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A subset of this paper appeared in the Journal of Systems and Sofbue to constraints on weight, power consumption, memory foot-
ware, Special Issue on Software Architecture — Engineering Quaitint, and performance, the development techniques for DRE appli-
Attributes, edited by Lars Lundberg and Jan Bosch, Elsevier, 200&ation software have historically lagged behind those used for main-
stream desktop and enterprise software. As a result, DRE applica-
tions are costly to develop, maintain, and evolve. Moreover, they are
Abstract often so specialized that they cannot adapt readily to meet new func-

This paper makes four contributions to the design and evaluatiorigf@! or quality of service (QoS) requirements, hardware/software
publisher/subscriber architectures for distributed real-time and efg¢chnology innovations, or market opportunities.

bedded (DRE) applications. First, it illustrates how a flexible pub- Programming DRE applications is also hard because QoS proper-
lisher/subscriber architecture can be implemented using standdf$ must be supported along with the application software and dis-
CORBA middleware. Second, it shows how to extend the standdRyted computing middleware functionality. DRE applications have
CORBA publisher/subscriber architecture so it is suitable for DREStorically been custom-programmed to implement these QoS prop-
applications that require low latency and jitter, periodic rate-basedties. Unfortunately, this tedious and error-prone manual develop-
event processing, and event filtering and correlation. Third, it éRent process has not adequately addressed the following challenges
plains how to address key performance-related design challenges

faced when implementing a publisher/subscriber architecture sydgjating DRE applications from the details of multiple plat-

able for DRE applications. Finally, the paper presents benchmagkgms and varying operational contexts. Modern DRE applica-

that empirically demonstrate the predictability, latency, and utilizgons must invest an ever-increasing proportion of functionality in
tion of a widely used Real-time CORBA publisher/subscriber arcgiftware. Rapidly emerging technologies, together with the flexi-
tecture. Our results demonstrate that it is possible to strike an effgg-,ty required for diverse operational contexts, force deployment of
tive balance between architectural flexibility and real-time quality gfyitiple versions of software on various platforms, while simulta-
service for important classes of DRE applications. neously preserving key properties, such as real-time response and
Keywords: Real-time CORBA Event Systems, Object-Orienteghd-to-end priority preservation.

Middleware Frameworks, Publisher/Subscriber Architectural Pﬁtéducing total ownership costs. Custom software development

tems. and evolution is labor-intensive and error-prone for complex DRE
applications and can represent a substantial amount of total system
acquisition and maintenance costs. Since DRE applications are often
upgraded multiple times during their lifetime, it can be hard to main-

o tain the QoS properties of custom-made systems as new components
1.1 Cha”enges for DRE Appllcatlons and capabilities are added (1).

1 Introduction

Distributed, real-time, and embedded (DRE) applications are bec&heltering application architectures from obsolescence trends.

ing increasingly widespread and important. There are many typefnabmmensurate lifetimes between long-lived DRE applications (20
DRE applications, but they have one thing in commdine right years or more) and commercial off-the-shelf (COTS) platforms and
answer delivered too late becomes the wrong answéommon tools (2-5 years) lead to pervasive software obsolescence and multi-
DRE applications include telecommunication networkgy( wire- ply the total ownership costs by requiring periodic software redevel-
less phone services), tele-medicirey remote surgery), manufac-opment and reengineering (2).

turing process automatiomr.g, hot rolling mills), and defense appli-

. o . . Minimizing personnel risks. Acquiring, retaining, and trainin
cations €.g, avionics mission computing systems). 9p d 9 9 9

personnel to maintain and upgrade proprietary, custom-made DRE

“This work was supported in part by DARPA ITO, BBN, Boeing, DMSO, saic@pplications is risky sipcg it can make organizations overly reliant on
and Siemens. a small group of specialized software developers.




While considerable R&D effort has focused on how to meet thebkeir systems, and leave the communication and QoS-related details
challenges for desktop and enterprise business applications (3), aordevelopers of publisher/subscriber middleware.
paratively little effort has focused on how to meet these challengrEduce total ownership costs. Publisher/subscriber architectures
for DRE applications with stringent QoS requirements. define clear boundaries between the components in the application,
which reduces dependencies and thus maintenance costs associate
1.2 Candidate Solution: Publisher/Subscriber Ar- with replacement, integration, and revalidation of components. Like-
chitectures wise, core components of these arthtectures can be rgused, thereb
helping to reduce development, maintenance, and testing costs.
Addressing the challenges outlined above requires software arBielter application architectures from obsolescence trends.
tectures that can support a changing set of requirements and enviroilisher/subscriber architectures strongly decouple event sources
ments gracefully. Too often, developers find themselves reengin&@m event sinks. Application developers can take advantage of this
ing existing software interfaces and implementations in responsé&@paration of concerns during the lifetime of the systerg, new
planned and unplanned changes. In fact, most software costs og@ufces of events can be added to the system over time. In a tightly-
after initial deployment (4).Publisher/subscriber architecturesan coupled, monolithic design such changes would also require modifi-
help overcome many of these problems by reducing software deg@tions to event sinks.
dencies and inflexibility. In this architecture, the components ofMinimize personnel risks. The roles and relationships of pub-
system are separated into the following three roles, in accordaliffer/subscriber architectures are well documented and relatively
with the Publisher/Subscriber pattern (5): easy to understand, which can help minimize personnel training
e Publishersare event sourceise, they generate the events thdtosts. Solutions based on proprietary publisher/subscriber systems,

are propagated through the system. Depending on architecigwever, fail to address this challenge completely. Fortunately, pub-
implementation, publishers may need to describe the typeligtper/subscriber architectures based on standard middleware tech-

events they generagepriori. nologies, such as CORBA, Java/RMI, or COM+, are more effective

e Subscribers are the event sinks of the system. Some arcfiaddressing this challenge.
tecture implementations require subscribers to declare filtering
information for the events they require. 1.3 Unresolved Challenges: Ensuring the QoS of

e Event channelsare components in the system that propagate  Standard Publisher/Subscriber Architectures.
events from publishers to subscribers. In distributed systems,

event channels can propagate events across distribution donthifidplemented properly, publisher/subscriber architectures satisfy

to remote subscribers. Event channels can perform event filfgany DRE application challenges. However, many implementations
ing and routing, QoS enforcement, and fault management. ©f publisher/subscriber architectures rely on non-standard distribu-

Figure 1 illustrates the relationships and information flow betweld and infrastructure mlddleyvare 6 7). Cgmparatlvely I.|ttle re-
these three components. search has focused on applying (and potentially augmenting) stan-
dard middleware to publisher/subscriber architectures to meet the

opTIONAL OPTIONAL needs of DRE applications. Moreover, research that has focused on
: sonony ooy . this topic (8; 9) has not documented the key patterns and frameworks
required to implement publisher/subscriber architectures that can (1)
= preserve a clean separation of concerns while (2) simultaneously sat-

EVENTS vent isfying stringent DRE application QoS requirements.

annel EVENTS R . Lo .

