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Abstract

Developing cyber physical systems is hard since it requresordinated, physics-aware allocation
of CPU and network resources to satisfy their end-to-endityuaf-service (QoS) requirements. This
paper provides two contributions to address these chakerigrst, we present model-driven middleware
called NetQoPE that shields application developers froendbmplexities of programming the lower-
level CPU and network QoS mechanisms by simplifying (1) thecsication of per-application CPU
and per-flow network QoS requirements subject to the phlysmastraints and dynamics, (2) resource
allocation and validation decisions (such as admissiortronand (3) the enforcement of per-flow
network QoS at runtime. Second, we empirically evaluate Net@QoPE provides QoS assurance for CPS
applications. Our results demonstrate that NetQoPE pes\igxible and non-invasive QoS configuration
and provisioning capabilities by leveraging CPU and nekw@oS mechanisms without modifying

application source code.

. INTRODUCTION

Emerging trends and limitations. Cyber physical systems (CPS), such as smart buildings,
high confidence medical devices and systems, and trafficaloabhd safety systems consist
of applications that participate in multiple end-to-encplagation flows, operate in resource-
constrained environments, and have varying quality-ofise (Qo0S) requirements driven by
the dynamics of the physical environment in which they ogerkor example, smart buildings
can host different types of applications with diverse (1)JCR0S requirementse(g, personal
desktop applications versus fire sensor data analyzem),2ametwork QoS requirements.(,
transport of e-mails versus transport of security-relatéormation). In such systems, there is a

need to allocate CPU and network resources to contendingappns subject to the constraints



on resources imposed by the physical phenomerm, @ fire may partition a set of resources
requiring rerouting of network flows).

The QoS provisioning problem is complex due to the need terdiftiate applications and
application flows at the processors and the underlying m&twetements, respectively, so that
mission-critical applications receive better performariban non-critical applications [1], [2].
Overprovisioning is often not a viable option in cost- andowce-constrained environments
where CPS applications deployeglg.in emerging markets that cannot afford the expense of
overprovisioning. CPS application developers must tloeeeseek effective resource management
mechanisms that can efficiently provision CPU and netwaskueces, and address the following
two limitations in current research:

Limitation 1: Need for physics-aware integrated allocation of multiple resources. Prior
work has focused predominantly on allocating and schegu@®U [3], [4] or network re-
sources [5], [6] in isolation. While single resource QoS hausms have been studied ex-
tensively, little work has focused on coordinated mechmarishat allocate multiple resources,
particularly for CPS applications where the coordinatesbuece management must be aware
of the physical dynamics. In the absence of such mechaniSRS, applications systems may
not meet their QoS goals. For example, an application CPataton algorithm [7], [3], could
dictate multiple placement choices for application(s), fot all placement choices may provide
the networkand CPU QoS because physical limitations may not permit cerédiocations
(e.g, the placement of a fire sensor impacts its wireless netwonkectivity to nearby access
points). Coordinated mechanisms are therefore neededoiwatd CPU and network resources
in an integrated manner.

Limitation 2: Need for a non-invasive application-level resource management framework.
Even if an integrated, physics-aware multi-resource memamt framework existed for CPS
applications, developers would still incur accidental ptexities in using the low-level APIs of
the framework. Moreover, application source code changag be needed whenever changes
occur to the deployment contexte.g, source and destination nodes of applications), per-
flow network resource requirements, per-application CPébuece requirements, or IP packet
identifiers.

Middleware frameworks that perform CPU [8], [9], [10], [1112] or network [13], [2], [14],

[15] QoS provisioning often shield application develop&mn these accidental complexities.



Despite these benefits, CPS applications can still be hasvdlve and extend when the APIs
change and middleware evolve. Addressing these limitati@guires higher-level integrated
CPU and network QoS provisioning technologies that de@application source code from the
variabilities €.g, different source and destination node deployments, réifiieQoS requirement
specifications) associated with their QoS requirementss @lcoupling enhances application
reuse across a wider range of deployment contexis, (different deployment instances each
with different QoS requirements), thereby increasing ogmplent flexibility.

Solution approach — Model-driven deployment and configuration middleware for CPS
applications. To simplify the development of CPS applications, we devetba multistage,
model-driven deployment and configuration framework ceNetwork QoS Provisioning Engine
(NetQoPE) that integrates CPU and network QoS provisiomiagdeclarative domain-specific
modeling languages (DSML) [16]. NetQoPE leverages thagthe of middleware while simulta-
neously shielding developers from specific middleware APiss design allows system engineers
and software developers to perfomeusabledeployment-time analysis (such as schedulability
analysis [17]) of non-functional system properties (sushC&#U and network QoS assurances
for end-to-end application flows). The result is enhanceplayenent-time assurance that the
QoS requirements of CPS applications will be satisfied.

Paper organization. The remainder of the paper is organized as follows: Sectidedcribes
a case study that motivates common requirements assoaigiiegrovisioning QoS for CPS
applications; Section Ill explains how NetQoPE addresBesd requirements via its multistage
model-driven middleware framework; Section IV empirigadivaluates the capabilities provided
by NetQoPE in the context of a representative CPS applicatase study; Section V compares
our work on NetQoPE with related research; and Section Végmts concluding remarks and

lessons learned.

[1. MOTIVATING NETQOPE’S Q0OS PROVISIONING CAPABILITIES

This section presents a case study of a representative Qitisagipn from the domain of
smart office environments. We use this case study througheuytaper to motivate and evaluate

NetQoPE’s model-driven, middleware-guided CPU and nétwi@oS provisioning capabilities.



