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Abstract— Distributed real-time embedded (DRE) systems of-
ten perform sequences of coordination and heterogeneous data
manipulation tasks to meet specified goals. Autonomous operation
of DRE systems in dynamic environments can benefit from the
integrated operation of (1) a Spreading Activation Partial Order
Planner (SA-POP) that combines task planning and scheduling
in uncertain environments with (2) a Resource Allocation and
Control Engine (RACE) middleware framework that integrates
multiple resource management algorithms for (re)deploying and
(re)configuring task sequence components in DRE systems. This
paper demonstrates the effectiveness of the SA-POP decision-
theoretic planner and the RACE framework in managing and
executing mission goals for a multi-satellite system application.
Our results show how a dynamic planner that handles both
scheduling and resource constraints is a key element in imple-
menting autonomy for DRE systems.

I. I NTRODUCTION

Distributed real-time embedded (DRE) systems, such as
multi-satellite and multi-robot formations, often perform se-
quences of heterogeneous data collection/manipulation and co-
ordination tasks to meet specified goals. For example, weather
prediction requires multiple satellites that fly coordinated
missions with multiple sensors to collect and analyze large
quantities of atmospheric and earth surface data. The data
collection, analysis, and earth transmission tasks may change
during operation as previously collected data indicates other
factors or regions of interest, and overall goals and priorities
have to be modified with changing weather patterns or un-
certainties attributed to changing resource availability. More-
over, limited bandwidth and communication lag necessitate
autonomous (re)planning on-board the satellites to effectively
achieve goals under such rapidly evolving environmental and
system conditions.

Presently task sequence implementations in DRE systems
use component middleware[1], which automates remoting,
lifecycle management, system resource management, deploy-
ment, and configuration. In large-scale DRE systems, the
sheer number of component sequences often poses a com-
binatorial deployment problem,i.e., mapping components to
computing nodes [2]. Moreover, the dynamic nature of the
operations require runtime management and modification of
deployments [3]. More effective solutions to this problem that
provide greater autonomy must include planning and replan-
ning capabilities along with dynamic monitoring and runtime
management to ensure the task sequences being executed keep
in sync with changing mission goals and resource availability.

For example, the NASA Earth Science Enterprise’s Magne-
tospheric Multi-Scale (MMS) [4] mission uses five satellites
with six sensors on each satellite as a solar-terrestrial probe.
The satellites orbit the earth in formation and collect electro-
magnetic and particle data in the earth’s magnetosphere. The
mission operates in three data modes: slow, fast, and burst.
These data modes may also include different goals, orbits, and
data priorities. Each satellite must be capable of determining
the necessary task sequences to achieve prescribed goals based
on the current environmental and system conditions, as well
as revising task sequences in response to changing conditions.

To achieve a degree of autonomy during oepration, an auto-
mated planner for mission task sequences must handle revised
goal prescriptions specified by mission scientists as well as
autonomous mode changes driven by satellite position and the
results of analyzing collected data. The task sequences include
components for coordinating the trajectory and orientation of
satellites, sensor selection and data collection for individual
satellites, and data integration and compression to create
telemetry streams that are beamed down to the earth stations.
Changing resource usage and environmental conditions may
affect the likelihood that all of the specified tasks will execute
successfully. The runtime computational architecture should,
therefore, include dynamic monitoring schemes and the ability
to reallocate resources, and when necessary execute replanning
algorithms to accommodate changing goals and operating
conditions.

To support such DRE systems, we have developed a
novel computationally efficient algorithm called theSpread-
ing Activation Partial Order Planner(SA-POP) for dynamic
(re)planning under uncertainty. SA-POP overcomes scaling
limitations of earlier AI approaches for planning and resource
allocation/scheduling into one computational algorithm [5].
This paper describes our approach for combining SA-POP
with a Resource Allocation and Control Engine(RACE),
which is a reusable component middleware framework that
separates resource allocation and controlalgorithmsfrom the
underlying middleware deployment, configuration, and control
mechanismsto enforce quality of service (QoS) requirements.

