Applying Model-Driven Distributed Continuous Quality Assurance
Processes to Enhance Persistent Software Attributes

Arvind S. Krishnd, Cemal Yilmaz, Atif Memon', Adam Portet,
Douglas C. Schmidt Aniruddha Gokhale Balachandran Natarajgn
"Dept. of Computer Science, University of Maryland, College Park, MD 20742
'Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37203

Abstract can lead to rapid, unpredictable, and potentially uncontrolled
changes in persistent software attributes (PSAs), including
Time and resource constraints often force developers of higidjiability, scalability, efficiency, adaptability, maintainabil-
configurable quality of service (QoS)-intensive software syty, and portability. The same situation occurs in evolution-
tems to guarantee their system’s persistent software attribueented processes [7], where many small increments are rou-
(PSAs) €.9, functional correctness, portability, efficiency, antinely added to the base system. What is needed are quality
QoS) on a few platform configurations and to extrapolate fra@ssurance (QA) techniques that can coordinate remote devel-
these configurations to the entire configuration space, whigpers and cope with frequent software changes by detecting,
allows many sources of degradation to escape detection udiignosing, and helping fix faulty and/or inefficient changes
systems are fielded. This article illustrates how model-drivas quickly and automatically as possible.
distributed continuous quality assurance (DCQA) processedn addition, QoS-intensive software needs to be fine-tuned
can help improve the assessment and assurance of these RSApecific (and often changing) user platforms/contexts to
across the large configuration spaces of QoS-intensive sefieet its performance requirements. This is commonly done
ware systems. by (re)adjusting a large set of (10’s-100’s) configuration op-
Keywords. Distributed Continuous Quality Assuranceijons that control parameters such as different workloads; op-
Model-Integrated Computing, Quality of Service, Softwarrating system, middleware and application feature sets; com-
Configurations. piler flags; and/or run-time optimization settings. Moreover,
the configuration options that maximize QoS for a particular
. set of hardware, OS and compiler platforms may not produce
1 Introduction optimal QoS for a different platform combination.
While this “explosion” in thesoftware configuration space
Emerging trends and challenges. Quality of service (QoS)- promotes adaptability and portability, it places enormous de-
intensive software must satisfy stringent requirements faands on the developers who must must ensure that their de-
persistent software attributes (PSAs), such as assuredcisions and modifications work across this large (and often
tency/jitter/throughput values, scalability, dependability, amthianging) configuration space. In fact, experience has shown
security. Examples of QoS-intensive software include highkat thereliability, portability, and efficiencyPSAs of QoS-
performance scientific computing systenesg(high energy intensive software cannot be assured without extensive QA on
physics experiments and computational fluid dynamics), disrange of requirements and operating environments [6].
tributed real-time and embedded systerag)(control sys- In practice, however, budgets for development and in-house
tems for the electrical power grid and commercial air traA are limited. Therefore, developers often can only assess
fic), and the accompanying systems softwarg(operating PSAs on a few software configurations and then extrapolate to
systems, middleware, and language processing tools). Qtf-entire configuration space. This allows many sources of
intensive software is increasingly affected by trends towaP$A degradation to escape detection until systems are fielded.
distributed and evolution-oriented development proceasels Moreover, those few in-house tested software configurations
demand for user-specific customization are often selected in aad hocmanner so PSAs are not eval-
Today's global information technology economy and n-tierated systematically. What is needed are QA techniques that
architectures often involve developers distributed across gan cope with exploding software configuration and validation
ographical locations, time zones, and business organizatigpaces.
One goal of distributed development is to ensure rapid chaggdressing PSA challenges with distributed continuous
by having developers work simultaneously, with minimal dguality assurance and model-driven techniques. Two
rect inter-developer coordination. Distributed developmemomising techniques for addressing the QA challenges de-
processes can increase churn rates in the software base, wdddbhed above includdistributed continuous quality assur-

ance (DCQA)and model-driventechniques. DCQA tech-changes based on these PSAs with an acceptable level of ef-
nigues are designed to improve PSAs iteratively, opporturiigrt.

