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Abstract— Distributed real-time embedded (DRE) systems of-
ten perform sequences of coordination and heterogeneous w@a
manipulation tasks to meet specified goals. Autonomous opation
of DRE systems in dynamic environments can benefit from the
integrated operation of (1) a Spreading Activation Partial Order
Planner (SA-POP) that combines task planning and scheduling
in uncertain environments with (2) a Resource Allocation and
Control Engine (RACE) middleware framework that integrates
multiple resource management algorithms for (re)deployig and
(re)configuring task sequence components in DRE systems. iBh
paper demonstrates the effectiveness of the SA-POP decisio
theoretic planner and the RACE framework in managing and
executing mission goals for a multi-satellite system appation.
Our results show how a dynamic planner that handles both
scheduling and resource constraints is a key element in imet
menting autonomy for DRE systems.

|. INTRODUCTION

Distributed real-time embedded (DRE) systems, such
multi-satellite and multi-robot formations, often peniorse-
guences of heterogeneous data collection/manipulatidicen

For example, the NASA Earth Science Enterprise’s Magne-
tospheric Multi-Scale (MMS) [4] mission uses five satetlite
with six sensors on each satellite as a solar-terrestribeor
The satellites orbit the earth in formation and collect &tec
magnetic and particle data in the earth’s magnetosphem. Th
mission operates in three data modes: slow, fast, and burst.
These data modes may also include different goals, orlvits, a
data priorities. Each satellite must be capable of deténgin
the necessary task sequences to achieve prescribed gsatsk ba
on the current environmental and system conditions, as well
as revising task sequences in response to changing carglitio

To achieve a degree of autonomy during oepration, an auto-
mated planner for mission task sequences must handle devise
goal prescriptions specified by mission scientists as well a
autonomous mode changes driven by satellite position and th
results of analyzing collected data. The task sequencéasiiec
asmponents for coordinating the trajectory and orientatb
satellites, sensor selection and data collection for iddil
satellites, and data integration and compression to create

ordination tasks to meet specified goals. For example, weatkelemetry streams that are beamed down to the earth stations

prediction requires multiple satellites that fly coordavht

Changing resource usage and environmental conditions may

missions with multiple sensors to collect and analyze largéfect the likelihood that all of the specified tasks will emée
quantities of atmospheric and earth surface data. The dsteecessfully. The runtime computational architectureukho
collection, analysis, and earth transmission tasks mapgsha therefore, include dynamic monitoring schemes and thétyabil
during operation as previously collected data indicatérerot to reallocate resources, and when necessary executemaggan

factors or regions of interest, and overall goals and prési

algorithms to accommodate changing goals and operating

have to be modified with changing weather patterns or ugenditions.

certainties attributed to changing resource availabiltgre-

To support such DRE systems, we have developed a

over, limited bandwidth and communication lag necessitat@vel computationally efficient algorithm called tiSpread-

autonomous (re)planning on-board the satellites to eyt

ing Activation Partial Order PlannefSA-POP) for dynamic

achieve goals under such rapidly evolving environmentdl afre)planning under uncertainty. SA-POP overcomes scaling

system conditions.

limitations of earlier Al approaches for planning and reseu

Presently task sequence implementations in DRE systeal®cation/scheduling into one computational algorith®j. [

use component middlewar§l], which automates remoting,

This paper describes our approach for combining SA-POP

lifecycle management, system resource management, deploith a Resource Allocation and Control EngingRACE),
ment, and configuration. In large-scale DRE systems, théich is a reusable component middleware framework that
sheer number of component sequences often poses a ceeparates resource allocation and condtgbrithmsfrom the
binatorial deployment probleni,e., mapping components to underlying middleware deployment, configuration, and caint
computing nodes [2]. Moreover, the dynamic nature of thmechanismso enforce quality of service (QoS) requirements.
operations require runtime management and modification of

deployments [3]. More effective solutions to this probldmatt

II. DRE SYSTEM ARCHITECTURE

provide greater autonomy must include planning and replan-This section describes the system architecture of SA-POP
ning capabilities along with dynamic monitoring and rurgimand RACE for autonomous operations of complex DRE appli-

management to ensure the task sequences being executed kagpns. As shown in Figure 1, the SA-POP planner starts with
in sync with changing mission goals and resource avaitgbili specified mission goals and generadpgrational stringghat



represent appropriate task sequences of high expectég. utigoals. Guided by these expected utility values, SA-POP’s
Each goal specification is mapped onto one operationagstriplanning and scheduling algorithms generate partial cas
sequencefrom which the operational strings are derived. As
Domain Mission a next step, the individual tasks in a sequence are mapped