A. Smart Office Environment Case Study

Smart offices belong to a domain of systems cafedart Buildingd18] and showcase state-
of-the-art computing and communication infrastructureits offices and meeting rooms, as
shown in Figure 1. Below we describe the cyber physicaldraitthe smart office environment,
focusing on the development and deployment challenges @pi&ation developers face when
ensuring the integration between the cyber and physicacsmpf the system.
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Fig. 1. Network Configuration in a Smart Office Environment

operation €.g, in the event of a fire)
of this service is infrequent. Moreover, sensory and anodtaffic must be reliable. The service
should also adapt its policies of routing information toesthhesources when the current set of
resources become unavailabéeg, due to fire or other adverse event.

e Security surveillanceThis service uses a feed from cameras and audio sensordearedif
rooms and performs appropriate audio and video processisgrse physical movements and
other intrusions. To notify the security control room, depers must ensure that the input feed
from these sensors obtain high bandwidth for their multimerhffic, while the outgoing alert
notifications and activation of door controls are provideghhpriority. The image processing
task must also be allocated its required CPU resources forpeintrusion detection.

e Air conditioning and lighting control.The air conditioning and lighting control service



maintains appropriate ambient temperatures and lightiegpectively, in different parts of a
building, including business offices, conference rooms sarder rooms. It also turns off lights
when rooms are not occupied to save energy. This servicesescgensory data from thermostats
and motion sensors, and controls the air conditioning vants$ light switches. This service
must be assured reliable transmission of information, ghatidoes not necessarily require high
priority.

e Multimedia video and teleconferencin@ffices often provide several multimedia-enabled
conference rooms to conduct meetings simultaneously. eThadtimedia conferences require
high bandwidth provisioning. A moderator of each meetingrsiis a request for bandwidth to
this service, which must be reliably transmitted to the mervlhe service in turn must provision
the appropriate bandwidth for the multimedia traffic. Thisvice may also need to actuate a
public address system informing people of a meeting. Siaseurces are finite, developers must
make tradeoffs and assign this category of public addressuartements to the best effort class
of traffic, though that announcements about evacuations beusgreated with high priority.

e Email and other web traffidOffices also involve a number of other kinds of traffic inclugli
email, calendar management, and web traffic. This servicet manage these best effort class

of traffic on behalf of the people.

B. Challenges in Provisioning and Managing QoS in the Smdfit®

We now describe the challenges encountered when implengetite QoS provisioning and
managing steps described above in the CPS applicationsdhgtrise our case study:

e Challenge 1: Physics-aware QoS requirements specificatioManually modifying appli-
cation source code to specify both CPU and network QoS rexpants is tedious, error-prone,
and non-scalable. In particular, applications could hafferént resource requirements depending
on the physical context in which they are deployed. For examp our smart office case study,
fire sensors have different importance levelgy( fire sensors deployed in the parking lot have
lower importance than those in the server room). The sensmohitor flows thus have different
network QoS requirements, even though the software cdetsomanaging the fire sensor and
the monitor are reusable units of functionality. It may bedh# envision at development time
all the contexts in which source code will be deployed; ifteutformation is readily available,

application source code can be modified to specify resowrgeirements for each of those



contexts.

The need to know source and destination addresses of arcatppi—coupled with the fact
that multiple choices are possible for deploying applmasi—makes changing application source
code to specify resource requirements inflexible and natabte. Section IlI-A describes how
NetQoPE provides a solution to this challenge by providimigpaain-specific modeling language
(DSML) to support design-time application non-invasivedfication of per-application network
and CPU QoS requirements.

e Challenge 2: Application resource allocation.Manual modifications to source code to
reserve resources tightly couple application componeiits & network QoS mechanism API
(e.g, Telcordia’s Bandwidth Broker [19]). This coupling congdies deploying the same appli-
cation component with resources reserved using a diffaretwtork QoS mechanism AP& @,
GARA Bandwidth Broker [20]). Similarily, source code moddtions are also required when
the same application is deployed with different network @equirementsd.g, requesting more
bandwidth on its application flows). Allocating network oesces may also depend on their IP
addresses, which may be feasible only when CPU allocati@endane, which may not be known
at design-time.

Ideally, network resources should be allocated without ifgody application source code and
should handle complexities associated with specifyindiegiion source and destination nodes,
which could vary depending on the deployment context. 8edii-B describes how NetQoPE
provides a solution to this challenge by providing a resewiocator framework that supports
resource reservation for each application and all its appbn flows in a non-invasive and
transparent manner.

e Challenge 3: Application QoS configuration. Application developers have historically
written code that instructs the middleware to provide therapriate runtime services.g,
DSCP markings in IP packets [2]. Since applications can h@ogled in different contexts,
modifying application code to instruct the middleware ta atetwork QoS settings is tedious,
error-prone, and non-scalable.

Application-transparent mechanisms are therefore neexlednfigure the middleware to add
these network QoS settings depending on the applicatiofoyleent context. Section III-C
describes how NetQoPE provides a solution to this challemgeroviding a network QoS

configurator that provides deployment-time configuratibrc@mponent middleware containers



to automatically add flow-specific identifiers to supporttesdayer QoS differentiations.

[1I. NETQOPE’S MULTISTAGE NETWORK QOS PROVISIONING ARCHITECTURE

This section describes how NetQoPE addresses the challdngm Section II-B associ-
ated with allocating and providing network and CPU QoS ind&an to CPS applications.
NetQoPE deploys and configures component middleware-t@B&l applications and enforces
their network and CPU QoS requirements using the multis(age design-, pre-deployment-,
deployment-, and run-time) architecture shown in Figuré&d@tQoPE’s multistage architecture
consists of the following elements in the workflow, which@uates the task of QoS provisioning
for CPS applications.

e The Network QoS specifica-

L Deployment  _gigep DestGeg tion language (NetQoS), which is
|\~ Appiication ~ ‘\ NetRAF Pre-deployment- | @ DSML that supports design-time
| network QoS -~ time solutions

S s peployment-time | specification of per-application CPU
\‘\\ygtggs/// Allocates solutions
(hetwork g B resource requirements, as well as
Soft .
o I component | per-flow network QoS requirements,
Do et such as bandwidth and delay across
Deploys and c
configures CPS @ a flow. NetQoPE uses NetQoS to
system NetCON _
Add network QoS resolveChallenge lof Section I1-B,

settings

as described in Section IlI-A.

Fig. 2. NetQoPE's Multistage Architecture e The Network Resource Al-
location Framework (NetRAF),

which is a middleware-based resource allocator framewloak tses the network QoS require-

ments captured byNetQoSas input at pre-deployment time to help guide QoS provisigni

requests on the underlying network and CPU QoS mechanismsphdyment time. NetQoPE

uses NetRAF to resolv€hallenge 2of Section 1I-B, as described in Section 111-B.

e The Network QoS Configurator (NetCON), which is a middleware-based network QoS
configurator that provides deployment-time configuratibc@mponent middleware containers.
NetCON adds flow-specific identifiers.f, DSCPSs) to IP packets at runtime when applications
invoke remote operations. NetQoPE uses NetCON to rethalenge 3of Section II-B, as

described in Section IlI-C.