tically, efficiently, and continuously in multiple, geographe|ated work. Our model-driven DCQA techniques build
ically distributed locations [6]. In particular, DCQA techyyqn earlier efforts that address limitations with conventional
niques have been shown to help assurqatbmablllw ahd "®- in-house QA processes. As described below, these efforts
liability PSAs of QoS-intensive software by validating fungyather various types of information from distributed run-time
tional correctness and QoS satlsfacnpn across a wide raBg€ronments and usage patterns encounteré field i.e.,

of hardware, OS, network, and compiler platforms. For exq ser target platforms with user configuration options.
amP'e' theSkoll DCQA er!V|ronment\@ww.cs.umd.edu/. Online crash reporting systemsuch as the Netscape Qual-
pro!ects/ skoll) proyldes a framework f‘?f executing 4ty Feedback Agent and Microsoft XP Error Reporting, gather
variety of QA tasks continuously across a grid of compute ystem state at a central location whenever a fielded system
distributed aroun_d the world and analyzmg the result_s toev ashes, which simplifies user participation in QA by automat-
ate PSAs. Likewise, the Dart DCQA environmepiilic. ing certain aspects of problem reporting. Likewise, many pop-
kitware.com/Dart) supports.a CO”“”UO‘%S build/test PrOGlar open-source projects udistributed regression test suites
cess that starts whenever repository check-ins occur. that end-users can run to evaluate installation success. Well-

Model-driven techniques help to minimize the developmepf, 5 .in examples include GNU GCC, CPAN, Mozilla, the Vi-
validation, and evolution effort associated with DCQA actiV; 1 jization Toolkit (VTK), and ACE+TAO.

ities by capturing the customizability of QoS-intensive soft- Auto-build scoreboardsare a more proactive form of
ware within higher-level models that help to automate tia‘?

. . i) stributed regression test suites that allow software to
analysis and synthesis of various artifacts, such as COMPL- huilt/tested at multiple sites on various hardware, op-

nent interfaces, implementations, and glue code; configu ?éting system, and compiler platforms The Mozilla
tion files; and deployment scripts [3]. In particular, mod Finderbox (/vwwimozilla.org/tinderbox.html yand
driven techniques help assure tbarrectness, main'[enancefACEﬁL.l.Ao Virtual Scoreboardwww.dre.vanderbilt

&

and portingPSAs of QoS-intensive software by automatical du/scoreboard/) are auto-build scoreboards that track
generating artifacts required for QA activities, such as regr Sid-user build resul

sion testing and performance benchmarking. For exam
the Options Configuration Modeling language (OCML) [9] a

ts across various platforms. Bugs are re-
Brted via problem tracking systems (such as Bugzilla or Jira),

| devel ; del middl e i i vhich provides inter-bug dependency recording, advanced re-
OWS GEVEIopers lo model middieware configuration options rting capabilities, extensive configurability, and integration

high-level models. Likewise, the Benchmarking Generati lth automated software configuration management systems,

Modeling Language (BGML) [4] allows developers to autqs - as CVS or Clearcase

matically generate sophisticated benchmarking experlments.Although these prior efforts have provided a good starting

This article describes how model-driven DCQA process Sint, they have several limitations. For example, they have a

and tools can work separately and together to help m imited focus, ignoring PSAs related to QoS and performance

itor, safeguard, enforce, and reassert desirable PSASi ues. Our approach can be customized to address a wide va-

}Z: ?’c:n dgeesscr?bcecut\r/v:)n DQCOQS,:m(racr:;vsiesso?r\;valr:herirt]ec[i)ailslct: ety of PSAs. Moreover, while these efforts help document
m ,d I-driven Skoll environm Et that help t P nsure PSA Pﬁ_d automate portions of the QA process, the decisiovhat
ode © oll environme at help to ensure S Bhdwhento test it is left to users. In contrast, the model-

Igted t_o hoth correctness and performance across large ¢ Wen DCQA techniques described in this paper enable devel-
figuration spaces. To validate our approach, we presg

results from applying our model-driven DCOA processe E:rs to control key aspects of the QA process, thereby min-