Experts SAPOP SCEMiStS| o available executable software componeats, the planner
| Task o may pick a data compression task and then select an appro-
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Resource Satellite Svstem Application tasks and conditions (preconditions, data input, effeats
Monitors Y Sl data output) with the links encoding the requisite probgbil
T information. The task network can be constructed by a domain

expert using domain-specific modeling tools, such as the
Generic Modeling Environment (GME) [11]. With the task

which includes the control (ordering) dependencies, tha OI(,Qetwork and a set of utility values for goal conditions/data

(producer/consumer) dependencies, and required staerahd qumﬂeq by a user, a _spreadmg activation mech_a_nlsm, de-
! : : i . scribed in the next section, computes expected utility eslu
times for tasks, if any. The operational strings also corgain- ; h task
gested implementations for each task. The RACE framework ©ach 1ask.
performs the initial deployment of the task implementagion TO ensure applications do not violate resource constraints
onto computational resources, and then monitors and managé-POP also requires knowledge of the resource consumption
runtime resource allocation to enforce QoS requirements fnd execution time of each possible implementation of a task
these operational strings. i.e. its resource signatureA given task may be implemented
DRE systems in the domains of shipboard computing [d?y multiple parameterized components, each with different
avionics mission computing [7], and intelligence, sutagite esource signatures. SA-POP usesask map shared with
and reconnaissance [8] often represent applications aﬁpgroRACE, to associate each task with a set of parameterized
of domain-related tasks that can be modeled as operatiof@Mponents and their individual resource signatures.
strings. These strings in turn can be implemented by exe-Operational strings produced by SA-POP are given as
cutable software components using component technologieput to RACE, which then uses reusable algorithms to (1)
such as the OMG'’s Lightweight CORBA Component Modalleploy the initial mapping of components to nodes and (2)
(CCM) [9] and Web Services. In our architectucemponents monitor system and application resource usage [12] to n&nag
are units of implementation and composition that contain pgystem performance. RACE allocates resources to applicati
rameterized executable code with specified QoS requiremermponents based on their resource requirements and QoS
(such as maximum latency and minimum throughput valuesaracteristics. Since component resource use and egaeto-
and resource consumption profiles (such as expected CPU Qu$ for operational strings are sensitive to runtime change
memory usage). and changes in system performanegy, due to changes in
For the MMS application to achieve a given setgifals resource availability and transient overload, RACE cam als
(e.g, study the physics of plasma reconnection and chargestieploy and/or reconfigure application components usirg t
particle acceleration), SA-POP first uses a spreading aétiplementation options available in the task map to enswe t
vation mechanism [10] to generates expected utility valudesired end-to-end QoS requirements of operational stang
for individual tasks that can contribute to achieving spedi not violated.

Fig. 1. SA-POP and RACE in a Multi-Satellite System



[1l. THE SPREADING ACTIVATION PLANNER (SA-POP)  condition must be true (false) for the task to succeed,smfl