II. DRE SYSTEM ARCHITECTURE

This section describes the system architecture of SA-POP
and RACE for autonomous operations of complex DRE appli-
cations. As shown in Figure 1, the SA-POP planner starts with
specified mission goals and generatesoperational stringsthat



represent appropriate task sequences of high expected utility.
Each goal specification is mapped onto one operational string,
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Fig. 1. SA-POP and RACE in a Multi-Satellite System

which includes the control (ordering) dependencies, the data
(producer/consumer) dependencies, and required start andend
times for tasks, if any. The operational strings also contain sug-
gested implementations for each task. The RACE framework
performs the initial deployment of the task implementations
onto computational resources, and then monitors and manages
runtime resource allocation to enforce QoS requirements for
these operational strings.

DRE systems in the domains of shipboard computing [6],
avionics mission computing [7], and intelligence, surveillance
and reconnaissance [8] often represent applications as groups
of domain-related tasks that can be modeled as operational
strings. These strings in turn can be implemented by exe-
cutable software components using component technologies,
such as the OMG’s Lightweight CORBA Component Model
(CCM) [9] and Web Services. In our architecture,components
are units of implementation and composition that contain pa-
rameterized executable code with specified QoS requirements
(such as maximum latency and minimum throughput values)
and resource consumption profiles (such as expected CPU and
memory usage).

For the MMS application to achieve a given set ofgoals
(e.g., study the physics of plasma reconnection and charged
particle acceleration), SA-POP first uses a spreading acti-
vation mechanism [10] to generates expected utility values
for individual tasks that can contribute to achieving specified

goals. Guided by these expected utility values, SA-POP’s
planning and scheduling algorithms generate partial ordertask
sequencesfrom which the operational strings are derived. As
a next step, the individual tasks in a sequence are mapped
to available executable software components,e.g., the planner
may pick a data compression task and then select an appro-
priate component implementation for a chosen compression
algorithm.

For a task to execute successfully, SA-POP must know
which preconditions to satisfy and the input/output data
streams and other effects that result from its operation. Un-
certainty as to whether tasks will produce the desired output
and results is captured via conditional probabilities associ-
ated with the preconditions and effects of a task. Together,
the input/output definitions, preconditions/effects, andrelated
conditional probabilities define thefunctional signatureof the
task. Different parameterizations of a given component may
produce different functional signatures. Conversely, different
components that have the same functional signature may vary
in time to completion, resource usage, and QoS parameters.

In this paper, ataskis defined as one or more parameterized
components with a single functional signature. The functional
signature of each task, and task dependencies are captured in
a task network, which is a directed graph that represents both
tasks and conditions (preconditions, data input, effects,and
data output) with the links encoding the requisite probability
information. The task network can be constructed by a domain
expert using domain-specific modeling tools, such as the
Generic Modeling Environment (GME) [11]. With the task
network and a set of utility values for goal conditions/data
specified by a user, a spreading activation mechanism, de-
scribed in the next section, computes expected utility values
for each task.

To ensure applications do not violate resource constraints,
SA-POP also requires knowledge of the resource consumption
and execution time of each possible implementation of a task,
i.e., its resource signature. A given task may be implemented
by multiple parameterized components, each with different
resource signatures. SA-POP uses atask map, shared with
RACE, to associate each task with a set of parameterized
components and their individual resource signatures.

Operational strings produced by SA-POP are given as
input to RACE, which then uses reusable algorithms to (1)
deploy the initial mapping of components to nodes and (2)
monitor system and application resource usage [12] to manage
system performance. RACE allocates resources to application
components based on their resource requirements and QoS
characteristics. Since component resource use and end-to-end
QoS for operational strings are sensitive to runtime changes
and changes in system performance,e.g., due to changes in
resource availability and transient overload, RACE can also
redeploy and/or reconfigure application components using the
implementation options available in the task map to ensure the
desired end-to-end QoS requirements of operational strings are
not violated.



III. T HE SPREADING ACTIVATION PLANNER (SA-POP)

As discussed in Section II, autonomous operations in DRE
systems require two components that operate in concert: (1)
a planning and scheduling system that responds to changes
in goal specifications, environmental conditions, and changes
brought about by the interpretation of collected data, and (2) a
resource allocation engine that can monitor resource usageand
QoS specifications to ensure that the plan execution meets the
desired goal specifications. This section describes the primary
algorithmic steps in SA-POP planner and scheduler, which
include (1) a decision-theoretic spreading activation mecha-
nism to identify task sequences that maximize an expected
utility measure for given a set of goals, and (2) an operational
string generation mechanism that uses the computed expected
utilities of tasks and their associated implementation resource
signatures to ensure that the extracted task sequences in
an operational string have high expected utility and meet
resource, time, and other QoS constraints.

