The results in Fig-
ure 13 illustrate the percentage improvement in performance
for the Leader/Followers thread pool strategy compared with
the Half-Sync/Half-Async thread pool strategy.

As shown in the figure, the Leader/Followers strategy out-
performed the Half-Sync/Half-Async approach for all combi-
nations of threads and application workload. The largest im-
provement,�2,800%, occurred for a small number of threads

and a small amount of work-per-request. As the number of
threads and the amount of work-per-request increased the per-
centage improvement decreased to�8%. These results illus-
trate that the Half-Sync/Half-Async thread pool strategy incurs
a higher amount of overhead for memory allocation, locking,
and data movement than the Leader/Followers strategy.

Note that on a lightly loaded real-time system, using a small
number of threads will generally yield better throughput than
a higher number of threads. This difference stems from the
higher context switching and locking overhead incurred by
threading. As workloads increase, however, addition threads
may help improve server throughput, particularly when the
server runs on a multi-processor.

5 Related Work

Real-time middleware is an emerging field of study. An in-
creasing number of research efforts are focusing on integrat-
ing QoS and real-time scheduling into distribution middle-
ware, such as CORBA. Our previous work on TAO has exam-
ined many dimensions of ORB middleware design, including
static [5] and dynamic [13] operation scheduling, event pro-
cessing [7], I/O subsystem [12] and pluggable protocol [14]
integration, synchronous [8] and asynchronous [15] ORB
Core architectures, IDL compiler features [16] and optimiza-
tions [17], systematic benchmarking of multiple ORBs [18],
patterns for ORB extensibility [6] and ORB performance [19].
In this section, we compare our work on TAO’s RT-CORBA
thread pools with related work on CORBA.

URI TDMI. Wolfe et al. developed a real-time CORBA
system at the US Navy Research and Development Labora-
tories (NRaD) and the University of Rhode Island (URI) [20].
The system supports expression and enforcement of dynamic
end-to-end timing constraints through timed distributed oper-
ation invocations (TDMIs) [21]. A difference between TAO
and the URI approaches is thatTDMIs express required tim-
ing constraints,e.g., deadlines relative to the current time,
whereas TAO’s threading strategies are based on the fixed-
priority scheduling features defined in the RT-CORBA spec-
ification.

BBN QuO. The Quality Objects(QuO) distributed object
middleware is developed at BBN Technologies [22]. QuO is
based on CORBA and provides the following support for QoS-
enabled applications:

� Run-time performance tuning and configurationthrough
the specification of operating regions, behavior alterna-
tives, and reconfiguration strategies that allows the QuO
run-time to adaptively trigger reconfiguration as system
conditions change (represented by transitions between
operating regions); and
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� Feedbackacross software and distribution boundaries
based on a control loop in which client applications and
server objects request levels of service and are notified of
changes in service.

The QuO model employs severalQoS definition languages
(QDLs) that describe the QoS characteristics of various ob-
jects, such as expected usage patterns, structural details of
objects, and resource availability. QuO’s QDLs are based on
the separation of concerns advocated by Aspect-Oriented Pro-
gramming (AoP) [23]. The QuO middleware adds significant
value to adaptive real-time ORBs such as TAO. We are cur-
rently collaborating [24] with the BBN QuO team to integrate
the TAO and QuO middleware as part of the DARPA Quorum
project [25].

UCI TMO. The Time-triggered Message-triggered Objects
(TMO) project [26] at the University of California, Irvine, sup-
ports the integrated design of distributed OO systems and real-
time simulators of their operating environments. The TMO
model provides structured timing semantics for distributed
real-time object-oriented applications by extending conven-
tional invocation semantics for object methods,i.e., CORBA
operations, to include (1) invocation of time-triggered oper-
ations based on system times and (2) invocation and time
bounded execution of conventional message-triggered opera-
tions.

TAO differs from TMO in that TAO provides a complete
CORBA ORB, as well as CORBA ORB services and real-time
extensions. Timer-based invocation capabilities are provided
through TAO’s Real-Time Event Service [7]. Where the TMO
model creates new ORB services to provide its time-based in-
vocation capabilities [27], TAO provides a subset of these ca-
pabilities by extending the standard CORBA COS Event Ser-
vice. We believe TMO and TAO are complementary technolo-
gies because (1) TMO extends and generalizes TAO’s exist-
ing time-based invocation capabilities and (2) TAO provides a
configurable and dependable connection infrastructure needed
by the TMO CNCM service. We are currently collaborating
with the UCI TMO team to integrate the TAO and TMO mid-
dleware as part of the DARPA NEST project.

6 Concluding Remarks

Thread pools are an important RT-CORBA capability since
they allow application developers and end-users to control
and bound the amount of resources dedicated to concurrency
and queueing. There are various strategies for implementing
thread pools in the RT-CORBA. Since certain strategies are
optimal for certain application domains, users of RT-CORBA
middleware must understand the trade-offs between the differ-
ent strategies.

This paper describes the Half-Sync/Half-Async and the
Leader/Followers strategies for implementing RT-CORBA
thread pools. We evaluate these strategies using several differ-
ent factors and present results that illustrate empirically how
different thread pool implementation strategies perform in dif-
ferent ORB configurations. Our pattern-based descriptions are
intended to help application developers and end-users under-
stand the schedulability, scalability, and predictability conse-
quences of a particular thread pool implementation used by
their RT-CORBA ORB.

All the source code, documentation, examples, and tests for
TAO and its RT-CORBA mechanisms are open-source and can
be downloaded fromwww.cs.wustl.edu/˜schmidt/
TAO.html .
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