= = — In fact, there is a widespread belief in the commercial embedded
systems cpmmunlty that mogiern sqftware abgtracnon and composi-
tion techniques, such as object-oriented design and programming,

Figure 1: Relationships Between Components in a Pub-application frameworks, and standard COTS components, are not
lisher/Subscriber Architecture suitable for DRE applications. Yet, many DRE application domains
can leverage the benefits of flexible and open distributed object com-
Publisher/subscriber architectures can be used to address maputirfig architectures, such as those defined in the CORBA specifica-
the challenges outlined in Section 1.1. In particular, they can helption (10). If publisher/subscriber architectures can be implemented
in an efficient and predictable manner, therefore, the benefits out-
Isolate DRE applications from the details of multiple platforms lined in Section 1.2 will make them a compelling choice for new and
and varying operational contexts. Publisher/subscriber defines planned DRE applications.
communication model that can be implemented over many networksn this paper, we describe the patterns, framework design, and per-
transport protocols, and OS platforms. Developers of DRE applit@mance of a publisher/subscriber architecture that supports real-
tions can therefore concentrate on the application-specific aspectsred QoS for event-driven DRE applications. This architecture is



based on the Real-time CORBA standard (10) and the TAO red- CORBA and the CORBA Event Service
time ORB (11). TAO is an open-sourcanplementation of Real-

time CORBA that supports efficient, predictabégd flexible DRE The TAO Real-time Event Service was not designed in a vacuum. In-

a.pplication's. Our prior work on TAO_ has explored' many dimefgfead, it was designed to overcome limitations with standard CORBA
sions of high-performance and real-time ORB design and perig

. . : i ) RBs and services. This section describes how the CORBA Event
mance, including optimal request demultiplexing (12), 1/O subs;@

tem (13) and protocol (14) integration, connection architectures (:llﬁ cation models. Section 3 then describes how TAO's Real-time
asynchronous (16) and synchronous (17) concurrent request pro 1t Service overcomes limitations with the CORBA Event Ser-
ing, adaptive load balancing (18) and meta-programming mechag

nisms (19), and IDL stub/skeleton optimizations (20).
Our previous work (21) on publisher/subscriber architectures fo-
cused on the patterns and performance bighly scalableCORBA
Event Service implementation. This paper extends our previgug Qverview of CORBA
work by describing how to augment the CORBA Event Service spec-

?fication to satisfy thgreal-time needs_ of_ even.t-d_riven applic_ation§:oRBA is a distributed object computing middleware specifica-
in many DRE domains, such as avionics mission computing (2gdn, (10) being standardized by the Object Management Group
mission-critical distributed audio/video processing (23), and larggs\ ). CORBA supports the development of flexible and reusable
scale distributed interactive simulation (21). TAO and its Real-tidgice components and distributed applications by separating inter-
Event Service are used in many production DRE applications. T@es from (potentially remote) object implementations. Figure 2
particular relevant examples include: illustrates the primary components in the CORBA architecture that

e HLA RTI-NG (21), which is the next-generation Run-time In-

frastructure (RTI) implementation for the Defense Modeling ‘
and Simulation Organization’s (DMSO) High Level Architec- Raverface, Compiler e e o
ture (HLA) and

e Boeing Bold Stroke(24; 25), which uses COTS hardware and

ervice was designed to overcome limitations with CORBA ORB

middleware to produce a standards-based component architeq _ in args Object
ture for military avionics mission computing capabilities, such Client o8y winu (Servant)
as navigation, data link management, and weapons control. —— 8o

-

Both these DRE systems are examples of the need to simultaneously
support multiple software qualities, such as maintainability, reusabil- Y y

; Dol - : IDL ORB
ity, performance, availability, usability and time to market. DIl | | cTuBsS TEREACE Object Adapterw

-
1.4 Paper Organization

The remainder of this paper is organized as follows: Section 2 Figure 2:Components in the CORBA ORB Architecture
describes how publisher/subscriber architectures can be mapped

to standard middleware, in particular Real-time CORBA and thgomate many common network programming tasks, such as object
CORBA Event Service; Section 3 describes how to augment [Rgisiration, location, and activation; request demultiplexing; fram-
CORBA Event Service to create a Real-time Event Service that gahang error-handling; parameter marshaling and demarshaling; and
satisfy key QoS and flexibility requirements of DRE applicationgperation dispatching. Although it is beyond the scope of this paper
Section 4 explains the design challenges we addressed and optingizaza mine how the CORBA ORB architecture affects software qual-

tions we applied when implementing TAO's Real-time Event Sgf; and quality of service, these topics are explored in depth in our
vice; Section 5 shows the results of benchmarks conducted ugjfjg, publications.

TAO'’s Real-time Event Service to validate the design described in

Section 3; Section 6 compares our results to related research on EUBhe standard CORBA operation invocation model supports syn-

lisher/subscriber architectures; and Section 7 presents concludin fironous and asynchronous two-way, one-way, and deferred syn-
marks hronous interactions between clients and servers. Two-way syn-

chronous calls are the default invocation model. The primary

1The source code and documentation for TAO and its Real-time Event ServiceSJF@ngFh of this mOde! is its intuitive mapp?ng Omlo ihigiect->
freely available at URLhttp://deuce.doc.wustl.edu/Download.html . operation() paradigm supported by object-oriented languages.




2.2 Limitations with CORBA To support these requirements, the OMG CORBA specification de-
nes a standard Event Service (28) that provides asynchronous mes-

. . . N f
In principle, two-way synchronous invocations simplify the deveiége delivery and allows one or more suppliers to send messages to

opment of distributed applications by supporting an implicit 'She or more consumers. Event data can be delivered from suppli-

lques':/retsponse prto ttocoll' th?t mlakes rtgmotﬁ operatlotr;] lnvtocegé?%% consumers without requiring these participants to know each
argely transparent fo clients. In practice, Nowever, the stantgfe s ijentities explicitly. The CORBA Event Service can be used
CORBA o.pergtlon mvocatlon_models_ are oyerl_y restrictive for maﬂ’Yconjunction with the CORBA Messaging specification to achieve
DRE applications, due to their following limitations: fine grained control over QoS parameters, such as timeouts and re-

Ti_ght coupling of client and server lifetimes. For a CORBA 4 a5t priorities. Figure 3 illustrates the relationships between com-
clientrequestto be successful, the server must be available to progess i< in the CORBA Event Service architecture

the request. If a request fails because the server is unavailable, the
client receives an exception and must take corrective action, such as
notifying an end-user or system administrator. In 2001 the OMG in-
tegrated the Messaging specification (26) into the CORBA 2.4 stan-
dard. This specification gave application developers more control - Sér - Cér
over QoS parameters and introduced time-independent invocation
(TIN. Although these features solve several problems not addresse :
by earlier versions of CORBA, they require event suppliers to have| : CORBA Server
explicit knowledge of the consumers of those events. .icar 000 : iSar 1
Synchronous invocation semantics. By default, a CORBA client T 1 —
waits until the server finishes processing a synchronous two-way re- 1 1
quest and returns the result to the client. This blocking can cause' \D ‘
problems for DRE applications with stringent real-time constraints. || —|--S¢rAl - Veld) =Ceral —
CORBA therefore provides various non-synchronous invocation
models, such as one-way invocations, deferred synchronous invocg ’—/J\
tions, and asynchronous method invocations (AMI) (16). However,
standard one-way invocations are not required to implement reliablg
delivery, deferred synchronous invocations yield excessive overhea
for DRE applications since they use the CORBA Dynamic Invoca-
tion Interface (DIl), and AMI still requires the server to be available | : CORBA Server 1 _ CORBA Server
when a client invokes a request. “Sar | Car
Point-to-point communication. A CORBA operation invoked by 1
a client is destined for a single target object on a particular server.
The CORBA Fault Tolerance (27) specification relaxes this point- Figure 3: CORBA Event Service Architecture
to-point protocol, but is not widely implemented nor widely used at
this time. Moreover, the standard replication protocols used in Fau
Tolerant CORBA are too heavyweight for many DRE applications.