As discussed in Section II, autonomous operations in DFRgeNstraints(weight < 1 (> —1)), i.e, where the true (false)
systems require two components that operate in concert; ¢@jue of the (_:ondltlon increases the prob§b|I|ty of taslcx?gs. _
a planning and scheduling system that responds to Changggt constraints can be used to model inferred conditions in
in goal specifications, environmental conditions, and glean Uncertain environments, where an actual precondition can n
brought about by the interpretation of collected data, @)ch( P& sensed directly but is probabilistically related to oitwn-
resource allocation engine that can monitor resource wsagje ditions that can be sensed. For example, an imperfect (noisy
QoS specifications to ensure that the plan execution meets $gnsor for detecting an environmental condition necestsary
desired goal specifications. This section describes tmaayi the success of a task can pe modeled using a soft constraint.
algorithmic steps in SA-POP planner and scheduler, whichThe weight, w;, of the link from a task nodei;, to a
include (1) a decision-theoretic spreading activation inaec condition nodegy, deflpes the probability thaf, will be true/-
nism to identify task sequences that maximize an expectéfe afteri; executesj.e.
utility measure for given a set of goals, and (2) an operation P(cy, = truelt?)  if t; setscy, = true
string generation mechanism that uses the computed expbect&ik = { —P(cy, = false“?) if ¢; setscy, = false, (2)
utilities of tasks and their associated implementatioouese S ) '
signatures to ensure that the extracted task sequencedVligret; indicates that task; is executed.

an operational string have high expected utility and meet ' € likely contribution of a task toward a desired goal is
resource, time, and other QoS constraints. computed as an expected utility (EU)e., the product of
the task’s utility toward meeting the goal requirements and

A. Spreading Activation Networks its likelihood of success. Probability values are propedat
A spreading activation task network, as shown in Figure fgrward through the network from preconditions througtksas
captures the links between task sequences and goal cot@lieffects. Utility values are propagated backward throthgh
tions [10]. The network contains condition nodes (ovalg) ametwork from effects through tasks to preconditions, which
task nodes (rectangles) with directed links that indidagepre-  allows preconditions of potentially useful tasks to acciatel

and post-conditions for executing individual tasks. Ctindi utility and makes them useful subgoals toward meeting the
specified goal requirements.

Two experiments using the task network shown in Figure 2
illustrate the results of spreading activation with diffet
goals. In experiment 1, condition nodes C14 and C15 each
have a goal utility of 100, whereas in experiment 2, C15 is
replaced with C16, again with a goal utility of 100. Table |
summarizes the resulting expected utility and probabiléis
ues for all task and condition nodes in the network. Note that
negative EU values indicate expected utility for a conditio
being false instead of true, and the probability valuesdist
are probabilities of success for tasks or probabilitis ofuee t
Key: — — value for conditions. Figures 3 and 4 illustrate the diffdére
e plans_that ;/vould result based on expected utilities in the tw

experiments.

Fig. 2. A Spreading Activation Network for the MMS Scenario

nodes are represented as Boolean variables with associated
probabilities that define the maximum likelihood of that aod
achieving true/false values. Environmental/system d@mrh
(e.g, a particular sensor is active) and generated dat, @
data stream from a sensor) are represented as conditios.node
The data condition nodes represent the availability (tare)
non-availability (false) of the corresponding data.

The weight,w;;, of the link from a condition node;;, to a
task nodet;, defines the likelihood that; succeeds in given
ci, 1.e.

P(L‘S-|Ci _ true) _ P(t5-|ci = false) Fig. 4. Resultant Plan in Experiment 2
wij = J . ) (1)
P(t3]c; = true) + P(t|c; = false)

Since C15 is not a goal in experiment 2, A10 only accumu-
wheret; indicates that task; is successful. This encodinglates utility from C14. As a result, A7 has a higher expected
supportshard constraints(weight = 1 (1)), i.e., where the utility than A10 due to its higher probability of success and