NetQoPE implementation technologiesWe developed a prototype of the smart office en-
vironment case study using the Lightweight CORBA Compordatiel [21]. We also used a
Bandwidth Broker [19] to allocate per-application-flowwetk resources using DiffServ network
QoS mechanisms. In addition, we used the Generic Modelingr&iment (GME) [22] to
create domain-specific modeling languages (DSMLs) [23} #waplify the development and
deployment of smart office environment applications.

The remainder of this section describes each element in #@MPE’s multistage architecture
and explains how they provide the functionality requirediget the end-to-end QoS requirements
of CPS applications. Although the case study in this papesrégges LwWCCM and DiffSeryv,
NetQoPE can be used with other network QoS mechanigg (ntServ) and component

middleware technologie®(g, J2EE).

A. NetQoS: Supporting Physics-aware CPU and Network Qo$iiRegents Specification

To resolveChallenge lof Section II-B, NetQoPE enables CPS application devekfmespec-
ify their resource requirements at application deployriené using a DSML called thisletwork
QoS Specification LanguagietQoS). NetQoS is built using the Generic Modeling Enviment
(GME) [22] and works in concert with thielatform Independent Component Modeling Language
(PICML) [23]. NetQoS provides applications with an applioa-independent, declarative (as
opposed to application-intrusive [14], middleware-degent [8], and OS-dependent [24]) mech-
anism to specify multi-resource requirements simultasothat can account for the physical
context in which the system is deployed.

NetQoS also allows specifying resource requirements ascafipns are deployed and config-
ured in the target environment. Its declarative mechanidmsecouple this responsibility from
application source code, and (2) specialize the procegseaifging resource requirements for the
particular deployment and usecase. Below we describe #ps & using NetQoS’ capabilities.
1. Declarative specification of resource requirementsCPS applications developers can use
NetQoS to (1) model application elements, such as intesfacemponents, connections, and
component assemblies, (2) specify CPU utilization of congods, and (3) specify the network

QoS classes, such a8GH PRIORITY (HP), HIGH RELIABILITY (HR), MULTIMEDIA (MM), and



BEST EFFORT(BE), bi-directional bandwidth requirements on the modelealiagtion elements.
NetQoS’s network QoS classes correspond to the DiffSergldesupported by an underlying
network-level resource allocator, such as the Bandwidtsk&r [19] we used in our case stugly.
For example, theip class represents the highest importance and lowest lateaf@g (e.g, fire
detection reporting in the server room) whereasHReclass represents traffic with low drop rate
(e.g, surveillance data). Figure 3 show how NetQoS was used teehtbd QoS requirements
of our case study.

2. Flexible enforcement of net-
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Fig. 3. Applying NetQoS Capabilities to the Case Study processing of client requests. If such
design intentsare not captured, applications could potentially misusevokk resources at
runtime, and also affect the performance of other appboatithat share the network.

To support both models of communicatioine( whether clients or servers control network
QoS for a flow), NetQoS supports annotating each bi-direatidlow using either: (1) the
CLIENT_PROPAGATED network priority model, which allows clients to requestlriéae network
QoS assurance even in the presence of network congestiof2) dhe SERVER DECLARED

network priority model, which allows servers to dictate Hevice that they wish to provide to

IMiddleware such as the Lightweight CORBA Component Modkelvalcomponents to communicate usipgrts that provide
application-level communication endpoints. NetQoS piesi capabilities to annotate communication ports with tasvork
QoS requirement specification capabilities.

2NetQoS's DSML capabilities can also be extended to provepirements specification conforming to other network QoS

mechanisms, such as IntServ.



the clients to prevent clients from wasting network resesron non-critical communication.

NetQoS initiates the allocation of CPU and network rescumme behalf of applications by
triggering the next stage of the workflow. Section IlI-C dé#ses how NetQoPE uses component
middleware frameworks at runtime tealizethe design intent captured by NetQoS ardorce
network QoS for applications.

3. Early detection of QoS specification errorsDefining network and CPU QoS specifications
in source code or through NetQoS is a human-intensive pso&asors in these specifications
may remain undetected until later lifecycle stages (suctiegpdoyment and runtime) when they
are more costly to identify and fix. To identify common erramsnetwork QoS requirement
specification early in the development phase, NetQoS usd#isirbiconstraints specified via
the OMG Object Constraint Language (OCL) that check theiegidn model annotated with
network and CPU priority models.

For example, NetQoS detects and flags specification netwsdurce specification errors, such
as negative or zero bandwidth. It also enforces the sensantticetwork priority models via syn-
tactic constraints in its DSML. For example, thelENT_PROPAGATEDModel can be associated
with ports in the client role onlyg.g, required interfaces), whereas teBERVER DECLARED
model can be associated with ports in the server role only, (provided interfaces). Figure 4
shows other examples of network priority models support®NbyQoS.

4. Preparation for allocating CPU and

. Semantics
Netw ork Prioriy Modelsof NetQos | SERVER | CLIENT emanties | network resources. After a model has
B o using OCL i
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oty [Eoo Cono e e tions using NetQoS’s built-in constraints,
vework |Bsiat T | i | Stvesaes | e network resources must be allocated us-
Priority Metwork Level QoS - . .
onedel | (Aggre e checking Allowed Allowed Yes ing a network QoS mechanism [19], [20].
ons T
Best Effort QoS.f.\o Allowed Allowed Tes
aggregate checking)

As described in Section II-B, this process
requires determination of source and des-
Fig. 4. Network QoS Models Supported by NetQoS ) ] ) )
tination IP addresses of the applications.
NetQoS allows the specification of CPU utilization requiegnts of each component and also
the target environment where components are deployed. d&tQnodel interpreter traverses
CPU requirements of each application component and geseeaset of feasible deployment

plans using CPU allocation algorithms, suchfiast fit, best fif and worst fit as well asmax



and decreasingvariants of these algorithms. NetQoS can be used to choesdeasired CPU
allocation algorithm and to generate the appropriate gepémt plans automatically, thereby
shielding developers from tedious and error-prone manoiponent-to-node allocations.

To perform network resource allocations (see Section )]IHBetQoS’s model interpreter
captures the details about (1) the components, (2) theilogent locations (determined by
the CPU allocation algorithms), and (3) the network QoS irequents for each application flow
in which the components participate.

Application to the case study.Figure 3 shows a NetQoS model that highlights many capesilit
described above. In this model, multiple instances of tmeeseeusable application components
(e.g, FireSensorParking and FireSensorServer componentsarenatated with different QoS
attributes using drag-and-drop.