. CORBA Server - CORBA Server

—_ dCér . i3dr

Iﬁ'he CORBA Event Service defines the following three roles:

e Suppliers which produce event datag., they play the pub-

2.3 Overview of the CORBA Event Service lisher role in the publisher/subscriber architecture,

. . . e Consumerswhich receive and process event dat, they play
To address the problems described in Section 2.2, developers Oftenthe subscriber role in the publisher/subscriber architecture, and

employ some type of publisher/subscriber architecture based on the , , i
abstractions outlined in Section 1.2. In a publisher/subscriber ar® Event channelswhich are mediators (29) through which mul-
chitecture, the data and control flow througents rather than via tiple consumers and suppliers communicate asynchronously,
parameterized operation invocations. Event-driven applications that i€+ they play the same role as the event channels in the pub-
use publisher/subscriber architectures possess several key requirelisher/subscriber architecture.

ments: There are two models.€., pushvs. pull) of participant collabora-
1. The events must be transferred efficiently from event sourcetidas in the CORBA Event Service. This paper focuses on real-time
event sinks and enhancements to the push model, which allows suppliers of events

2. The event sources and sinks must be anonymous and decougeditiate the transfer of event data to consumers. Events are trans-
i.e,, the number and characteristics of the event sinks mustféeed via standard CORBA operations from suppliers to an event
transparent to event sources and vice-versa. channel, which in turn disseminates the events to consumers.



3 The TAO Real-time Event Service 2. Support for periodic processing. Consumers in periodic real-
time systems typically requir€ units of computation time eveiy
3.1 Overcoming CORBA Event Service Limitations milliseconds. For instance, some real-time avionics signal process-
with TAO ing filters must be updated periodically or else they will spend a sub-
stantial amount of time reconverging (24). In this case, consumers
Although the CORBA Event Service described in Section 2.3 piwave strict deadlines by which time they must execute the requested
vides a standard way to decouple event suppliers and event €@mmits of computation time. The standard CORBA Event Service
sumers and support asynchronous communication, it does not sgetines no interface that allows consumers to specify their temporal
ify the following important features required by event-driven DRExecution requirements. Periodic processing is therefore not sup-
applications: ported in conventional CORBA Event Service implementations.
1. Low latencyijitter event dispatching TAO's Real-.time Event Service allow§ consumers to specify event
2. Support for periodic processing dependency tlmgouts. It. uses the;se timeout r.equests to .propag.ate
) oE ) temporal events in coordination with system-wide scheduling poli-
3. Centralized event filtering and event correlations and cies. In addition to the canonical use of timeout eveings, receiv-
4. Efficient use of network and computational resources. ing timeouts at some interval, a consumer can request to receive a

To support these important features, we have developReat- timeout event via a real-time “watchdog” timer if its dependencies
time Event Services part of the TAO project. As shown in Figure 42"€ not satisfied within some time period.

TAO's Real-time Event Service is a component implemented at9psupport for centralized event filtering and event correlation.
TAO that augments the CORBA Event Service specification to SsgfDRE applications, consumers may not be interested in all events
isfy the QoS needs of DRE applications. The following discussiggnerated by suppliers. Although it is possible to let each application
perform its own filtering, this solution wastes network and comput-
ing resources and requires extra work by application developers. Ide-
push() ally, an event service should send an event to a particular consumer
only if the consumer has subscribed for it explicitly. Care must be
taken, however, to ensure that the algorithms used to support filtering
SUPPLIER do not cause undue burden on DRE system resources.
SERVICE To alleviate scalability and performance problems, TAO's Real-
time Event Service provides filtering and correlation mechanisms
JECT that allow consumers to specify the type of events they are inter-
ADRPTER ested in via conjunction ND”) and disjunctive (OR") event de-

Y
IDL ORB
SR INTERFACE
pendencies. Conjunctive semantics instruct the channel to notify the

[ % ] consumer whenll the specified event dependencies are satisfied.

Disjunctive semantics instruct the channel to notify the consumer(s)
whenanyof the specified event dependencies are satisfied. Suppliers
Figure 4:Relationship of TAO and Its Real-time Event Service can also provide information about the types of events they generate.
Based on theubscriptiongrovided by the consumers and thab-
summarizes the features missing in the CORBA Event Service #odtionsdescribed by the suppliers, the event channel will dispatch
outlines how they are supported by TAO'’s Real-time Event Serviaents only to consumers that have expressed interest in them.

1. Low latency/jitter event dispatching. To minimize latency and 4. Efficient use of network and computational resources. Con-

jitter in DRE applications, it is desirable to have multiple threaggntional implementations of an Event Service send one message

within an event channel forwarding events to their consumers. -IFBB each remote consumer interested in an event. This point-to-

CORBA Event Service specification does not designate a stangaiftipoint design requires excessive network resources, since the

threading model, much less a real-time threading model. As a regjglfne data is transmitted multiple times, often to the same target com-

DRE applications may not be able to rely on threading support. puter. TAO’s Real-time Event Service can therefore be configured to
TAO’s Real-time Event Service can be configured with aninimize network traffic by:

application-specified strategy to assign the number and priority of , i ) ,

real-time threads that will dispatch events. TAO also predefines sev® USing IP broadcast and multicast protocols to avoid duplicate

eral application-specified strategies to cover the most common cases."etwork traffic, and

The same component can be used to assign events to a thread at sBuilding federations of Event Services that eliminate the trans-

appropriate priority, avoiding priority inversions in the event chan- mission of duplicate events, and even eliminate the need to send

nel and thus achieving greater predictability by enforcing scheduling unwanted events by pushing filtering to the source.

decisions at run-time.

REAL-TIME
EVENT SERVICE

push()

REAL-TIME
SCHEDULING

CONSUMER

A 4




PushConsumer scribed below.

PushConsum e TR TRl Consumer admin module. The interface to the consumer admin
i ‘r module is identical taConsumerAdmin interface defined by the
% — CosEventChannelAdmin  module in the CORBA Event Service
: - shown in Figure 3. This interface provides factory methods for cre-
C%S\O %%O Qﬁ%@ ating objects that support throxyPushSupplier interface. In
. the CORBA Event Service, tHeroxyPushSupplier interface is
eonsuexrdt'es - used by consumers to connect and disconnect from the channel.
> A A The standard CORBA Event Service defines event channels as
Pr ProxyPushSupplier “broadcast repeaters” that forward all events from suppliers to all
consumers. This approach has several drawbacks, however. If con-
onsuerdin Module E sumers are only intereste_d ina subset. of gvents f.rom the suppliers,
> = they must |mplemerflt their own evelnt f||te|r|ng to d:jscard unneedhed
) ; < events. Moreover, if a consumer ultimately discards an event, then
E 7 7 7 7 e 6 delivering the event to the consumer needlessly wastes bandwidth
& Module — and processing time.
v ? ? 5 To address these shortcomings, TAO’s Real-time Event Service
L|>J extends the standaRtoxyPushSupplier interfaces so that con-
Dispatching Module @@ sumers can register their event dependencies with a channel. Con-
sumers can specify conjunctiveafnD”) or disjunctive (“OR”) se-
upplierd'm Module mantics when registering their supplier-based and/or type-based fil-
- ‘ tering requirements. TAO also allows consumers to subscribe for
ProxyPushConsumer particular subsets of events. The channel uses these subscriptions tc
= filter supplier events, only forwarding them to interested consumers.
// \\ Supplier admin module. The interface to this module is
/ \ based on the SupplierAdmin interface defined in the
PushSupplier PushSupplier CORBA Event Service CosEventChannelAdmin module.
It provides factory methods for creating objects that sup-
port the ProxyPushConsumer interface. Suppliers use the
Figure 5:TAO Real-time Event Service Architecture ProxyPushConsumer interface to connect and disconnect from