Nz‘ies EY EXpl EV Esz Pml%%)épl Pml%%épz mon to partial order plans. These constraints are used to
A2 0 0 0.975 0.975 createprecedence graph47] that partition all other tasks into
A3 0 0 0.950 0.950 sets based on their ordering with respect to a particuldr tas
ﬁg 121 121 1:888 1:888 undgr_ considgration. With _this information, SA-POP apphe
A6 0 0 0.926 0.926 modified version of Laborie’s energy precedence and balanc-
AT 100 100 0.990 0.990 ing constraint propagation techniques [17] to detect pakn
ﬁg 182 182 é'ggg é'ggg resource violations, constrict possible execution times f
A10 180 90 0.900 0.900 tasks, and add additional task ordering constraints.
All 90 90 0.900 0.900 A plan of operational strings generated by SA-POP is con-
g% 8 8 1:888 1:888 strained by four different kinds of “links,” which specifyar-
c3 181 181 1.000 1.000 dering of two task instances. B8ausal Linkindicates one task
C4 0 0 1.000 1.000 must execute before the other based on a system/enviroaiment
gg 8 8 (1):3(7)(5) (1):3(7)(5) condition. These links are imposed during planning when a
c7 0 0 0.950 0.950 task is chosen to satisfy an open non-data condition, and
C8 -95 -95 0 0 are only applicable between task instances within a single
glgo '11512 ‘118612 1.800 1.800 operational string. AData Link indicates both tasks must
c11 0 0 0.926 0.926 execute simultaneously because they both operate on thee sam
Ci2 180 180 0.900 0.900 data stream. These links are imposed during planning when a
gii 59 59 g:ggg g:ggg task.is chose_n _to sati.sfy an open.data condition, and are only
c15 90 0 0.900 0.900 applicable within a single operational string. Phareat Link
Ci6 0 90 0.900 0.900 indicates one task must execute before the other. These link
TABLE | are imposed during planning to resolve causal link threats,
SPREADINGACTIVATION RESULTS and are valid within, as well as across, operational stridgs
Scheduling Linkindicates one task must execute before the
other.

is chosen to achieve 914 instead of A10. M_oreover,_ A1l iSThe links outlined above are imposed during scheduling
also necessary to achieve the goal of C16 in experimentg, e ent potential resource violations, and are valichinit
while AS and A8 are common to both plans as they achieWg ' \ye|| as across, operational strings. We also define one
subgoals necessary for following tasks. additional type of constraint on task instances in an ojmrat
string, Time Constraint This constraint specifies a required
start-by or end-by time, and is strictly required as it iscfied
For the NASA MMS and similar DRE systems, the fewein the goal input for a condition achieved by the task.
the constraints imposed by an operational string, the edsie In addition to links and time constraints, SA-POP maintains
is to make initial deployment decisions and manage ressurg@me additional time and ordering information internahptt
at runtime. To facilitate these activities, we adopt a medifi it uses to plan and schedule, but which does not directly con-
Partial Order Causal Link(POCL) design [13] to generatestrain its output operational strings. TAme Windowconsists of
operational strings. The least commitment strategies®ywf an earliest time and latest time. Start and end time windows
partial order planning allow SA-POP to impose relatively fe are maintained for each task instance Rankinda, b) is a
constraints compared to other popular planning techniguesmparison between task instaneesnd b, which describes
such as state space search and constraint satisfactiod baése order in which they will be executed given the current
planners. Recent research [14] also indicates that in matowledge of the plan.
cases the performance of partial order planning can be bitoug There are four rankings used by SA-POBefore After,
up to par with these other approaches through the applitat®imultaneousandUnranked Beforeindicatesa will complete
of appropriate heuristics. its execution beforé begins executingAfter is the reciprocal
SA-POP leverages information available from the partiaff the Before relationSimultaneousndicates bothe and b
order planning process in applying resource constraints awill start and end their executions strictly at the same §me
finding resource violations. In DRE systems, such as the MM#$rankedindicates the execution ef andb is overlapping or
scenario, many tasks in an application are data manipulatiootentially overlapping.
tasks that operate over long time windows with a required The rankings between all pairs of tasks are maintained in
start time, but no defined end time. Instead, the end tinagprecedence graph [17] and are determined by the links and
is dynamically determined by ongoing analysis of the dattime windows in the current plan. The precedence graph main-
which limits the effectiveness of many popular schedulingined by SA-POP differs from Laborie’s definition primaril
approaches such as timetabling [15], edge-finding [16], aidthat it is defined between pairs of task instances ratrar th
classical energetic reasoning [17]. events which are the individual start and end times of task
Rather than primarily relying on start/end time windownstances. This simplification allows more efficient scHeuiu
manipulation, SA-POP leverages the ordering constramts-c calculations fordiscrete resourceéwhich are resources, such