A. Spreading Activation Networks

A spreading activation task network, as shown in Figure 2,
captures the links between task sequences and goal condi-
tions [10]. The network contains condition nodes (ovals) and
task nodes (rectangles) with directed links that indicate the pre-
and post-conditions for executing individual tasks. Condition
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Fig. 2. A Spreading Activation Network for the MMS Scenario

nodes are represented as Boolean variables with associated
probabilities that define the maximum likelihood of that node
achieving true/false values. Environmental/system conditions
(e.g., a particular sensor is active) and generated data (e.g., a
data stream from a sensor) are represented as condition nodes.
The data condition nodes represent the availability (true)or
non-availability (false) of the corresponding data.

The weight,wij , of the link from a condition node,ci, to a
task node,tj , defines the likelihood thattj succeeds in given
ci, i.e.

wij =
P (tsj |ci = true) − P (tsj |ci = false)

P (tsj |ci = true) + P (tsj |ci = false)
, (1)

where tsj indicates that tasktj is successful. This encoding
supportshard constraints(weight = 1 (−1)), i.e., where the

condition must be true (false) for the task to succeed, andsoft
constraints(weight < 1 (> −1)), i.e., where the true (false)
value of the condition increases the probability of task success.
Soft constraints can be used to model inferred conditions in
uncertain environments, where an actual precondition can not
be sensed directly but is probabilistically related to other con-
ditions that can be sensed. For example, an imperfect (noisy)
sensor for detecting an environmental condition necessaryto
the success of a task can be modeled using a soft constraint.

The weight,wjk, of the link from a task node,tj , to a
condition node,ck, defines the probability thatck will be true/-
false aftertj executes,i.e.:

wjk =

{

P (ck = true|txj ) if tj setsck = true
−P (ck = false|txj ) if tj setsck = false,

(2)

wheretxj indicates that tasktj is executed.
The likely contribution of a task toward a desired goal is

computed as an expected utility (EU),i.e., the product of
the task’s utility toward meeting the goal requirements and
its likelihood of success. Probability values are propagated
forward through the network from preconditions through tasks
to effects. Utility values are propagated backward throughthe
network from effects through tasks to preconditions, which
allows preconditions of potentially useful tasks to accumulate
utility and makes them useful subgoals toward meeting the
specified goal requirements.

Two experiments using the task network shown in Figure 2
illustrate the results of spreading activation with different
goals. In experiment 1, condition nodes C14 and C15 each
have a goal utility of 100, whereas in experiment 2, C15 is
replaced with C16, again with a goal utility of 100. Table I
summarizes the resulting expected utility and probabilityval-
ues for all task and condition nodes in the network. Note that
negative EU values indicate expected utility for a condition
being false instead of true, and the probability values listed
are probabilities of success for tasks or probabilitis of a true
value for conditions. Figures 3 and 4 illustrate the different
plans that would result based on expected utilities in the two
experiments.
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Since C15 is not a goal in experiment 2, A10 only accumu-
lates utility from C14. As a result, A7 has a higher expected
utility than A10 due to its higher probability of success and



Nodes EU Exp 1 EU Exp 2 Prob Exp 1 Prob Exp 2
A1 0 0 1.000 1.000
A2 0 0 0.975 0.975
A3 0 0 0.950 0.950
A4 0 0 1.000 1.000
A5 181 181 1.000 1.000
A6 0 0 0.926 0.926
A7 100 100 0.990 0.990
A8 162 162 1.000 1.000
A9 0 0 0.830 0.830
A10 180 90 0.900 0.900
A11 90 90 0.900 0.900
C1 0 0 1.000 1.000
C2 0 0 1.000 1.000
C3 181 181 1.000 1.000
C4 0 0 1.000 1.000
C5 0 0 1.000 1.000
C6 0 0 0.975 0.975
C7 0 0 0.950 0.950
C8 -95 -95 0 0
C9 -162 -162 0 0
C10 181 181 1.000 1.000
C11 0 0 0.926 0.926
C12 180 180 0.900 0.900
C13 0 0 0.830 0.830
C14 99 99 0.990 0.990
C15 90 0 0.900 0.900
C16 0 90 0.900 0.900

TABLE I

SPREADINGACTIVATION RESULTS

is chosen to achieve C14 instead of A10. Moreover, A11 is
also necessary to achieve the goal of C16 in experiment 2,
while A5 and A8 are common to both plans as they achieve
subgoals necessary for following tasks.