the channel.
TAO's Real-time Event Service also extends the standard CORBA

This paper focuses largely on features 1 and 2 described alnexyPushConsumer interface so that suppliers can specify the
since they are the most essential for real-time applications. Our pypes of events they generate. With this information, the chan-
vious work in (21) focuses on the scalability issues associated wit's correlation and filtering mechanism can build data struc-
features 3 and 4. tures that allow efficient run-time lookups of subscribed consumers.
ProxyPushConsumer objects also represent the entry point of
events from suppliers into an event channel. When suppliers trans-
mit an event to th®roxyPushConsumer interface via the proxy’s

Figure 5 shows the architecture of TAO's Real-time Event Servi@&'Sh() ~operation the channel forwards this event to jsh()

At the heart of this architecture is tleeent channelwhich provides OPeration of interested consumer(s).

two factory interfacesConsumerAdmin andSupplierAdmin , Dispatching module. The dispatching module determines when
that allow applications to obtain consumer and supplier adminiseaents should be delivered to consumers and pushes the events fc
tion objects, respectively. These administration objects allow céimem accordingly. To guarantee that consumers execute in time to
sumers and suppliers to connect/disconnect from the channel raeét their deadlines, this module collaborates with TAO’s Real-time
to specify their QoS needs, such as their event dependenciesSaiduling Service (11; 22). For instance, consider the arrival of
filtering types. Internally, the event channel is an object-orientad event into a dispatching module implemented with real-time pre-
framework (30) that contains a series of processing modules linkeaptive threads. If TAO’s Real-time Scheduling Service assigns the
together in accordance with the Pipes and Filters pattern (5), whaelnt a preemption priority higher than any currently running thread,
provides a structure for systems that process a stream of event tla¢adispatching module will preempt a running thread and dispatch
Each module encapsulates independent tasks of the channel, athda&ew event.

3.2 TAO'’s Real-time Event Service Architecture



The dispatching module always dequeues events from the head of Host A Host B
the queue. TAO’s Real-time Scheduling Service can determine the pugPushConsumer pus PushConsumer
order of dequeueing by returning different sub-priorities for different
events. For instance, assume that an implementation of the scheduler v LA
must ensure that some evéitis always dispatched before evéat CORBA/IIOP }
put does not require that t_he arrivalbf prgempt a thread dispatph— r— ﬁ TR i TR -‘N"
ing E;. By assigning a higher sub-priority to an event containing Pushsupplier EventChannel Lpushc({nsume‘r
E,, the event will always be queued before any event contaiging J

The dispatcher will therefore always dequeue and disgat@vents ) . . ]
beforeE, events. Figure 6:A Centralized Configuration for the Event Channel

The dispatching module can be configured to implement several

concurrency strategies, such as real-time upcalls and preempti\f:eessive overhead, however, because the consumer for a given su
multi-threading (31). Each strategy caters to the type and availa%?ﬁ- ’ ' 9 P

ity of system resources, such as the OS threading model andPle! is usually located on the same computer. If the event channel

. i ; is On a remote computer, therefore, extra communication overhead
number of CPUs. TAO's event channel framework is designed S0 ) ;
. . . nd latency are incurred for the common case. Moreover, TAO’s col-

that changing the number of threads in the system, or changing [0 a S ; o o e

. . =~ located operation invocation path is highly optimized (19), so it is
single-threaded concurrency strategy, does not require modifications o L :

: esirable to exploit this optimization whenever possible.

to unrelated components in a channel.

Priority timers proxy. The supplier admin module contains a

special-purposeriority timers proxythat manages all timers regis- Host A ST Host®  [pushConsumer
tered with the channel. When a consumer registers for a timeout, the PushSupplier PushConsumer
priority timers proxy ensures that timeouts are dispatched according ~ ~_
to the priority of their corresponding consumer. EventChannel EventChannel
The priority timers proxy uses a heap-based callout queue, where = 5
the average and worst case time required to schedule, cancel, and v v
expire a timer i©QO(log N)(Nis the total number of timers). The timer CORBA/IIOP }
mechanism preallocates all its memory, which eliminates the need I i
for dynamic memory allocation at run-time and is therefore well- HostC  y HostD ¥

suited for real-time systems requiring highly predictable and efficient EventChannel EventChannel

timer operations. ~_
PushSupplier

tonsumer

PushSup PushSupplier
3.3 Alternative Event Service Configurations =
Although TAO'’s Real-time Event Service architecture described in Figure 7:Federated Event Channels

Section 3.2 provides many powerful capabilities, the true test of its

Object-oriented framework arises when using itto Support a diversé—o address the limitations of the centralized event channel archi-
set of DRE applications with a wide range of functional and Qdéegture, TAO's Real-time Event Service provides mechanisms to con-
requirements. The remainder of this section describes how TAQRSt several event channels to fornfiedleration as shown in Fig-
Real-time Event Service can be configured both externally and inté 7. In a federated group of event channels, suppliers and con-
nally. The flexibility of its architecture helps developers of DRE agumersjust connect to their local event channel, while event channel

plications meet their requirements without incurring time and spd@gtances talk to each other via CORBA. This design reduces aver-
overhead for capabilities they do not use. age latency for all consumers in the system because consumers anc

suppliers exhibit locality-of-referencee., most consumers for any
event are on the same computer as the supplier generating the event
Moreover, if multiple remote consumers are interested in the same
The original implementation of TAO’s Real-time Event Service (3gyent only one message is sent to each remote event channel, thereb:
was limited to a single processor configuration. However, modeninimizing network utilization.

DRE applications typically connect multiple computers via high- A straightforward and portable way to implement this architecture
speed interconnects, such as a fiber channel network or a VME B use agatewaybetween each event channel. As shown in Fig-
One way to configure TAO’s Event Service is to use a single ceme 8, such gateways play both the consumer and supplier roles and
tralized real-time event channel for the entire system, as showmiediate between two event channels. They connect (in their con-
Figure 6. A centralized real-time event channel architecture incawner role) to one of the event channels, ideally subscribing only for

3.3.1 Centralized vs. Federated Event Channels



Host A [pushconsumer|| [Ho5tB  [pushConsumer| with their full correlation and filtering mechanisms. A channel con-
PushSupplier PushConsumer figured with all these modules supports type and source-based filter-
A A

ing, correlations, and priority-based queueing and dispatching. Fig-
ure 5illustrates a full event channel configuration.
Subset event channel configurations. TAO's Real-time Event
. Service supports subset configurations that allow processing mod-
’4—’% ules and mechanisms to be added, removed, or modified with mini-