Our case study has scores of application flows with diffeckant- and server-dictated network
QoS specifications, which are modeled UsS@IGENT_PROPAGATED and SERVER DECLARED
network priority models, respectively. The well-formedaef these specifications are checked
using NetQoS’s built-in constraints. In addition, the sa@eS attribute €.g, HR_1000 in
Figure 3) can be reused across multiple connections, whareases the scalability of expressing
requirements for a number of connections prevalent in laogde CPS applications, such as our
smart office environment case study. Section IV-B and SedeC empirically evaluate these

capabilities.

B. NetRAF: Alleviating Complexities in Network Resourcleadtion and Configuration

NetQoPE’sNetwork Resource Allocator FramewofMetRAF) is a resource allocator engine
that allocates network resources for CPS applicationgusifiServ network QoS mechanisms,
which resolveLhallenge 2described in Section II-B.. NetRAF allocates network reéses for
application flows on behalf of the applications (recall hoet®@oS invokes NetRAF on behalf
of the applications as part of their workflow) and shields laggtions from interacting with
complex network QoS mechanism APIs. To ensure compatibilith different implementations
of network QoS mechanisme., multiple DiffServ Bandwidth Broker implementations [19]
[20]), NetRAF uses XML descriptors that capture CPU and pétwesource requirement
specifications (which were specified using NetQoS in the iptesvstage) inQoS-independent

manner. These specifications are then mappe®@a&-specifiqgparameters depending on the



chosen network QoS mechanism. The task of enforcing thos $pecifications are then left
to the underlying network QoS mechanism, such as DiffSen&drv, and RSVP.

NetRAF provides a clean separation of functionality betwessource reservation (provided
by NetRAF) and QoS enforcement (done by underlying netwtgknents), as described in the
following steps:

1. Network resource allocations.Figure 5
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e,\,}f components and per-flow network QoS re-
o SR~ guirements embedded in the deployment plan

created by NetQoS. This capability shields

Fig. 5. NetRAF's Network Resource Allocation Capabilities applications from interacting directly with
complex APIs of network QoS mechanisms thereby enhanciegfléxibility NetQoPE for
a range of deployment contexts. Moreover, since NetRAF igesvthe capability to request
network resource allocations on behalf of components, Idpees need not write source code
to request network resource allocations for all applicetilows, which simplifies the creation
and evolution of application logic (see Section IV-B).
2. Integrated CPU and network QoS provisioning. While interacting with network QoS
mechanism specific allocatoms.§, a Bandwidth Broker), NetRAF’s Network Resource Allocator
Manager may need to handle exceptional conditions, suchfaasible resource allocation
errors. Although NetQoS checks the well-formedness of adtwequirement specifications at
application level, it cannot identify every situation thaty lead to scenarios with infeasible
resource allocations, since these depend on the dynamibte gthysical environment.

To handle such scenarios, NetRAF provides hints to regen@&@RBU allocations for compo-
nents using the CPU allocation algorithm selected by apfitin developers using NetQoS.
For example, if network resource allocations fails for arpafi components deployed in a

particular source and destination node, NetRAF requesise@ CPU allocations by adding



a constraint to not deploy the components in the same somd@astination nodes. After the
revised CPU allocations are computed, NetRAF will (reyafieto allocate network resources
for the components.

NetRAF automates the network resource allocation procg#etating over the set of deploy-
ment plans until a deployment plan is found that satisfieb Ibgies of requirements.¢., both
the CPU and network resource requirements) thereby siyinmdifsystem deployment via the
following two-phase protocol: (1) it invokes the API of theo® mechanism-specific allocator,
providing it one flow at a time without actually reservingwetk resources, and (2) it commits
the network resources if and only if the first phase is congplesuccessful and resources for
all the flows can be successfully reserved.

This protocol prevents the delay that would otherwise beunred if resources allocated
for a subset of flows must be released due to failures ocgu@ina later allocation stage.
If no deployment plan yields a successful resource allonathe network QoS requirements of
component flows must be reduced using NetQoS.

Application to the case study.Since our case study is based on DiffServ, NetRAF uses its
DiffServ Allocatorto allocate network resources, which in turn invokes thed®adth Broker’s
admission control capabilities [19] by feeding it one apation flow at a time. NetRAF’s Diff-
Serv Allocator instructs the Bandwidth Broker to reservlibectional resources in the specified
network QoS classes, as described in Section IlI-A. The R&itth Broker determines the bi-
directional DSCPs and NetRAF encodes those values as dwmatiributes in the deployment
plan. This paper assumes the underlying network QoS mesihagig, the Bandwidth Broker)

is responsible for configuring the routers to provide thelp®y behavior [19].

C. NetCON: Alleviating Complexities in Network QoS Se#i@pnfiguration
NetQoPE’sNetwork QoS Configurato(NetCON) resolveChallenge 3described in Sec-

tion 11-B by enabling the auto-configuration of componentdieware containers, which pro-
vide a hosting environment for application component fiomality. Through NetCON auto-
configuration, containers can add DSCPs to IP packets whelicajions invoke remote opera-
tions. The current version of NetCON is developed for the IGMCcomponent middleware and
is shown in Figure 6.

During deployment, NetCON parses the deployment plan (wmow includes both the



CPU allocations and network DSCP tags for the connectiomsjetermine (1) source and
destination components, (2) the network priority model &8 dor their communication, (3)
the bi-directional DSCP values (obtained via NetRAF), atidthe target nodes on which the
components are deployed. NetCON deploys the componentseimréspective containers and
creates the associated object references for use by clieatsemote invocation.