B. Operational String Generation

For the NASA MMS and similar DRE systems, the fewer
the constraints imposed by an operational string, the easier it
is to make initial deployment decisions and manage resources
at runtime. To facilitate these activities, we adopt a modified
Partial Order Causal Link(POCL) design [13] to generate
operational strings. The least commitment strategies typical of
partial order planning allow SA-POP to impose relatively few
constraints compared to other popular planning techniques,
such as state space search and constraint satisfaction based
planners. Recent research [14] also indicates that in many
cases the performance of partial order planning can be brought
up to par with these other approaches through the application
of appropriate heuristics.

SA-POP leverages information available from the partial
order planning process in applying resource constraints and
finding resource violations. In DRE systems, such as the MMS
scenario, many tasks in an application are data manipulation
tasks that operate over long time windows with a required
start time, but no defined end time. Instead, the end time
is dynamically determined by ongoing analysis of the data,
which limits the effectiveness of many popular scheduling
approaches such as timetabling [15], edge-finding [16], and
classical energetic reasoning [17].

Rather than primarily relying on start/end time window
manipulation, SA-POP leverages the ordering constraints com-

mon to partial order plans. These constraints are used to
createprecedence graphs[17] that partition all other tasks into
sets based on their ordering with respect to a particular task
under consideration. With this information, SA-POP applies a
modified version of Laborie’s energy precedence and balanc-
ing constraint propagation techniques [17] to detect potential
resource violations, constrict possible execution times for
tasks, and add additional task ordering constraints.

A plan of operational strings generated by SA-POP is con-
strained by four different kinds of “links,” which specify an or-
dering of two task instances. ACausal Linkindicates one task
must execute before the other based on a system/environmental
condition. These links are imposed during planning when a
task is chosen to satisfy an open non-data condition, and
are only applicable between task instances within a single
operational string. AData Link indicates both tasks must
execute simultaneously because they both operate on the same
data stream. These links are imposed during planning when a
task is chosen to satisfy an open data condition, and are only
applicable within a single operational string. AThreat Link
indicates one task must execute before the other. These links
are imposed during planning to resolve causal link threats,
and are valid within, as well as across, operational strings. A
Scheduling Linkindicates one task must execute before the
other.

The links outlined above are imposed during scheduling
to prevent potential resource violations, and are valid within,
as well as across, operational strings. We also define one
additional type of constraint on task instances in an operational
string, Time Constraint. This constraint specifies a required
start-by or end-by time, and is strictly required as it is specified
in the goal input for a condition achieved by the task.

In addition to links and time constraints, SA-POP maintains
some additional time and ordering information internally that
it uses to plan and schedule, but which does not directly con-
strain its output operational strings. ATime Windowconsists of
an earliest time and latest time. Start and end time windows
are maintained for each task instance. ARanking(a, b) is a
comparison between task instancesa and b, which describes
the order in which they will be executed given the current
knowledge of the plan.

There are four rankings used by SA-POP:Before, After,
Simultaneous, andUnranked. Beforeindicatesa will complete
its execution beforeb begins executing.After is the reciprocal
of the Before relation.Simultaneousindicates botha and b
will start and end their executions strictly at the same times.
Unrankedindicates the execution ofa andb is overlapping or
potentially overlapping.

The rankings between all pairs of tasks are maintained in
a precedence graph [17] and are determined by the links and
time windows in the current plan. The precedence graph main-
tained by SA-POP differs from Laborie’s definition primarily
in that it is defined between pairs of task instances rather than
events, which are the individual start and end times of task
instances. This simplification allows more efficient scheduling
calculations fordiscrete resources(which are resources, such



as memory, used during a task’s execution and then freed).
SA-POP currently does not schedule tasks based onreservoir
resources(which are resources, such as battery power, that can
be arbitrarily produced or consumed). The existing framework
could be extended, however, to apply resource constraint
propagation and search for reservoir resources with some
modifications to the original Laborie balance constraint [17].