] mal impact on the overall system. The following configurations can

~/ ~/

EventChannel EventChannel

Figure 8:Using a Gateway to Connect Two Event Channels

Event Channel Event Channel Event Channel
Per-Consumer Filters

the events that are interesting for the participants in the second eve
channel. When a gateway receives an event it forwards the eve
to the second event channel, where it has connected (in its SUPPIi{| "coneumer dmin voduie ————— Consumer Admin Madule
role). 33 3] e

Application developers can configure the location of the gateway a a a 33
with respect to its event channels to minimize the utilization of net-/|' ;... @@
work resources. For example, collocating the gateway with its sink L2
event channeli.e,, the one it connects to as a supplier, eliminates
the need to transmit events that are not interesting for the sink eve
channel. Collocating the gateway with its source event channel ca
avoid event cycles more efficiently than the previous configuration, % ERD ) EFD ©) ERM
however, as described in (21). Figure 9:Event Channel Subset Configurations

TAO’s Real-time Event Service requires that each event channel
in a federation be connected to every one of its peers. This is nB€aachieved by removing certain modules and mechanisms from an
problem for DRE applications that have one event channel per c&ygnt channel:
puter. In certain domains, however, DRE applications could require Event real-time dispatching (ERD) configuration. Remov-
hundreds or thousands of event channels. In this case, providiriggeathe correlation and filtering capabilities creates an ERD configu-
full network would not scale. We are investigating techniques to aidtion, which is shown in Figure 9 (A). This configuration supports
dress this situation based on related work (7). “classic” real-time applications that require no correlation or filter-

Many types of distributed applications can benefit from TAOIBg.
federated Event Service. For instance, both distributed interactive Event forwarding discriminator (EFD) configuration. Re-
simulations (21) and avionics mission computing systems (24; Bwving the dispatching module from the event channel yields an
can comprise several computers in different networks, where nBD configuration that supports event filtering and correlations, as
of the traffic destination is within the same network. Configuring ahown in Figure 9 (B). EFDs provide a “data reduction” mecha-
event channel on each network helps to reduce latency by avoidiiggn that minimizes the number of events received by consumers
round-trip delay to remote computers. so they only receive events of interest. An EFD configuration helps
improve the scalability of applications that do not require priority-
based queueing and dispatching in the event channel.

e Event registration multiplexer (ERM) configuration. Re-
Since the QoS requirements of DRE applications can vary consigesving both the correlation/filteringnd dispatching capabilities
ably, the internals of event channels in TAO's Real-time Event Sereates an ERM configuration, which is shown in Figure 9 (C).
vice can also vary accordingly. In particular, the internal architectdmeis configuration supports neither real-time dispatching nor filter-
of the TAO event channel is based on the Pipes and Filters (5) anflcorrelations. In essence, this implements the semantics of the
Builder (29) patterns to support different channel configurations optiandard CORBA event channel push model.
mized for different DRE application requirements. This architecture . . . . . .
allows TAO's event channels to be configured in the following wa SIn mission-critical DRE environments with stringent QoS require-

to support a wide range of event dispatching, filtering, and dep 2nts, such as avionics mission computlng systems,_ the configura-
dency semantics: tion of an event channel is performed off-line to minimize startup

overhead. TAO's Real-time Event Service framework uses the Pipes
Full event channel configuration. A full event channel includesand Filters pattern and the Builder pattern (29) (described in Chal-
the dispatching module and consumer/supplier proxy modules, al@amge 4 in Section 4) to configure the event channel off-line. In

ProxyPushSupplier J ProxyPushSupplier J ProxyPushSupplier ll

Supplier Admin Module Supplier Admin Module Supplier Admin Module

ProxyPushConsumer ProxyPushConsumer ProxyPushConsumer

o

3.3.2 Event Channel Configurations



dynamic real-time environments, such as telecommunication c&hallenge 1: Ensuring Timeliness in Event Processing

rocessing, however, component policies may require alteration_at . . .
P g P P y req %é‘ text. The dispatching module of TAO's real-time event chan-

run-time. In these contexts, it may be unacceptable to comple nsures that orioriti o r ted by en ing events in ar
terminate a running event channel when a scheduling or concurréh sures that priofiies are respected by enqueueing events in a
rnal buffer according to their priority.

policy is updated. TAO’s Real-time Event Service framework usl
the Component Configurator pattern (32) (described in Challeng@rgblem. Long-duration operations, such as complex filter evalu-
in Section 4) to support dynamic reconfiguration of event channalion, can starve other events in the queue and prevent them from
without interruption while continuing to process events. being processed in a timely manner.

Solution — the Command Object pattern. This pattern encap-
C A i ) sulates an event as an object, thereby allowing parameterization of
4 DeS|gn|ng and Optlmlzmg TAO's Real- different events (29). The actual representation of the event is hid-
time Event Service den by the command object interface. Different concrete implemen-
tation of this interface implement the event and provide semantics
Although publisher/subscriber architectures have many benefits, tioely. This pattern can be used to decompose the internal event pro-
can also have some disadvantages: cessing within an event channel into stages to ensure timeliness by
¢ Their modularity can introduce excessive overheag, ineffi- avoiding long-duration operations that would otherwise incur “head
ciencies may arise if buffer sizes are not consistently sized &hdine blocking.”
aligned between and within event channels, thereby causingggblying the Command Object pattern. The filter evaluation,
ditional segmentation, reassembly, and transmission delayssubscription lookup, and event dispatching operations in TAO's event
e Information hiding within components can make it hard to maghannel are encapsulated as command objects. As shown in Fig-
agg resources predictably and dependably in DRE applicatigis 10 instead of performing these operations synchronously, their
an
e Communication between suppliers and consumers must be de-

signed and implemented properly to avoid introducing subtle @ @ @ @

source of errors.

Publisher/subscribarchitecturesalone are therefore not sufficient W

to resolve key challenges of DRE applications. What is needed

a deeper understanding of the patterns and optimization technique

necessary to develop flexibéend QoS-enabled publisher/subscriber Command Queue

software. @ Proxy Supplier Filter onsumer Admin FiIter@ Subscription Lookup
Architectural flexibility has historically been associated with ex- Evaluation Evaluation Operation

cessive time and space overhead, which is antithetical to DRE a@"XVE?,‘;Tja“t?;ﬁf Filter @SUPP&C‘QJE Filter @ Event Dispatching

plications. Fortunately, new generations of hardware and advan?_e

S . . N
in patterns and optimizations are becoming mature enough to comdure 10:Processing Command Objects to Ensure Timeliness

pensate for much .Of the time .ar.“.j space overhead traditionally &%q ation is split into discrete steps. If the event is still eligible for
sociated with architectural flexibility and modern software abstre}ﬁhher processing after executing an command operation, it is re-
tion and composition techniques (1). To reify this point, this secti Rced into the command queue and dequeued subsequently wher

describes the patterns and idioms we applied to address the fol Wher processing is possible. The dispatching command is respon-
ing design and performance challenges encountered when dev%pe- for sending the event to its consumer.

ing TAO's Real-time Event Service:

1. Ensuring timeliness in event processing C
Minimizing interference between the event channel compone&{%
Optimizing the performance of the CORBA Any type
Optimizations for footprint reduction and Context. An event channel should be able to (1) handle event de-
Customizing event channels for particular deployment envirgigery from suppliers and (2) perform event forwarding with the min-
ments. imum possible latency.e., suppliers delivering an event to the chan-
These challenges and our solutions are discussed below. To enhaglcshould not have to wait while the channel forwards events to
the generality of our solutions, we describe them in terms of the pagipient consumers. Similarly, when an event channel forwards
terns (29; 32) we used to resolve the challenges. Section 5 presardgats to multiple consumers, each consumer might spend an un-
empirical results that quantify the benefits of these patterns and dmiinded amount of time in the implementation ofatsh() oper-
mizations. ation. Since events are forwarded by the event channel via CORBA

allenge 2: Minimizing Interference Between Event
annel Components

arLD



two-way operations, the channel’s dispatching thread must wait utyjie, it must make a copy of the entire data buffer containing the Any.
the consumer returns from its upcall. This blocking overhead affeldisswise, copying an Any can require several memory allocations
the event channel’s event processing time. and buffer copys to obtain a new representation. Moreover, the C++
Problem. A real-time event channel implementation must mini- 2PPINg of CORBA Anys requires them' tq be responsible for any

: . : memory returned to the application. Optimized ORBs should share
mize the interference between different components of the ev%nt ) . X .
channel the Any contents even if there are multiple copies of the Any object.
Soluti the Active Obiect patt Thi ttern d | Solution — Reference counting via the Handle/Body idiom.