. izing gaps and inefficiencies. As discussed below, our ap-

and tools on ACE+TAO Www.dre.vanderbilt.edu/ - . .
. . roach can exploit incremental results an lectively ignor
Download.html), which are widely-used QoS-enable oach can exploit incremental results and selectively ignore

. 2 " . roblems discovered earlier, which avoids wasting resources
middleware consisting 0£2,000,000 lines of contlnuouslyth 9

: . . t could otherwise be devoted to identifying other problems.
evolving C++ frameworks, functional regression tests, anda fying P

performance benchmarks contained~i#,500 files that av-

erage over 300 CVS commits per week. Our results sh : :

that (1) DCQA technigues improve the ability of developers%lv A_pplymg Model-driven DCQA Tech-
detect and pinpoint software portability and availability prob- ~ NIQUES to Address PSA Challenges

lems, (2) integrating DCQA and model-driven techniques can

significantly enhance the process of identifying key subsetslaf maintain and evaluate PSAs across large configuration
options that affect PSAs, and (3) monitoring only these s&paces, we have developed tmedel-driven Skolenviron-
lected options helps developers understand effects of systeemt to support DCQA. We use these processes to evaluate

PSAs (such as latency, throughput, and correctness) “arowstriintsthat limit the setting of one option based on the setting
the-world, around-the-clock.” To do this, Skoll's modelingf another. We represent constraints Bs > P;), meaning
tools divide the overall QA process into multiple subtasksf predicate P; evaluates td"'RU E, then predicatd’; must
e.g, running regression tests in a particular system configavaluate tdI'RUE." A predicate P, can be of the formi,
ration, evaluating system response time under a different input, A& B, A|B, or simplyO; = S;, whereA, B are predi-
workloads, or measuring usage errors for a system with sestes,0; is an option ands; is one of its allowable settings.
eral alternative GUI designs. As illustrated in Figure 1, thefevalid configurations a configuration that violates no inter-
option constraints. Skoll uses this configuration space model

St clen Syol Clen to plan global QA processes, adapt processes dynamically, and

Configuration aid in analyzing and interpreting results.
Frfacts fom models Since the configuration spaces can be quite large, Skoll has
anlintelligent Steering AgeritSA) which controls DCQA pro-
cesses by deciding which valid configuration to allocate to
each incoming Skoll client request. When a client becomes
available, the ISA decides which subtask to assign it. To do
this, the ISA can consider many factors, includingtfi con-
figuration model e.g, which characterizes the subtasks that
can legally be assigned, (#)e results of previous subtasks
e.g, which captures what tasks have already been done and
___________ whether the results were successful,d®)bal process goals
ental Coleton e.g, test popular configurations more than rarely used ones

or test recently changed features more than heavily than un-
changed features, and (dlient characteristics and prefer-
ences The configuration must be compatible with physical
))) o realities such as the OS running on the remote machine. Also,
tasks are then intelligently and continuously distributed to ot preferences, which are declared in a Skii#int tem-
and executed by — Skoll clients across a grid of computing fate must be respected. For example, suppose a product runs
sources contributed by end-users and distributed developmieRiyrmal or superuser mode. A security conscious user might
teams. The results of these evaluations are returned to a SESMRS want configurations in which the mode is normal.
at a central coIIect'ion sjte, where they are fused together tnce a valid configuration is chosen, the ISA packages the
guide subsequent iterations of Skoll DCQA processes. cqrresponding QA subtask implementation intjpla config-