NetCON'’s container programming model

Component Server

Container NetAP can transparently add DSCPs and en-
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C 1ent

DSCP values
for all flows
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force the network priority models (see
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MddleETe Bas 'Remote Host (| Hostm CON encodes aSERVER DECLARED
i Requests w . i
‘ s Apiation policy and the associated request/reply

DSCPs on the server’s object reference.
Fig. 6. NetCON'’s Container Auto-configurations When a client invokes a remote operation

with this object reference, the client-side
middleware checks the policy on the object reference, destite request DSCP, and includes it
in the request IP packets. Before sending the reply, theessigde middleware checks the policy
again and the reply DSCP is added to the associated IP packets

To support theCLIENT_PROPAGATED network priority model, NetCON configures the con-

tainers to apply aCLIENT_PROPAGATED policy at the point of binding an object reference
with the client. In contrast to theERVER DECLARED policy, theCLIENT_PROPAGATED policy
allows clients to control the network priorities with whi¢heir requests and replies traverse
the underlying network and different clients can access dbevers with different network
priorities. When the source component invokes a remoteatiper using the policy-applied
object reference, NetCON adds the associated forward amisee DSCP markings on the IP
packets, thereby providing network QoS to the applicatiow.flA NetQoPE-enabled container
can therefore transparently add both forward and reverseFfDé&lues when components invoke
remote operations using the container services.
Application to the case study.In our case study shown in Figure 3, the FireSensor software
controller component is deployed in two different instate control the operation of the fire

sensors in the parking lot and the server room. There is designitorController software



component (MonitorController3 in Figure 4) that commutésawith the deployed FireSensor
components. Due to differences in importance of the Fire@ecomponents deployed, however,
the MonitorController software component USBSENT_PROPAGATED network priority model
to communicate with the FireSensor components with differeetwork QoS requirements.

After the first two stages of NetQoPE, NetCON configures ¢betainer hosting the Mon-
itorController3 component with the€LIENT_PROPAGATED policy, which corresponds to the
CLIENT_PROPAGATED network priority model defined on the component by NetQoSis Th
capability is provided automatically by containers to emsthat appropriate DSCP values are
added at runtime to both forward and reverse communicatimspyhen the MonitorController3
component communicates with either the FireSensorPar&imgireSensorServer component.
Communication between the MonitorController3 and the $@msorParking or FireSensorServer
components thus receives the required network QoS sinceA¥etonfigures the routers be-
tween the MonitorController3 and FireSensorParking camepts with the source IP address,
destination IP address, and DSCP tuple. Section IV-B andiddetV-C empirically evaluate
these capabilities.

IV. EMPIRICAL EVALUATION OF NETQOPE

This section empirically evaluates NetQoPE’s capabditie provide CPU and network QoS
assurance to end-to-end application flows. We first dematestrow NetQoPE’s model-driven
QoS provisioning capabilities can significantly reducel@pagion development effort compared
with conventional approaches. We then validate that NeEXRButomated model-driven ap-
proach can provide differentiated network performanceafamariety of CPS applications, such

as our case study in Section II.

A. Evaluation Scenario

Hardware and software testbed Our empirical evaluation of NetQoPE was conducted on
ISISlab (www.dre.vanderbilt.edu/ISISlab), which cotsisf (1) 56 dual-CPU blades running
2.8 GHz XEONs with 1 GB memory, 40 GB disks, and 4 NICs per blade (2) 6 Cisco
3750G switches with 24 10/100/1000 MPS ports per switch. €&gperiments were conducted
on 15 of dual CPU blades in ISISlab, where (1) 7 blades (A, BEDF, G, and H) hosted our
smart office enterprise case study software componengs & fire sensor software controller)



and (2) 8 other blades (P, Q, R, S, T,

depicts these details.
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Fig. 7. Experimental Setup

U, V, and W) hosted Linuxeosoftware. Figure 7

The software controller components were de-
veloped using the CIAO middleware, which is an
open-source LWCCM implementation developed
atop the TAO real-time CORBA object request
broker [11]. Our evaluations used DiffServ QoS
and the associated Bandwidth Broker [19] software
was hosted on blad@. All blades ran Fedora Core
4 Linux distribution configured using the real-time
scheduling class. The blades were connected over
a 1 Gbps LAN via virtual 100 Mbps links.

Evaluation scenaria In this scenario six sensory and imagery software comtr®lsent their

monitored information to three monitor controllers so tlagipropriate control actions could

be performed by enterprise supervisors monitoring abnbewants. For example, Figure 7

shows twofire sensor controllecomponents deployed on hosts A and B. These components

sent their monitored information tmonitor controllercomponents deployed on hosts D and

F. Each of these software controller components have their GPU resource requirements

and the physical node allocations for those components determined by the CPU allocation

algorithms employed by NetQoS. Further, communicatiorwbeh these software controllers

used one of the traffic classes.d, HIGH PRIORITY (HP)) defined in Section IlI-A with the

following capacities on all links#p = 20 Mbps,HR = 30 Mbps, andum = 30 Mbps. TheBE

class used the remaining available bandwidth in the network

To emulate the CPU and network behavior of the software otlets when different QoS

requirements are provisioned, we created Thet Net QQPE performance benchmark suitéie

usedTest Net QOPE to evaluate the flexibility, overhead, and performance afgidNetQoPE to

provide CPU and network QoS assurance to end-to-end apphidéows. In particular, we used
Test Net QoPE to specify and measure diverse CPU and network QoS requmtsro&the different

software components that were deployed via NetQoPE, sut¢heaapplication flow between

3Test Net QUPE can be downloaded as part of the CIAO open-source middlemaiable at (www.dre.vanderbilt.edu/CIAO).



the fire sensor controllecomponent on host A and theonitor controllercomponent on host
D. These tests create a session for component-to-compoasmhunication with configurable
bandwidth consumption (components also consume a contfigupercentage of CPU resource
on their hosted processors). High-resolution timer prabe® used to measure roundtrip latency

accurately for each client invocation.

B. Evaluating NetQoPE’s Model-driven QoS Provisioning &laipties

Rationale. This experiment evaluates the effort application develsspend using NetQoPE to
(re)deploy applications and provision QoS and comparesdffiort against the effort needed to
provision QoS for applications via conventional approache

Methodology. We first identified four flows from Figure 7 whose network QaSguirements
are described as follows:

e A fire sensor controller component on host A uses the higlabgiiy (HR) class to send
potential fire alarms in the parking lot to the monitor colimocomponent on host D.

e A fire sensor controller component on host B uses the highrifyrigHP) class to send
potential fire alarms in the server room to the monitor cdl@gracomponent on host F.

e A camera controller component on host E uses the multimetig Class and sends imagery
information from the break room to the monitor controllengmonent on host G.

e A temperature sensor controller component on host A usebdbeeffort ) class and
sends temperature readings to the monitor controller coewptoon host F.

The clients dictated the network priority for requests aeplies in all flowsexceptfor the
temperature sensor and monitor controller component floverevthe server dictated the priority.
TCP was used as the transport protocol and 20 Mbps of forwaddreverse bandwidth was
requested for each type of network QoS traffic.