0 l:}'odn — the cflve IT]C dpa em. This pa Ie_fm ecc;]up ®SThis idiom presents multiple logical copies of the same data while
method execution from method invocation to simplify sync rOngﬂaring the same physical copy (33). In C++, this idiom is often used

access to an object that resides n its own thread (32). The ACW%utomate the memory management in conjunction with reference
Object pattern allows one or more independent threads of execuggﬂming and smart pointers

to interleave their access to data modeled as a single object. . o _ .
) ) ) ) ) i Applying the Handle/Body idiom. The TAO demarshaling engine
Applying the Active Object pattern.  Using the Active Object pat- goes not copy data into an Any. Instead, it reference counts its data

tern at the various stages of event processing enables the mininizgars and the Any only increments the reference count to maintain
tion of the interference between TAO’s real-time event channel COMngical copy of the buffer. Likewise, after the contents of the Any

ponents. As shown in Figure 11 and discussed in Challenge 1 abgue exiracted by an application, the Any object itself is responsible
events and operations performed on them are encapsulated as g0eallocating the extracted object. This extracted object can be

shared by multiple instances of the Any object, minimizing the cost

_ Dispigcnhshon::?me of copying and extracting the contents repeatedly. The use of the

Enqueuing Thread TPhrocejs;ngl — Handle/Body idiom implements this optimization without changing

reas 00 i i . . .
g —l ,ﬂﬂ‘g the semantics required by the standard CORBA C++ mapping.
Challenge 4: Optimizations for Footprint Reduction

) Command Queue ) ) . Context. TAO’s Real-time Event Service has many features that
Figure 11:Asynchronous Event Processing Using the Active Ob- may not be required by all applications. For example, deeply embed-
Ject Pattern ded systems may not want to incur the increase in memory footprint

) ] for unused features, such as correlation and filtering.
mand objects. Enqueueing thread(s) place event command obfcts

into a command queue according to a buffering order policy. An & oblem. A"requwed set of real-time event features should be
tive object with worker threads dequeues and executes the comm&RgiPosable” by users.
objects in the queue. Solution — the Pipes and Filters pattern and the Builder pattern.

At a lower-level of abstraction, the TAO real-time ORB itself cafhe Pipes and Filters pattern (5) provides a structure for systems
be configured to increase concurrency using the Leader/Followhet process a stream of data. The Builder pattern (29) separates the
pattern (32), which provides an efficient concurrency model wheanstruction of a complex object from its representation so that the
multiple threads take turns sharing a set of event sources in ogdane construction process can create different representations.

to detect, demultiplex, dispatch, and process service requests Mgy ing the Pipes and Filters pattern and the Builder pattern.
occur on the event sources. In this case, each ORB invocatiofAgys rea|-time event channel uses the Pipes and Filters pattern to
handled by a separate thread, allowing multiple events to be delivetgtkiq re alternative implementations of its modules described in
concurrently to a real-time event channel. Section 3.2. Likewise, it uses the Builder pattern to configure its
correlation and filtering mechanisms. For example, a configuration

Challenge 3: Optimizing the Performance of Anys containingno correlation/filtering + AnyProxySupplier + AnyProx-

] ] yConsumer + reactive dispatching strategpuld yield the default
Context. A CORBA “Any” is a dynamically typed data structuré;emantics of the CORBA Event Service.

that can contain the typecode and data for any type of data SUprhege features are separated into libraries as follows:
ported by CORBA. A CORBA-compliant Real-time Event Service

MUSt process events containing Anys. e The three different pairs of proxy supplier and proxy con-

sumer types are separated into different libraries. In a
Problem. In CORBA, Anys are expensive data types because they specific configuration, only the required type.g, the

can have many levels of nesting. For example, an Any can contain PushProxySupplier , may be loaded by a builder at startup.
a structure, which can itself be contain a sequences of Anys and so Hence, the other types of proxy implementations are not loaded
forth. When a CORBA demarshaling engine decodes this expensive since they are not needed.
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¢ An application may not require filtering, in which case the fil- Uses Configurator
tering engine library is not configured by the builder.

¢ The dispatching module can be configured to use simple reac- Notify Engine Loads Libraries
tive dispatching, multi-threaded dispatching, or even omitted al-
together to create one of the subset event channel configurations
described in Section 3.3.2.

Specifies Options
Component -Configurator

Challenge 5: Customizing Event Channels for Partic-
ular Deployment Environments

Context. TAO’s CORBA Real-time Event Service is configurable

in the following manner: Configuration File Filter Library Dispatching Library Proxy Library
o ) ] ] Figure 12:Apply the Component Configurator Pattern in TAO’s
1. Auser can specify features required by configuration. Real-time Event Channel

2. A specific class implementation can be modified by the user to
enhance or customize behavior.

3. Users can vary default properties, such as thread pool size mggsure several aspects of event channel latency using the ERD con
locking strategy. figuration described in Section 3.3.2. The benchmarks reported in

this section are based on performance requirements gleaned from our

Probl A hanism i ded to all lication devel extensive work (11; 12; 20; 22) on real-time avionics mission com-
robiem. mechanism IS heeded to aflow 'app cation develop ﬁting systems (24; 25). Since our focus in this paper is on real-time
to change various configurable option in TAO'’s real-time event ch

. operties, rather than the scalability properties described in (21), we
nel at run-time. do not report correlation or filtering performance here.
Solution — the Component Configurator pattern. This pattern  All benchmarks were conducted on a single-CPU 300 #/8un
decouples the behavior of component services from the pointUiyaSPARC 30 workstation with 256 MB RAM running Solaris 5.7.
time at which service implementation are configured into an appfersion 1.1 of the TAO ORB, TAO's Real-time Event Service, and
cation (32). This pattern can be implemented usirglicit dynamic the test application were built with SunC++ 5.2 with the highest level
linking, which allows an application to obtain, use, and/or remove théast ) of optimization enabled. We focus our experiments on a
run-time address bindings of certain function- or data-related sysingle CPU hardware configuration to factor out network interface
bols defined in DLLs. Common explicit dynamic linking mechagriver overhead and isolate the effects of ORB middleware and ap-
nisms include the POSIX/UNIX functiordiopen() , disym() , plication latency, predictability, and utilization. There was no other
and diclose() and the Win32 functiond.oadLibrary() , significant activity on the workstation during the benchmarking. All
GetProcAddress() , andFreelLibrary() ) tests were run in the Solaris real-time scheduling class so they had