B. Operational String Generation



as memory, used during a task’s execution and then freetd)sk instance. The energy precedence constraint propagati
SA-POP currently does not schedule tasks basegtsgrvoir can constrict time windows (and consequently derive more
resourcegwhich are resources, such as battery power, that caccurate rankings), even with relatively loose time window
be arbitrarily produced or consumed). The existing frantéwothat are prevalent early in planning. It applies to a task
could be extended, however, to apply resource constraimstance’s start (end) time window based on the resourageusa
propagation and search for reservoir resources with sowfeall other task instances in iBefore(After) precedence set.
modifications to the original Laborie balance constraim][1 = SA-POP’s balance constraint propagation applies to a task
SA-POP generates operational strings using mutually fecinstance based on the other task instances irJitsanked
sive planning and scheduling algorithms with backtrackingndSimultaneougrecedence sets. With the discrete resources,
Each step in the generation of an operational string in®lvprecedence graph, and links used by SA-POP, the constraint
the four recusive algorithms described below: propagation differs from the Laborie calculations [17] twit
Algorithm: Plan. SA-POP begins with the mission goals asne major simplification: for discrete resources, only ttaets
the set of open conditions. Since data manipulation tasis and end events of (potentially) overlapping task instafices
resource intensive and execute concurrently with oth&stas rankedand Simultaneougrecedence sets) must be considered
the same data stream, SA-POP gives priority to data flow can-the balance constraint. With this simplification, SA-POP
ditions, which enables early detection of irresolvablewse uses Laborie’s balance constraint propagation [17] to tcimhs
violations in a nascent plan, thereby pruning the searcbespatime windows, impose necessary scheduling links, and tletec
In choosing a task to satisfy the current open condition, SAresolvable resource violations.
POP prefers tasks with higher expected utility values, tveid Algorithm: ResolveResThis algorithm implements SA-
by their probability of achieving the condition. There is@l POP’s search for resolutions to potential resource vimhati
a threshold on this probability value for the tasks. Thos@A-POP employs two significant simplifications in the calcu-
falling below the threshold are ranked strictly by probipil lation of resource levels for events: (1) a potential reseur
rather than expected utility. This ranking represents detnéf conflict can only be resolved by imposing an ordering con-
between the total expected utility, which may accumulaienfr straint (scheduling link) between two task instances, (by
multiple goals, and the likelihood of achieving the subgoardering an end event before a start event) and (2) given
currently under consideration. (1), only a worst case (minimum) resource level and best
Algorithm: ResolveThreatsThis algorithm recursively re- case (maximum) resource level need be calculated for each
solves causal link threats, as in traditional partial onglen- task instance (corresponding to the level when its stamteve
ning. Specifically, a causal link is of the forf1-(C1 = occurs).
ValueX)— T2, meaning task instancEl achieves condition The heuristic for choosing the most significant re-
C1 = ValueX as a precondition for task instan@. A source violations is provided by a task instance critical-
causal link threat occurs when another task instafiég,has ity measure:crit(z) = max(0,—Lyin(x))/(Lmaz () —
an effect of C1 = ValueY, where ValueX # ValueY, Lpin(x)QAtsqr(x) Where, L is a resource levelQ) is a
and is not ordered (by the current set of causal, data, am$ource capacity, andt is the length of a time window.
threat links) with respect t@'1 and7'2. To resolve this threat, After choosing the most critical task instanag,a set of task
T3 must be ordered either befofEl (demotion) or after instances fromUnranked(x) that can be ordered before
T2 (promotion).ResolveThreatthus attempts to recursivelyis chosen to reduce the criticality af below the specified
resolve all causal link threats by promotion or demotion. threshold. The heuristic for choosing these task instaixes
Algorithm: ScheduleWith this algorithm, SA-POP movesprovided by preferring those with highest pairwise criitya
from partial order planning to scheduling that meets statedlues given byerit(z,y) = —commit(y, x)/R(y) where,R
resource requirements. SA-POP first determines the chamge resource usage value, angnmit(y,x) is a measure of
in potential resource usage for each implementation (frottne commitment implied by ordering the end evenydfefore
the task map) of a task instance, given current rankingse start event ofc as defined in [17]. This heuristic pro-
from the precedence graph. Thesource impact scor@f vides a least commitment strategy (consistent with SA-BOP’
an implementation is the sum across all resources of theeference for minimally constrained operational str)nigg
percentage of resource capacity that would be utilizedlif dalancing the preference for low commitment with the prefer
potentially overlapping task instances were to be executedce for high reduction in potential resource violationsthw
concurrently. The implementation with the least impact otnese algorithms, SA-POP employs backtracking whenever an
potential resource availability, as measured by the resouirresolvable resource violation is discovered, or an gpteis
impact score, is chosen to implement the task instance hwhimade to impose a link inconsistent with the rankings in the
is analogous to the least constraining value heuristicyafteed precedence graph.
in general constraint satisfaction problems. Table Il is an example description of task map with imple-
SA-POP also uses Laborie’s energy precedence and balamemtations for the tasks in 2. In this scenario, C12 is a data
constraint propagation techniques [17] modified for plagni condition, implying that A8 produces a data stream that can
in DRE systems. These techniques are largely complementheyconsumed by A10 and/or A11. Using the expected utilities
and apply to different precedence sets with respect to angivealculated for experiment 1 in the previous section, and a