To evaluate the effort saved using NetQoPE, we developedandany of technologies that
provide CPU and network QoS assurances to end-to-end CRiSaigm flows. This taxonomy
is used to compare NetQoPE’s methodology of provisioninggrated network and CPU QoS
for these flows with conventional approaches, includingdiiject-oriented [15], [13], [2], (2)
aspect-oriented [25], and (3) component middleware-bfbk#jd [26] approaches.

Below we describe how each approach provides the followungtionality needed to leverage

network QoS mechanism capabilities:



¢ QoS Requirements specificationin conventional approaches applications use (1) middiewa
based APIs [15], [13], (2) contract definition languages [&) runtime aspects [25], or (4)
specialized component middleware container interfacéptflspecify QoS requirements. These
approaches do not, however, provide capabilities to spécth CPU and network requirements
and assume that physical node placement for all componeatdezided i(e., applications are
already deployed in appropriate hosts) before the netweskurce allocations are requested
using the appropriate APIs. This assumption allows thogdiagtions to specify the source and
destination IP addresses of the applications when reaugesétwork resources for an end-to-end
application flow.

In such approaches, application source code must changeewdrethe deployment context
(e.g, different physical node allocations, component deplayirfer a different usecase) and
the associated QoS requiremengsg( CPU or network resource requirements) change, which
limits reusability. In contrast, NetQoS provides domaiedfic, declarative techniques that
increase reusability across different deployment costaxid alleviate the need to specify QoS
requirements programmatically, as described in SectipA.lI

e Resource allocation Conventional approaches require application deployrbefare their
per-flow network resource requirements can be provisiogatebwvork QoS mechanisms. Recall
that appropriate hosts for each application is determingdntelligent CPU allocation algo-
rithms [3] before their per-flow network resource requiraisecan be provisioned by network
QoS mechanisms. If the required network resources cannatldeated for these applications
after a CPU allocation decision is made, however, the fallgvsteps occur: (1) the applications
must be stopped, (2) their source code must be modified tafgpew resource requirements
(e.g, either source and destination nodes of the componentsecahdnged, forcing application
re-deployments as well or for the same pair of source andna@isin nodes the network resource
requirements could be changed, and (3) the resource réserysiocess must be restarted.

This approach is tedious since applications may be deplaypede-deployed multiple times,
potentially on different nodes. In contrast, NetRAF hasdieployment changes via NetQoS
models (see Section I1I-B) at pre-deploymeng., before applications have been deployed,
thereby reducing the effort needed to change deploymewnidgp or application QoS require-
ments.

e Network QoS enforcement Conventional approaches modify application source c@fle [



or programming model [14] to instruct the middleware to eoéoruntime QoS for their remote

invocations. Applications must therefore be designed twletwo different usecases—to enforce
QoS and when no QoS is required—thereby limiting applicateusability. In contrast, NetCON

uses a container programming model that transparentlyr@gauntime QoS for applications
without changing their source code or programming modelescribed in Section 1lI-C.

Based on this taxonomy, we now compare the effort requirgutdgision end-to-end QoS to
the 4 end-to-end application flows described above usingesdional manual approaches vs. the
NetQoPE model-driven approach. We decompose this effoosadhe following general steps:
(1) implementationwhere software developers write code to specify resowgqairements and
allocate needed resources, (®ploymentwhere system deployers map (or stop) application
components on their target nodes, andr(®deling tool usewhere application developers use
NetQoPE to model a CPS application structure, specify ppli@ation CPU resource and per-
flow network resource requirements, and allocate needed &flLhetwork resources.

To compare NetQoPE with other conventional efforts, we skxvia realistic scenario for the
4 end-to-end application flows described above. In thisawenthree sets of experiments were
conducted with the following deployment variarits:

e Baseline deployment This variant configured all 4 end-to-end application flonithwihe
CPU and network QoS requirements as described above. Theameffort required using
conventional approaches for the baseline deploymentvyedol O steps: (1) modify source code
for each of the 8 components to specify their QoS requiresnghtmplementation steps — note
that CPU allocation algorithms were used to determine tipecggiate physical node allocations
for the applications before network resources were reqde&ir each application flow), (2)
deploy all components (1 deployment step), and (3) shutdallvoomponents (1 deployment
step).

In contrast, the effort required using NetQoPE involved tbkowing 4 steps: (1) model
the CPS application structure of all 4 end-to-end applicatflows using NetQoS (1 modeling
step), (2) annotate QoS specifications on each applicatidreach end-to-end application flow (1

modeling step), (3) deploy all components (1 deploymenmnt stthis step also involved allocation

4In each of the experiment variants, we kept the same pefeafiph CPU resource requirements, but varied the network

resource requirements for the application flows.



of both CPU and network resources for applications usindgRE&ts two step allocation process
described in Section 1lI-B), and (4) shutdown all composgit deployment step).

e QoS modification deployment This variant demonstrated the effect of changes in QoS
requirements on manual efforts by modifying the bandwidttuirements from 20 Mbps to 12
Mbps for each end-to-end flow. As with the baseline variamvab the effort required using a
conventional approach for the second deployment was 1@ siape source code modifications
were needed as the deployment contexts changed (in thistbasbandwidth requirements
changed across 4 different deployment contexts — howeawerCPU resource requirements did
not change, and hence the application physical node albmsatiid not change as well).

In contrast, the effort required using NetQoPE involvedepst (1) annotate QoS specifications
on each end-to-end application flow (1 modeling step), (PJaleall components (1 deployment
step), and (3) shutdown all components (1 deployment ségpjlication developers also reused
NetQoS’ application structure model created for the ihdigployment, which helped reduce the
required efforts by a step.

e Resource (re)reservation deploymentThis variant demonstrated the effect of changes in
QoS requirements and resource (re)reservations takethtygen manual efforts. We modified
bandwidth requirements of all flows from 12 Mbps to 16 Mbps.M&» changed the temperature
sensor controller component to use the high reliabilHg)(class instead of the best eff®t
class. Finally, we increased the backgrouwmriclass traffic across the hosts so that the resource
reservation request for the flow between temperature semsbmonitor controller components
fails. In response, deployment contexesg, bandwidth requirements, source and destination
nodes) were changed and resource re-reservation wasmpedor

The effort required using a conventional approach for thiedtldeployment involved 13
steps: (1) modify source code for each of the 8 componentpdoify their QoS requirements
(8 implementation steps), (2) deploy all components (1 @epknt step), (3) shutdown the
temperature sensor component (1 deployment step — notéhthaesource allocation failed for
the component), (4) modify source code of temperature s@wsoponent back to usee network
QoS class (deployment context change) (1 implementatiem),s(5) redeploy the temperature
sensor component (1 deployment step — note that the CPUatabacalgorithms were rerun to
change physical node allocations), and (6) shutdown allpmorants (1 deployment step).