SA-POP generates operational strings using mutually recur-
sive planning and scheduling algorithms with backtracking.
Each step in the generation of an operational string involves
the four recusive algorithms described below:

Algorithm: Plan. SA-POP begins with the mission goals as
the set of open conditions. Since data manipulation tasks are
resource intensive and execute concurrently with other tasks on
the same data stream, SA-POP gives priority to data flow con-
ditions, which enables early detection of irresolvable resource
violations in a nascent plan, thereby pruning the search space.
In choosing a task to satisfy the current open condition, SA-
POP prefers tasks with higher expected utility values, weighted
by their probability of achieving the condition. There is also
a threshold on this probability value for the tasks. Those
falling below the threshold are ranked strictly by probability
rather than expected utility. This ranking represents a tradeoff
between the total expected utility, which may accumulate from
multiple goals, and the likelihood of achieving the subgoal
currently under consideration.

Algorithm: ResolveThreats. This algorithm recursively re-
solves causal link threats, as in traditional partial orderplan-
ning. Specifically, a causal link is of the formT 1-(C1 =
V alueX)→ T 2, meaning task instanceT 1 achieves condition
C1 = V alueX as a precondition for task instanceT 2. A
causal link threat occurs when another task instance,T 3, has
an effect of C1 = V alueY , where V alueX 6= V alueY ,
and is not ordered (by the current set of causal, data, and
threat links) with respect toT 1 andT 2. To resolve this threat,
T 3 must be ordered either beforeT 1 (demotion) or after
T 2 (promotion).ResolveThreatsthus attempts to recursively
resolve all causal link threats by promotion or demotion.

Algorithm: Schedule. With this algorithm, SA-POP moves
from partial order planning to scheduling that meets stated
resource requirements. SA-POP first determines the change
in potential resource usage for each implementation (from
the task map) of a task instance, given current rankings
from the precedence graph. Theresource impact scoreof
an implementation is the sum across all resources of the
percentage of resource capacity that would be utilized if all
potentially overlapping task instances were to be executed
concurrently. The implementation with the least impact on
potential resource availability, as measured by the resource
impact score, is chosen to implement the task instance, which
is analogous to the least constraining value heuristic often used
in general constraint satisfaction problems.

SA-POP also uses Laborie’s energy precedence and balance
constraint propagation techniques [17] modified for planning
in DRE systems. These techniques are largely complementary
and apply to different precedence sets with respect to a given

task instance. The energy precedence constraint propagation
can constrict time windows (and consequently derive more
accurate rankings), even with relatively loose time windows
that are prevalent early in planning. It applies to a task
instance’s start (end) time window based on the resource usage
of all other task instances in itsBefore(After) precedence set.

SA-POP’s balance constraint propagation applies to a task
instance based on the other task instances in itsUnranked
andSimultaneousprecedence sets. With the discrete resources,
precedence graph, and links used by SA-POP, the constraint
propagation differs from the Laborie calculations [17] with
one major simplification: for discrete resources, only the start
and end events of (potentially) overlapping task instances(Un-
rankedandSimultaneousprecedence sets) must be considered
in the balance constraint. With this simplification, SA-POP
uses Laborie’s balance constraint propagation [17] to constrict
time windows, impose necessary scheduling links, and detect
irresolvable resource violations.

Algorithm: ResolveRes. This algorithm implements SA-
POP’s search for resolutions to potential resource violations.
SA-POP employs two significant simplifications in the calcu-
lation of resource levels for events: (1) a potential resource
conflict can only be resolved by imposing an ordering con-
straint (scheduling link) between two task instances (i.e., by
ordering an end event before a start event) and (2) given
(1), only a worst case (minimum) resource level and best
case (maximum) resource level need be calculated for each
task instance (corresponding to the level when its start event
occurs).