TAafk Impl?r:]nsrl“at'on Resourfe Usage are met. RACE is built atop of CIAO and DANnCE, which
A2 Impl2 1 are open-source (seawv. dr e. vander bi | t . edu) imple-
A3 Impl3 1 mentations of the OMG Lightweight CCM [9], Deployment
ﬁg’ :mg:g i and Configuration (D&C) [18], and Real-time CORBA [19]
A6 Impl6 2 specifications. RACE provides a range of resource alloca-
A7 Impl7 4 tion and control algorithms that use middleware deployment
ﬁg :mg:g é and configuration mechanisms to allocate resources to op-
A10 Impl10 1 erational strings and control system performance after op-
All Impl11 1 erational strings have been deployed. In particular, itsuse
TABLE II Resource Monitorsand ApplicationQoSMonitorswhich are
TASK MAP RESOURCEUSAGE AND DURATION implemented as CCM components, to track system resource

utilization and application QoS respectively.

single resource of capacity 5 units for the system, Figure 5RACE'S algorithms determine how to (re)deploy an applica-

illustrates the operational string generated by SA-POP. tign specified by operational strings and ensure desired QoS
requirements are met, while maintaining resource utitrat

within desired bounds at all times. The allocation alganith
determine the initial component deployment by determining

,. Data. . the best mapping of these components to the appropriatettarg

1) Connection (1) . .
nodes based on the availability of system resources. For ex-

ample, an allocation algorithm could apportion CPU resesirc
to components in such a way that avoids saturating these
resources. Likewise, RACE’s control algorithms adapt the

this figure, the dashed arrow between A7 and A8 indicatg¥ecution of an operational strings’ components at runtime
a scheduling link, while other arrows indicate the causa(di '€SPonse to changing environments and variations in resour
and the data link between A8 and A11. Because A8 and Ayailability and/or demand. For example, a control algonit
are data manipulation tasks and no additional time comstraicould (1) modify an application’s current operating mod), (
were imposed, they operate continuously until the end of tg¥namically update component _|mplem§nt€,;\t|ons, and/or (3)
operational string’s execution. Initially A7 would be unkaed redeploy all or part of an operational string’s componeats t
with respect to A8 and A11. Their combined resource usa§é1er target nodes to meet end-to-end QoS requirements..
of 2 and A7’s resource usage of 4, however, would violate RACE uses mechanisms provided by the underlying mid-
system resource capacities if they operated concurresaly. dleware to perform the allocation and control decisions enad
POP therefore imposes the scheduling link between A7 ab its algorithms. For example, RACE uses standard mecha-
A8 to ensure resource constraints are honored. nisms defined by the Lightweight CORBA Component Model
To illustrate the potential trade-off between expectetityti (CCM) [9] to (1) (re)deploy and (re)configure applicatiomzo
and resource constraints, consider a similar system wigh tponents, (2) transition application components from itiees
same goals but with a resource capacity of only 3 unit operational states and monitor the performance of the DRE
Figure 6 shows the operational string generated by SA-POPsistem, and (3) modify components and/or operationalgsrin
this scenario. The tighter resource constraints do nowvaiie to realize the adaptation decisions of control algorithms.
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inclusion of A7 to achieve C14, so SA-POP is forced to use
the lower expected utility task A10 due to the limited ressur
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IV. RESOURCEALLOCATION AND CONTROL ENGINE