, , , i the highest software priority (but below hardware interrupts) (34).
Applying the Component Configurator. All objects in TAO's

Real-time Event Service implementation are created via factory ob- o
jects. These factories can be loaded statically or dynamically. Figl ~CPU Utilization Measurements

ure 12 shows how the Component Configurator pattern can be LBegrview. For non-real-time event channels, such as the EFD con-

to dynamically configure TAO's real-time event channel. The con- = .. . . : -
) o . . . L : .|Hurat|on described in Section 3.3.2, correctness implies that con-
figuration file contains a script with directives that designate whic

libraries, such as the filter library, dispatching library, and prox F_umers receive events when their source/type subscription and cor-
' y, disp 9 Y PrOXY lla ation dependencies are met. In contrast, for real-time event chan-

g\r/aem éz;jr)]/:;mmally link into the address space of TAO's real-tmﬁ%ls’ such as the full event channel and ERD configurations, cor-
‘ rectness implies that all deadlines are met. An important metric for
evaluating the performance of a real-time system isdtsedulable

5 Empirical Results bound which is the maximum resource utilization possible without

missing deadlines (35). The schedulable bound of TAO’s Real-time

Our previous work (31) benchmarked a prototype of TAO's Re&ivent Service is therefore the maximum CPU utilization that suppli-
time Event Service that did not run on a CORBA-compliant ORES e,“?]d consumers can achhledv? W|thr$uthm|ssmg dezdhnes. d
This section extends these benchmarks and also demonstrates {8 ratelmonotomc scke uiing, igher ra}tg tas sk?re slyppose
performance of mature Real-time CORBA and Real-time Event SgrPreempt lower rate tasks. For TAO's Real-time Scheduling Ser-

vice implementations. We first measure t.he CPL'J utilization of tWO2yye chose a 300 Mhz CPU for the benchmarks since it is similar to the CPU
event channel configurations described in Section 3.3.1. We thgds on many DRE platforms, such as avionics mission computing (24; 25).
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vice to guarantee the schedulability of a systém, (that all tasks & High Prio
meet their deadlines), its high-priority tasks must therefore preempt — Low Prio -+ 1
its lower priority tasks. We therefore devised tests to (1) determine
whether this is indeed the case and (2) to measure the overhead of
TAO’s federated event channel configuration compared with a sin-

gle collocated event channel. Two experiments were conducted: the
first measured the utilization of a single event channel configuratiorii

and the second measured the utilization of a federated event chanriel 2 3
configuration. T
Single event channel utilization results. This experiment used a 0
single event channel that was collocated with a high-priority sup-
plier/consumer pair and a low-priority supplier/consumer pair. The
processing time for high-priority events was increased until the low- ,
priority task could not meet its deadline. In Figure 13 we plot the s a8 % o 04 96 o8 100 102

CPU Utilization

Figure 14:CPU Utilization for a Federated Event Channel
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60 T events are exchanged between local (collocated) suppliers and con-
sumers.
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0 N Analysis of results. The results of these two experiments indicate
N the following:

30

Laxity (%)

¢ Both event channel configurations properly enforce the real-
time distinctions between low- and high-priority suppliers and
consumers. This enforcement stems from the design of TAO’s

; | Real-time Event Service dispatching module described in Sec-

10 NN tion 3.2.

" | e The optimizations described in Section 4 are effective at mini-
8 8 o0 2 % % 100 102 mizing the overhead of the object-oriented framework used to

Figure 13:CPU Utilization for a Single Event Channel implement TAO'’s event channel so as not to degrade its utiliza-

tion unduly.

20

10 : R

0

average laxity for high-priority and low-priority events. The error
bars represent the minimum and maximum laxity for each exp%ri—

ment. Negative laxity means that a deadline was missed. -2 Latency Measurements

_ Figure 13_ shows that_the event channel a_lchievedgﬁ%rutiliza- . %2_1 End-to-end Latency Test

tion before its low-priority task began to miss deadlines. The high-

priority task never misses its deadlines, though its laxity decreaSegrview. Another important measure of event channel perfor-
slightly as utilization increases. It is interesting to observe that thigince is the latency it introduces between suppliers and consumers.
decrease in almost linear with the utilization increase, even whentbealetermine this latency for TAO's Real-time Event Service, we de-
low-priority task no longer meets its deadlines. veloped a test that measures the end-to-end supplieonsumer la-
Federated event channel utilization results. In this experiment, tency using the IIOP communication mechanism, which uses point-
two event channels were configured in separate OS processes otthriltipoint event delivery rather than IP multicast. This test times-
same computer. No work was performed when processing remataps each event as it originates in the supplier and subtracts that
events, but the processing time for high-priority events was increater from the arrival time at the consumer. The consumer does noth-
until deadlines were missed. Figure 14 depicts the laxity for the higing with the event other than store the measurement in a preallocated
priority and low-priority tasks. Although the performance of the fedsray.

erated event channel is lower than the single event channel, it gtlill

S . - . ngle pr latency results. In thi h nsumer li-
maintains high utilization (ove¥6%) before missing deadlines. As gle process latency results. In this te;t,t € Consumers, suppil-
. . : L2 ) ers, and event channel were collocated in the same process to elim-
shown in Section 5.2, this smal-B%) loss of utilization yields a

; ; inate ORB remote communication overhead. In the single process
substantial performance improvement for the common case, where :

case, the best-case supplier-to-consumer latency~B8g.secs. In
3L axity is defined as the time-to-deadline minus the execution time. each case, as the number of suppliers and/or consumers increasec

the latency also increased, as shown in Table 1.
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Latency,usec
First Consumer Last Consumer

Sup. | Con. || Min | Max | Avg Min Max Avg
1 1 53 93 58 53 93 58
1 5 107 | 189 | 114 || 197 284 206
1 10 171 | 230 | 183 || 379 451 393
1 20 || 291 | 340 | 300 || 741 817 760
2 1 49 67 51 49 67 51
2 5 95 | 124 | 100 || 180 213 187
2 10 159 | 281 | 170 || 360 498 374
2 20 || 283 | 333 | 299 || 758 828 781
10 1 51 | 303 72 51 303 72
10 5 100 | 211 | 113 || 187 | 1,210 284
10 10 167 | 222 | 176 || 369 | 2,545 576
10 20 || 211 | 310 | 290 | 741 | 4,895| 1,137

Table 1:Event Latency for Collocated Event Processing

Latency,usec
Local Event Remote Event
Sup. | Con. || Min Max | Avg Min Max Avg
1 1 57 71 63 772 1,078 820
1 5 108 207 | 155 765 1,995| 1,283
1 10 || 170 598 | 289 795 5,853 | 3,544
1 20 || 303 819 | 534 756 6,047 | 3,084
2 1 50 95 57 || 1,226 | 2,329 | 1,297
2 5 101 214 | 152 || 1,274 | 4,577 | 2,330
2 10 || 167 421 | 274 || 1,226 | 6,676 | 3,448
2 20 || 280 821 | 519 || 1,225 | 20,727 | 6,038
10 1 49 218 60 || 1,406 | 3,969 | 3,102
10 5 100 | 1,170 | 172 || 1,477 | 12,773 | 6,282
10 10 || 158 | 2,379 | 310 (| 1,258 | 19,153 | 7,904
10 20 || 209 | 4,900 | 596 || 1,266 | 65,449 | 24,345

Table 2:Event Latency for Local and Remote Event Processing

Two process latency results. In this test, two identical processes
were created and the consumers in each process subscribed to o8
local and remote evenfsTable 2 shows the results of this test. Fo

two processes, the local events exhibit similar latency to the loc..

should even further reduce latency, though TAO'’s event channel
only supports unreliable multicast currently.

e Table 2 illustrates the benefits of the federated event channel
configuration described in Section 3.3.1. In particular, dissem-
inating events to consumers collocated in the same process is
one to two orders of magnitude more efficient than disseminat-
ing them remotely.