In contrast, the effort required using NetQoPE for the thiegloyment involved 4 steps: (1)



annotate QoS specifications on each end-to-end applicdten(1 modeling step), (2) begin
deployment of all components, though NetRAF’'s pre-deplegtxtime allocation capabilities
determined the resource allocation failure and prompted\ietQoPE application developer to
change the QoS requirements (1 pre-deployment step), @)nmetate QoS requirements for the
temperature sensor component flow (1 modeling step) (4)pgiegdl components (1 deployment
step), and (5) shutdown all components (1 deployment step).

Figure 8 summarizes the step-by-step analysis de-

# Steps in exp. variants scribed above. These results show that conventional

First |Second | Third approaches incurred roughly an order of magnitude
NetQoPE 4 3 5
Conventional] 10 10 13

Approaches

more effort than NetQoPE to provide CPU and network

QoS assurance for end-to-end application flows. Closer
Fig. 8. Effort Comparison Across Different examination shows that in conventional approaches,
Approaches application developers spend substantially more effort
developing software that can work across different deplayntontexts. Moreover, this process
must be repeated when deployment contexts and their as=sbc@S requirements change. In
addition, conventional implementations are complex stheerequirements are specified directly
using middleware [13] and/or network QoS mechanism APIs [5]

Application (re)deployments are also required wheneveemation requests fail. In this
experiment only 1 flow required re-reservation and that rirezi additional effort of 3 steps.
If there are large number of flows—and CPS systems like ou sasly often have scores of
flows—conventional approaches require significantly mdferte

In contrast, NetQoPE’s ability to “write once, deploy mplé times for different QoS re-
quirements” increases deployment flexibility and exteiligfin environments that deploy many
reusable software components. To provide this flexibilNgtQoS generates XML-based de-
ployment descriptors that capture context-specific QoSiirempents of applications. For our
experiment, communication between fire sensor and morotarallers was deployed in multiple
deployment contexts,e., with bandwidth reservations of 20 Mbps, 12 Mbps, and 16 Mixps
CPS applications such as our case study, however, the sam@wucation patterns between

components could occur in many deployment contexts.



Deployment Contexts For example, the same communication patterns could

# flows
2 5 10 20 use any of the four network QoS classes,,( HR,

1 23 50 95 | 185 MM, andBE). The communication patterns that use the
5 47 110 | 215 | 425

10 77 | 185 | 365 | 725
20 137 | 335 | 665 | 1325

same network QoS class could make different forward

and reverse bandwidth reservatioresg( 4, 8, or 10

Mbps). As shown in Figure 9, NetQoS auto-generates
Fig. 9. Generated lines of XML code over 1,300 lines of XML code for these scenarios,
which would otherwise be handcrafted by application dgveis. These results demonstrate that
NetQoPE’s model-driven CPU and network QoS provisioningatdities significantly reduce
application development effort compared with conventi@apgproaches. Moreover, NetQoPE also
provides increased flexibility when deploying and prounsiy multiple application end-to-end

flows in multiple deployment and diverse QoS contexts.

C. Evaluating NetQoPE’s QoS Customization Capabilities

Rationale. This experiment empirically evaluates the benefits of tiegflexibility and decoupling
resulting from NetQoPE’s multi stage architecture, and twbdethe CPS applications indeed
obtain their required QoS.

Methodology. From Figure 7, the four flows that were described in Secti6B Wwere modeled
with the same set of network and CPU QoS requirements usitigd& TheCLIENT_PROPAGATED
network policy was used for all flows, except for the tempamtsensor and monitor controller
component flow, which used th&ERVER DECLARED network policy.

We executed two variants of this experiment. The first varissed TCP as the transport
protocol and requested 20 Mbps of forward and reverse batldvoer each type of QoS traffic.
Test Net QOPE configured each application flow to generate a load of 20 Mimgkthe average
roundtrip latency over 200,000 iterations was calculafidte second variant used UDP as the
transport protocol andlest Net QoPE was configured to makenewayinvocations with a payload
of 500 bytes for 100,000 iterations. We used high-resatuiiimer probes to measure the network
delay for each invocation on the receiver side of the compaiin.

At the end of the second experiment we recorded 100,000 nlettiday values (in millisec-
onds) for each network QoS class. Those network delay valees then sorted in increasing

order and every value was subtracted from the minimum vailube whole sample,e., they



were normalized with respect to the respective class mimiaency. The samples were divided
into fourteen buckets based on their resulting values. kamgle, the 1 ms bucket contained
only samples that are= to 1 ms in their resultant value, the 2 ms bucket containeg samples
whose resultant values were 2 ms but> 1 ms, etc.

To evaluate application performance in the presence

. Background Traffic in Mbps ) .
Traffic Type [—— T e 1T ww ©Of background network loads, several other applications
BE (TS — MS){85 - 100 were run in both experiments, as described in Figure 10
HP (FS — MS)| 30 - 40 28-33]28-33 ) )

HR (FS - MS)| 30 - 40 12-15130-31| (in this table TS stands for “temperature sensor con-
MM (CS —MS) 30 - 40 14-15]30-31 troller,” MS stands for “monitor controller’, FS stands

for “fire sensor controller,” and CS stands for “camera
Fig. 10. Background Traffic ] ) ) ]
controller”). NetRAF determined the DSCP values which wiren enforced in each outgoing
packet through the container auto-configuration effectedetCON.

Analysis of results. Figure 11 shows the results of

Caooood s €Xxperiments when the deployed applications were con-

15000Q-- o ML figured with different network QoS classes and sent

=
o
o
=}
S
S

TCP traffic. This figure shows that irrespective of the

Latency (microseconds;

50,0001 -

heavy background traffic, the average latency experi-

HP HR MM BE

Network 00S classes enced by the fire sensor controller component using the

HP network QoS class is lower than the average latency

Fig. 11. Average Latency under Different Net- .
experienced by all other components. In contrast, the

work QoS Classes

traffic from theBE class is not differentiated from the
competing background traffic and thus incurs a high laten®y, {throughput is very low).
Moreover, the latency increases while using tie and mm classes when compared to the
HP class.