The architecture of RACE and its interplay with SA-POP is
illustrated in Figure 1. RACE performs autonomous resource
(re)allocation and (re)configuration of QoS settings of pom
nents that are part of the operational strings generated\by S
POP such that the QoS requirements of the operational string Fig. 7. Architecture of RACE

Application
QoS Managers




As shown in Figure 7 the RACE architecture consists of the Through the association of multiple functionally equivsle
following entities that are implemented as CCM componenitsplementations for each task in the task map, RACE can find
using CIAO and deployed via DANCE: valid (re)allocations by substituting the original taskrgm-

Resource Monitors are CCM components that track rements suggested by SA-POP with ones that are more resource
source utilization in a domain. One or moResour ce- friendly under the current conditions. In the unusual chse t
Moni t or s are associated with each domain resource, such such allocation is possible, RACE provides feedback to SA
as CPU and memory utilization monitors on each node aRDP indicating its failure to find a valid allocation due tceon
network bandwidth utilization monitors on interconnect&la or more resource constraints. If this occurs, SA-POP géeera
bridges. a new operational string that uses less resources (andigyoba

ApplicationQoSMonitors are CCM components that trackhas lower expected utility)without requiring a repetition of
the performance of application components by observing Qti& spreading activation process.
properties, such as throughput and latency. One or moreAutonomous operation of satellites with limited computing
Appl i cati onQoSMoni t or s are associated with each typecapacity requires efficient algorithms to handle the combin
of application component. torial problems of planning, scheduling, and allocatioheT

The TargetManager [12] is a CCM component definedloose coupling of SA-POP and RACE through a feedback
in the D&C specification [18] that receives periodic res@urdoop, enables operational string generation as a searabhghr
utilization updates fronResour ceMoni t or s within a do- a smaller space of potential resource-committed plans. The
main. It uses these updates to track resource usage ofsalhrch is computationally less intensive than if resouncae
resources within the domain. TAar get Manager provides considered at the fine-grained node level.

a standard interface for retrieving information pertanito Similarly, RACE does not have to consider the cascading
resource consumption of each component and an assentbBk choices of planning to find a valid allocation, so itscka

in the domain, as well as the domain’s overall resourapace is also limited to a manageable size. Moreover, SA-
utilization. It also provides information on resourceigtition POP only considers th&asibility of resource allocation in
component ports in operational strings. generating operational strings, while RACE can consider th

The DeploymentManageris an assembly of CCM compo-harder resourceptimizationproblem, but limits it to a given
nents that encapsulates and coordinates one or more a@locaoperational string. The limited size and complexity of the
and control algorithms. This manager deploys assemblies $8arch spaces used in SA-POP and RACE, as well as the
allocating resources to individual components in an asgemidlexibility afforded by the task map, yields an architecture
After assemblies are deployed, tBepl oynent Manager that can operate with limited computational resourcesjenhi
manages the performance of (1) operational strings and €gling to relatively large planning and allocation proie
domain resource utilization. This manager ensures desimgiihout becoming intractable.
performance of the operational strings by performing tHe fo In generating the operational string from mission goals; SA
lowing actions to the components that make up the operdtioRDP takes into account domain uncertainty by preferring-ope
strings: (1) (re)allocating resources to the componeny, (&tional strings of high expected utility. Rather than agéng
modifying component parameters such as executional motleg often intractable problem of finding operational stsing
and/or (3) dynamic replacing the component implementatiomwith the highest overall expected utility, SA-POP’s genesa
operational strings using a greedy approximation algorith
The greedy choice of high expected utility tasks still ygld

This section summarizes our experiences combining therobust application as specified by the resulting operation
decision-theoretic, resource-constrained planning ofP&¥ string, but does not require the much greater search time
with the component allocation and runtime management éeded to find the optimal solution.