The heuristic for choosing the most significant re-
source violations is provided by a task instance critical-
ity measure: crit(x) = max(0,−Lmin(x))/(Lmax(x) −
Lmin(x)Q∆tstart(x) where, L is a resource level,Q is a
resource capacity, and∆t is the length of a time window.
After choosing the most critical task instance,x, a set of task
instances fromUnranked(x) that can be ordered beforex
is chosen to reduce the criticality ofx below the specified
threshold. The heuristic for choosing these task instancesis
provided by preferring those with highest pairwise criticality
values given by:crit(x, y) = −commit(y, x)/R(y) where,R
is a resource usage value, andcommit(y, x) is a measure of
the commitment implied by ordering the end event ofy before
the start event ofx as defined in [17]. This heuristic pro-
vides a least commitment strategy (consistent with SA-POP’s
preference for minimally constrained operational strings) by
balancing the preference for low commitment with the prefer-
ence for high reduction in potential resource violations. With
these algorithms, SA-POP employs backtracking whenever an
irresolvable resource violation is discovered, or an attempt is
made to impose a link inconsistent with the rankings in the
precedence graph.

Table II is an example description of task map with imple-
mentations for the tasks in 2. In this scenario, C12 is a data
condition, implying that A8 produces a data stream that can
be consumed by A10 and/or A11. Using the expected utilities
calculated for experiment 1 in the previous section, and a



Task Implementation Resource Usage
A1 Impl1 1
A2 Impl2 1
A3 Impl3 1
A4 Impl4 1
A5 Impl5 1
A6 Impl6 2
A7 Impl7 4
A8 Impl8 1
A9 Impl9 5
A10 Impl10 1
A11 Impl11 1

TABLE II

TASK MAP RESOURCEUSAGE AND DURATION

single resource of capacity 5 units for the system, Figure 5
illustrates the operational string generated by SA-POP. In

Fig. 5. Operational String Generated for Resource Capacity5

this figure, the dashed arrow between A7 and A8 indicates
a scheduling link, while other arrows indicate the causal links
and the data link between A8 and A11. Because A8 and A11
are data manipulation tasks and no additional time constraints
were imposed, they operate continuously until the end of the
operational string’s execution. Initially A7 would be unranked
with respect to A8 and A11. Their combined resource usage
of 2 and A7’s resource usage of 4, however, would violate
system resource capacities if they operated concurrently.SA-
POP therefore imposes the scheduling link between A7 and
A8 to ensure resource constraints are honored.

To illustrate the potential trade-off between expected utility
and resource constraints, consider a similar system with the
same goals but with a resource capacity of only 3 units.
Figure 6 shows the operational string generated by SA-POP in
this scenario. The tighter resource constraints do not allow the

Fig. 6. Operational String Generated for Resource Capacity3

inclusion of A7 to achieve C14, so SA-POP is forced to use
the lower expected utility task A10 due to the limited resource
availability.

IV. RESOURCEALLOCATION AND CONTROL ENGINE

The architecture of RACE and its interplay with SA-POP is
illustrated in Figure 1. RACE performs autonomous resource
(re)allocation and (re)configuration of QoS settings of compo-
nents that are part of the operational strings generated by SA-
POP such that the QoS requirements of the operational strings

are met. RACE is built atop of CIAO and DAnCE, which
are open-source (seewww.dre.vanderbilt.edu) imple-
mentations of the OMG Lightweight CCM [9], Deployment
and Configuration (D&C) [18], and Real-time CORBA [19]
specifications. RACE provides a range of resource alloca-
tion and control algorithms that use middleware deployment
and configuration mechanisms to allocate resources to op-
erational strings and control system performance after op-
erational strings have been deployed. In particular, it uses
Resource Monitorsand ApplicationQoSMonitors, which are
implemented as CCM components, to track system resource
utilization and application QoS respectively.

RACE’s algorithms determine how to (re)deploy an applica-
tion specified by operational strings and ensure desired QoS
requirements are met, while maintaining resource utilization
within desired bounds at all times. The allocation algorithms
determine the initial component deployment by determining
the best mapping of these components to the appropriate target
nodes based on the availability of system resources. For ex-
ample, an allocation algorithm could apportion CPU resources
to components in such a way that avoids saturating these
resources. Likewise, RACE’s control algorithms adapt the
execution of an operational strings’ components at runtimein
response to changing environments and variations in resource
availability and/or demand. For example, a control algorithm
could (1) modify an application’s current operating mode, (2)
dynamically update component implementations, and/or (3)
redeploy all or part of an operational string’s components to
other target nodes to meet end-to-end QoS requirements.