Figure 12 shows the (1) cardinality of the network delay grogs for different network QoS
classes under different ms buckets and (2) losses incugeshbh network QoS class. These
results show that the jitter values experienced by the egipdin using these class are spread
across all the bucketsge., are highly unpredictable. When combined with packet ooaation
losses, this property is undesirable in CPS applicatiamgohtrast, the predictability and loss-
ratio improves when using thee class, as evidenced by the spread of network delays acrsiss ju

two buckets. The application’s jitter is almost constard &not affected by heavy background



traffic.

The results in Figure 12 also show that
the application using theim class ex-

perienced more predictable latency than

applications usin@e andHR class. Ap-

High Reliability Multimedia Best Effort

(@1 02 03 m4 05 @6 m7 08 @9 010 o011 m12 m13 m 14
mili second buckets

High Priority

proximately 94% of theam class invoca-

tions had their normalized delays within

Total Number of Packets Received
HP : 99991; HR : 99998; MM : 94901; BE : 89924

1 ms. This result occurs because the

Fig. 12. Jitter Distribution under Different Network QoS Classes queue size at the routers is smaller for
the MM class than the queue size for the

HR class, so UDP packets sent by the invocations do not experias much queuing delay in

the core routers as packets belonging to #ireclass. TheHR class provides better loss-ratio,

however, because the queue sizes at the routers are largghetmohold more packets when the

network is congested.

These results demonstrate that NetQoPE can provide sigmtfilexibility and customizability,

while ensuring that applications obtain their required QoS

V. RELATED WORK

This section compares our R&D activities on NetQoPE withted work on middleware-based
QoS management and model-based design tools.
Network QoS management in middleware Prior work on integrating network QoS mechanisms
with middleware [13], [2], [15] focused on providing middlare APIs to shield applications
from directly interacting with complex network QoS meclsamiAPIs. Middleware frameworks
transparently converted the specified application QoSireapents into lower-level network QoS
mechanism APIs and provided network QoS assurances. Tipgseaghes, however, modified
applications to dictate QoS behavior for the various flowstQoPE differs from this related
work by providing application-transparent and automatelitions to leverage network QoS
mechanisms, thereby significantly reducing manual desigh development effort to obtain
network QoS.
QoS management in middleware Prior research has focused on adding various types of QoS

capabilities to middleware. For example, [27] describeSEJZontainer resource management



mechanisms that provide CPU availability assurances tbcapipns. Likewise, 2K [28] provides
QoS to applications from varied domains using a componaséd runtime middleware. In ad-
dition, [14] extends EJB containers to integrate QoS featiny providing negotiation interfaces
which the application developers need to implement to veceiesired QoS support. These
approaches are restricted to CPU QoS assurances or ajplitatel adaptations to resource-
constrained scenarios. NetQoPE differs by providing ngtw@oS assurances in a application-
agnostic fashion.

Our previous work [21] has focused on mechanisms that addtinea QoS aspects into
a component middleware, so that component middleware cgtigihs can enforce CPU QoS
at runtime in a non-invasive manner. NetQoPE builds on thatkvibut solves the following
orthogonal but important problems - how to decide what apliaptions need to operate in a
particular processor such that both their CPU and netwoskurees can be provisioned, and
how to enforce network QoS for such applications at runti@@mbined with our previous work,
NetQoPE can thus manage and enforce both CPU and network dpa®pglications.
Model-based design toolsPrior work has been done on model-based design tools. PI28IL
enables developers of CPS applications to define compontartaces, their implementations,
and assemblies, facilitating deployment of LwCCM-basegliagtions. VEST [29] and AIR-
ES [17] analyze domain-specific models of embedded rea-siystems to perform schedulability
analysis and provides automated allocation of componemqsocessors. SysWeaver [30] supports
design-time timing behavior verification of real-time sysis and automatic code generation and
weaving for multiple target platforms. In contrast, Net@oprovides model-driven capabilities
to specify network QoS requirements on CPS application floavel subsequently allocate
network resources automatically using network QoS meshasi NetQoPE thus helps assure
that application network QoS requirements are met at depdoy-time, rather than design-time

or runtime.

VI. CONCLUDING REMARKS

This paper described the design and evaluation of NetQoRihws a model-driven mid-
dleware framework that manages CPU and network QoS for Cpkcafons. The lessons we
learned developing NetQoPE and applying it to a represeat@PS application case study thus

far include:



e NetQoPE’s domain-specific modeling languageg ( NetQoS) help capture per-deployment
QoS requirements of applications so that CPU and networkuress can be allocated appro-
priately. Application business logic consequently neet bbeo modified to specify deployment-
specific QoS requirements, thereby increasing softwarseremd flexibility across a range of
deployment contexts, as shown in Section IlI-A.

e Programming network QoS mechanisms directly in applicatiode requires the deployment
and execution of applications before they can determinbéafrequired network resources are
available to meet QoS needs. Conversely, providing thepabi#ties via NetQoPE’s model-
driven, middleware framework helps guide resource allonastrategiedbeforeapplication de-
ployment, thereby simplifying validation and adaptatietidions, as shown in Section I1I-B.

e NetQoPE’s model-driven deployment and configuration tb@lp configure the underlying
component middleware transparently on behalf of appbeeatito add context-specific network
QoS settings. These settings can be enforced by NetQoPEfsner middleware framework
without modifying the programming model used by applicasioApplications therefore need not
change how they communicate at runtime since network Qdagetan be added transparently,
as shown in Section IlI-C.

e NetQoPE’s strategy of allocating network resources bede@oyment may be too limiting
for certain types of CPS applications. In particular, beeanf the physical nature of the systems,
faults might occur at runtime, and applications might natstane all their resource allotment at
runtime. Similarily, applications in open systems migltjuige dynamic provisioning of resources
based on application demand. Our future work is therefotenelng NetQoPE to overprovision
resources for applications on the assumption that not alliggtions will use their allotment.

NetQoPE’s model-driven middleware platforms and toolscdbed in this paper and used in
the experiments are available in open-source format fromvwve.vanderbilt.edu/cosmic and in
the CIAO component middleware available at www.dre.vabilteedu. The Bandwidth Broker

is a product licensed by Telcordia.
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