RACE to produce an efficient and scalable architecture fer au For individual satellites to operate autonomously, theysmu
tonomous operation of DRE systems in dynamic and uncertdia able to recognize and react to changes in local conditions
domains. SA-POP produces partial-order plans that contdio this end, RACE monitors application performance and
sufficient information to be instantiated with parametediz domain resource utilization using it8pplication Monitors
component implementations that do not violate coarsaigthi and Resource Monitorsafter operational string deployment.
resource constraints. If the performance of an operational string falls below its

In the MMS system, for example, an instantiation of SAQ0S requirement, RACE’s control algorithms take correxctiv
POP on each satellite considers the computational resgur@etions to achieve the specified QoS requirement.
such as CPU, memory, and communication bandwidth to beFor example, a control algorithm could (1) modify input
monolithic, discrete resources. In actuality, there ardtiple parameters of one or more parameterized components of the
nodes with individual CPU and memory capacities withioperational string, (2) dynamically update task impleraent
each satellite. In general, each task only uses a smalidracttions from the choices available in the task map, and/or (3)
of these resources, so the course-grained resource datsstraedeploy all or part of an application’s components to other
used by SA-POP helps ensure that RACE can find validrget nodes to meet end-to-end QoS requirements. These
deployments for components on the real node resources. actions help ensure that the QoS requirements of each op-
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erational string are met and resource utilization is maiet with the relatively limited resources available to indival
within specified bounds. If these control adaptations can nelements of a DRE system. Our experiments showed how

correct/prevent a QoS or resource violation, however, RACEA-

notifies SA-POP, triggering replanning.

POP and RACE can together facilitate autonomous oper-

ation by responding to dynamic changes through (re)plannin

In addition to varying levels of resource utilization, rimé of task sequences and the (re)deployment/(re)configaratio
changes can occur in the environmental/system conditiosfs components. RACE and SA-POP are open-source soft-
represented in the task network. RACE continuously mositovare that can be obtained frodeuce. doc. wust | . edu/
these conditions and provides feedback on changes to S%wnl oad. ht m as part of the CIAO middleware.

POP. SA-POP uses this information to incrementally update
the probability values of conditions in the network, rurmin
forward propagation as necessary. Most changes correspond?!
the expected behavior of applications specified by operatio
strings. When a critical, unexpected change does occuait c[2]
be handled more quickly because task network is updated.
Critical changes are those that render the current apjalicat
deployment nonfunctional for the achievement of some migs]
sion goal(s). As in the case of resource shortages, SA-POP
performs plan repair by continuing operational string &str
tion with an open condition corresponding to the unexpdgted [4]
changed condition.

Revisions to mission goals,g, due to onboard data analy- [s5)
sis or revisions from mission scientists on the ground, #rero
runtime changes that may require modifications to deploye
applications. The new/changed utility values for goals ar
inserted into the task network and the spreading activation
mechanism is used to update it. These changes generally OC?_H
only for a small subset of the mission goals and thus only
need be propagated through a relatively small portion of the
full network. Moreover, only backpropagation of utility is [&!
necessary since probability values already forward prafesah
through the network are unchanged.

With the updated task network, a new operational strin’’
is generated using the same process described in Section Il
B. In this case, the operational string generation usuakgd [10]
much longer than for plan repair because it must be comgletel
regenerated in order to take advantage of the changed expegt;)
utilities. Fortunately, revised mission goals rarely renthe
current application deployment nonfunctional for all godh 12]
fact, unless the goals have changed drastically, the durr[%n
operational string is probably still of high utility. As duc
an immediate response to goal changes is not as critical &?
in the cases necessitating plan repair, so the time to exatraé
completely new operational string is insignificant in pieet

]

[14]
VI. CONCLUDING REMARKS 15
The paper described how we combined our SA-POP
decision-theoretic planner for dynamic (re)planning wigl
source constraints under uncertainty with our RACE framgyg;
work for resource allocation and control in autonomous
and/or semi-autonomous DRE systems. We detailed SA-POP’s
spreading activation structure, which is a mechanism fgr,
determining the potential value of tasks using a decision-
theoretic scheme, and our algorithm for generating opmrati (18]
strings based on expected utilities and resource contgrain
Empirical evaluation of our algorithm in the context of19]
RACE demonstrated the effectiveness of our approach, even
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