RACE uses mechanisms provided by the underlying mid-
dleware to perform the allocation and control decisions made
by its algorithms. For example, RACE uses standard mecha-
nisms defined by the Lightweight CORBA Component Model
(CCM) [9] to (1) (re)deploy and (re)configure application com-
ponents, (2) transition application components from idle states
to operational states and monitor the performance of the DRE
system, and (3) modify components and/or operational strings
to realize the adaptation decisions of control algorithms.
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As shown in Figure 7 the RACE architecture consists of the
following entities that are implemented as CCM components
using CIAO and deployed via DAnCE:

Resource Monitors are CCM components that track re-
source utilization in a domain. One or moreResource-
Monitors are associated with each domain resource, such
as CPU and memory utilization monitors on each node and
network bandwidth utilization monitors on interconnects and
bridges.

ApplicationQoSMonitors are CCM components that track
the performance of application components by observing QoS
properties, such as throughput and latency. One or more
ApplicationQoSMonitors are associated with each type
of application component.

The TargetManager [12] is a CCM component defined
in the D&C specification [18] that receives periodic resource
utilization updates fromResourceMonitors within a do-
main. It uses these updates to track resource usage of all
resources within the domain. TheTargetManager provides
a standard interface for retrieving information pertaining to
resource consumption of each component and an assembly
in the domain, as well as the domain’s overall resource
utilization. It also provides information on resource utilization
component ports in operational strings.

TheDeploymentManageris an assembly of CCM compo-
nents that encapsulates and coordinates one or more allocation
and control algorithms. This manager deploys assemblies by
allocating resources to individual components in an assembly.
After assemblies are deployed, theDeploymentManager
manages the performance of (1) operational strings and (2)
domain resource utilization. This manager ensures desired
performance of the operational strings by performing the fol-
lowing actions to the components that make up the operational
strings: (1) (re)allocating resources to the component, (2)
modifying component parameters such as executional mode,
and/or (3) dynamic replacing the component implementations.

V. D ISCUSSION ANDLESSONSLEARNED

This section summarizes our experiences combining the
decision-theoretic, resource-constrained planning of SA-POP
with the component allocation and runtime management of
RACE to produce an efficient and scalable architecture for au-
tonomous operation of DRE systems in dynamic and uncertain
domains. SA-POP produces partial-order plans that contain
sufficient information to be instantiated with parameterized
component implementations that do not violate coarse-grained
resource constraints.

In the MMS system, for example, an instantiation of SA-
POP on each satellite considers the computational resources,
such as CPU, memory, and communication bandwidth to be
monolithic, discrete resources. In actuality, there are multiple
nodes with individual CPU and memory capacities within
each satellite. In general, each task only uses a small fraction
of these resources, so the course-grained resource constraints
used by SA-POP helps ensure that RACE can find valid
deployments for components on the real node resources.

Through the association of multiple functionally equivalent
implementations for each task in the task map, RACE can find
valid (re)allocations by substituting the original task compo-
nents suggested by SA-POP with ones that are more resource
friendly under the current conditions. In the unusual case that
no such allocation is possible, RACE provides feedback to SA-
POP indicating its failure to find a valid allocation due to one
or more resource constraints. If this occurs, SA-POP generates
a new operational string that uses less resources (and probably
has lower expected utility),without requiring a repetition of
the spreading activation process.

Autonomous operation of satellites with limited computing
capacity requires efficient algorithms to handle the combina-
torial problems of planning, scheduling, and allocation. The
loose coupling of SA-POP and RACE through a feedback
loop, enables operational string generation as a search through
a smaller space of potential resource-committed plans. The
search is computationally less intensive than if resourceswere
considered at the fine-grained node level.