5.2.2 Minimal Event Spacing Test

Overview. Another important performance metric is thgnimum
event spacingwhich is the maximum rate an event channel can de-
liver messages before its overhead incurs measurable latency. This
test was executed in a single process, where suppliers generate ¢
fixed number (500) of events and the consumers do no work other
than maintain simple statistics. We progressively decreased the event
generation period and measured the ratio between the effective event
rate and the expected event rate.

Minimal event spacing test results. Figure 15 shows that the
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Figure 15:Minimum Event Spacing

events in the single process case. In particular, no significant over-

head is incurred due to possible remote consumers. In contrastetRi channel can deliver over 50 messages per secenda(50

remote consumer performance is much higher than the local eveﬁl‘isnate) before it experiences any measurable overhead.
though it is close to the performance of a remote operation invoca-

tion.

Analysis of results. These results indicate the “class” of DRE sys-

Analysis of results. The results of the experiments above indicatgms that can be supported by TAO's Real-time Event Service. In

the following:

particular, DRE systems that run at rates less than 50 Hz (which in-
cludes the important class of real-time avionics mission computing

. Table 1 illustrates the efficiency of the optimizations describggstems (24: 25)) should incur inconsequential amounts of latency
in Section 4. In particular, as the number of suppliers and cejie to the overhead of the event channel. However, DRE systems
sumers increase, the increase in latency is less than linear,if{ye run at higher rates (which includes flight control software and
in large part to the Handle/Body idiom used to optimize thg,iomative breaking systems) may incur too much overhead to oper-
processing of Any data types. Naturally, the use of IP multicagt \ithin their schedulable bound. We believe that TAO's Real-time

4In this test configuration, a “local”

in the other process.

. . [Egent Service performance can be improved, and are currently ex-
event is one intended for a consumer collocated . . . L .
within the same process and a “remote” event is one intended for a consumer lodd@dmenting with additional patterns and optimizations to reduce its

overhead systematically.
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6 Related Work reliability is commonly obtained via other means, such as hardware
redundancy. Nevertheless, we believe that extending TAO’s Real-
Event-driven middleware for distributed real-time and embedded @ifive Event Service to provide higher degrees of reliability is possi-
plications is an emerging field of study. An increasing number igik, and we are pursuing this topic in our future work on FaultToler-
research efforts are focusing on end-to-end QoS properties, STCORBA (27) and DOORS (38).
as timeliness, by integrating QoS management policies and mech-
anisms into publisher/subscriber middleware. This section describes
the growing body of work related to CORBA-based Event Servicgs, Concluding Remarks
which we compare and contrast to our work with TAO.
OMG standard specifications. The OMG has specified a Notifi-Minimizing coupling between components is an important means to
cation Service (36), which is a superset of the CORBA Event Servighill key quality requirements in software-intensive applications.
that adds interfaces for event filtering, configurable event delivéfany applications use publisher/subscriber architectures to deliver
semanticsé€.g, at least once or at most once), security, event ch&vents from suppliers to consumers without introducing excessive
nel federations, and event delivery QoS. The patterns and technigeepling between event sources and sinks. Though the concepts, pro-
used in the implementation of TAO’s Real-time Event Service cgramming abstractions, and benefits of publisher/subscriber architec-
be used to improve the performance and predictability of Notifidares are well understood, there has been relatively little research on
tion Service implementations. To explore that idea, we have imgiew to design architectures that are efficient and predictable enough
mented a Notification Service for TAO (37) and used it to validai@ meet the quality of service (QoS) requirements of distributed real-
the feasibility of building a reusable framework that factors out cotitme and embedded (DRE) applications. In particular, the QoS per-
mon code for TAO’s Notification Service, its standard CORBA Evef@trmance tradeoffs between different publisher/subscriber configu-
Service implementation, and its Real-time Event Service. rations are not well understood.

The OMG Messaging specification (26) gives application developMany DRE applications require support for anonymous, asyn-
ers control over several QoS parameters, such as one-way reliallitgonous, predictable, and scalable event-based communication.
and timeouts, and introduces type-safe asynchronous method i CORBA Event Service defines a standard publisher/subscriber
cation (AMI) models. The CORBA AMI specification solves mangrchitecture where event channels dispatch events to consumers or
problems with the original CORBA invocation model, but it dodsehalf of suppliers. The TAO Real-time Event Service described in
not address anonymous or single-point-to-multiple-point commuiiiis paper augments the CORBA Event Service by providing low
cation. The Messaging specification can complement implemetagency and low jitter dispatching, support for periodic real-time pro-
tions of the CORBA Event Service,q, it defines several levels ofcessing, source-based and type-based filtering and event correlations
reliability for one-way calls. This feature could be used in Event Sa@nd efficient use of network and computational resources.
vice implementations to improve decoupling of the clients, withoutThe empirical results presented in Section 5 illustrate that system-
the risk of losing messages. We have augmented TAO with the Adiically applying key patterns and optimizations make it feasible to
features (16) defined by the Messaging specification, which compipply Real-time CORBA middleware to important classes of DRE
ment its Real-time Event Service implementation. applications. The flexibility and QoS offered by TAO's Real-time
COBEA. COBEA (8) is a CORBA-based event architecture sdevent Service have made it the foundation for many research and
vice that generates parameterized events, which are published p§pgduction DRE applications. Our future work is focusing on the
trading service. For scalability, clients must register their inter@gtterns and optimization techniques necessary to support even more
with the service, at which point an access control check is performégmanding DRE applications that run at higher rates and that must
Subsequently, whenever a matching event occurs, the client is ridfiwltaneously handle multiple QoS properties, such as dependabil-
fied. As with TAO’s Real-time Event Service the authors proposéa scalability, predictability,and security.
number of extensions to support event filtering and correlation. How-
ever, COBEA does not takes advqntage of the broadcast CapabiWERnowledgments
of modern networks to reduce traffic, nor does COBEA use multicast
to offload processing from the CPU to the network cards. We would like to thank the SAIC RTI-NG group, particularly Steve
Fault-tolerant Notification Service In (9) the authors study theBachinsky and Russ Noseworthy, and Boeing, particularly Bryan
fault tolerance capabilities provided by the CORBA Notification Sdpoerr, for their support and direction.
vice and propose a configuration that can achieve the highest event
delivery guarantees. The authors then examine the performan
such configuration of the Notification Service under diF:‘ferent Ioaﬁ%gferences
TAO'’s Real-time Event Service has been designed to satisfy thé L. Lundberg, D. Hggander, and W. Diestelkamp, “Conflicts and Trade-offs
requirement of high-performance real-time systems and of highly- between Software Performance and Maintainability,Performance

o . . - . . Engineering. State of the Art and Current Trepdecture Notes in Computer
scalable distributed interactive simulations. In these environments, Science, Springer Verlag, 2000.
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