Similarly, RACE does not have to consider the cascading
task choices of planning to find a valid allocation, so its search
space is also limited to a manageable size. Moreover, SA-
POP only considers thefeasibility of resource allocation in
generating operational strings, while RACE can consider the
harder resourceoptimizationproblem, but limits it to a given
operational string. The limited size and complexity of the
search spaces used in SA-POP and RACE, as well as the
flexibility afforded by the task map, yields an architecture
that can operate with limited computational resources, while
scaling to relatively large planning and allocation problems
without becoming intractable.

In generating the operational string from mission goals, SA-
POP takes into account domain uncertainty by preferring oper-
ational strings of high expected utility. Rather than attempting
the often intractable problem of finding operational strings
with the highest overall expected utility, SA-POP’s generates
operational strings using a greedy approximation algorithm.
The greedy choice of high expected utility tasks still yields
a robust application as specified by the resulting operational
string, but does not require the much greater search time
needed to find the optimal solution.

For individual satellites to operate autonomously, they must
be able to recognize and react to changes in local conditions.
To this end, RACE monitors application performance and
domain resource utilization using itsApplication Monitors
and Resource Monitorsafter operational string deployment.
If the performance of an operational string falls below its
QoS requirement, RACE’s control algorithms take corrective
actions to achieve the specified QoS requirement.

For example, a control algorithm could (1) modify input
parameters of one or more parameterized components of the
operational string, (2) dynamically update task implementa-
tions from the choices available in the task map, and/or (3)
redeploy all or part of an application’s components to other
target nodes to meet end-to-end QoS requirements. These
actions help ensure that the QoS requirements of each op-



erational string are met and resource utilization is maintained
within specified bounds. If these control adaptations can not
correct/prevent a QoS or resource violation, however, RACE
notifies SA-POP, triggering replanning.

In addition to varying levels of resource utilization, runtime
changes can occur in the environmental/system conditions
represented in the task network. RACE continuously monitors
these conditions and provides feedback on changes to SA-
POP. SA-POP uses this information to incrementally update
the probability values of conditions in the network, running
forward propagation as necessary. Most changes correspondto
the expected behavior of applications specified by operational
strings. When a critical, unexpected change does occur, it can
be handled more quickly because task network is updated.
Critical changes are those that render the current application
deployment nonfunctional for the achievement of some mis-
sion goal(s). As in the case of resource shortages, SA-POP
performs plan repair by continuing operational string extrac-
tion with an open condition corresponding to the unexpectedly
changed condition.

Revisions to mission goals,e.g., due to onboard data analy-
sis or revisions from mission scientists on the ground, are other
runtime changes that may require modifications to deployed
applications. The new/changed utility values for goals are
inserted into the task network and the spreading activation
mechanism is used to update it. These changes generally occur
only for a small subset of the mission goals and thus only
need be propagated through a relatively small portion of the
full network. Moreover, only backpropagation of utility is
necessary since probability values already forward propagated
through the network are unchanged.

With the updated task network, a new operational string
is generated using the same process described in Section III-
B. In this case, the operational string generation usually takes
much longer than for plan repair because it must be completely
regenerated in order to take advantage of the changed expected
utilities. Fortunately, revised mission goals rarely render the
current application deployment nonfunctional for all goals. In
fact, unless the goals have changed drastically, the current
operational string is probably still of high utility. As such,
an immediate response to goal changes is not as critical as
in the cases necessitating plan repair, so the time to extract a
completely new operational string is insignificant in practice.

VI. CONCLUDING REMARKS

The paper described how we combined our SA-POP
decision-theoretic planner for dynamic (re)planning withre-
source constraints under uncertainty with our RACE frame-
work for resource allocation and control in autonomous
and/or semi-autonomous DRE systems. We detailed SA-POP’s
spreading activation structure, which is a mechanism for
determining the potential value of tasks using a decision-
theoretic scheme, and our algorithm for generating operational
strings based on expected utilities and resource constraints.

Empirical evaluation of our algorithm in the context of
RACE demonstrated the effectiveness of our approach, even

with the relatively limited resources available to individual
elements of a DRE system. Our experiments showed how
SA-POP and RACE can together facilitate autonomous oper-
ation by responding to dynamic changes through (re)planning
of task sequences and the (re)deployment/(re)configuration
of components. RACE and SA-POP are open-source soft-
ware that can be obtained fromdeuce.doc.wustl.edu/
Download.html as part of the CIAO middleware.
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