This section describes some of the components and servigegon which consists of the code artifacts, configuration
provided by t_he model-driven Skoll environment so that dﬁarameters, build instructions, and QA-specific coday.(
velopers can implement and analyze DCQA processes. In Rae|oper-supplied regression/performance tests) associated
ticular, Skoll [6] provides languages for modeling system o, 4 software project. The job configuration is then sent
figurations and their constraints, algorithms for scheduling apdi,e requesting Skoll client, which executes the job config-
remotely executing tasks, and analysis techniques for chatggyion and returns the results to the ISA so it can learn from
terizing faults. Finally, we show how developers use Skoll{ae resuits and adapt the process. For example, if some con-
implement and execute large-scale, PSA-specific DCQA P rations fail to maintain certain PSAs, developers may want
CESSES. to pinpoint the source of the problems or refocus on other un-

explored parts of the configuration space. To do this Skoll
2.1 Managing PSA Challenges with Model- Process designers can develop customedaptation strate-

driven Skoll giesthat monitor the global process state, analyze it, and use

the information to modify future subtask assignments in ways
The cornerstone of Skoll is its formal model of a DCQA prdhat improve process performance.
cess’s configuration space, which captures the valid configuSkoll applies various model-driven tools that raise the level
rations for QA subtasks. A configuration in Skoll is represf abstraction and reduce the accidental complexity of dealing
sented formally as a s€t(0,S1), (02,S52), ..., (On,Sn) with Skoll's internal formats. For example, Skoll employs the
}, where eacl®; is a configuration option an§; is its value, Benchmarking Generation Modeling Language (BGML) [4]
drawn from the allowable settings ¢f;. Since in practice that allows developers to (1) visually model interaction sce-
not all configurations make sensed, feature X may not be narios between configuration options and system components
supported on operating system Y), we defimer-option con- using domain-specific building blocks, (2) automate genera-

<

DCQA Model
«Configuration model,

«Automatic characterization
+Adaptation strategies
*ISA

“

Figure 1:The Skoll Model-driven DCQA Architecture

tion of common parts of test code and reuse QA subtask cadenposed via the Generic Modeling Environment (GME)
across configurations, (3) generate control scripts to distribotedel-driven toolsuite www.isis.vanderbilt.edu/
and execute the experiments across the Skoll grid to monRwojects/gme/). The resulting models detail the system’s
performance and functional behavior in a wide range of exmnfiguration options and inter-option constraints and capture
cution contexts, and (4) enable evaluation of multiple softwdP&A-specific information, such as the metrics calculated in
attributes such as correctness, throughput, latency, jitter, andenchmarking experiment, the number and execution fre-
other criteria. guency of low-level profiling probes, or event patterns to mon-
Since DCQA processes are complex we often need helptow for or filter out of system logging server. For example, in
interpret and leverage process results. Therefore a wide the mission computing scenario, we use a three component
riety of analysis tools can be plugged into Skoll. One su@asicSPscenario that receives global position updates from a
tool we added to Skoll implements Classification Tree AnalPS device and displays them at a GUI display in real-time.
sis (CTA) [2]. CTA's outputis a tree-based model that predicttep 2: Create benchmarks using the model-driven BGML
object class assignment based on the values of a subset ofg@): In the BasicSPscenario, th&PScomponent serves as
ject features. As we show in Section 3.1, we used CTA fige source for multiple components requiring position updates
diagnose which specific options and option settings were mggh regular interval. This component's concurrency mecha-
likely causing specific PSA test failures. This helped develagism should therefore be tuned to serve multiple requests si-
ers quickly identify the root causes of some failures. multaneously in parallel. Moreover, the requirements that the
desired data request and the display frequencies are fixed at 40
2.2 An Example Model-driven DCQA Process Hz is captured in within the models. The BGML model in-
terpreter processes these models to generate the lower-level
Figure 2 presents a high-level overview of how the BGMKML based configuration files, the required benchmarking
tool described above has been employed with the Skodide €.g, IDL files, required header and source files), and
client/server infrastructure to support model-driven DCQiecessary script files to for executing the DCQA process. This
processes. Below we present an example model-driven DC#&p reduces accidental complexities associated with tedious
and error-prone handcrafting of source code for a potentially
large set of configurations. The configuration file is input to
the ISA, which schedules the subtasks to execute as clients
Avionics become available.

Scenario . .

Step 3: Register and download clients. Remote users reg-
ister with the Skoll infrastructure and obtain the Skoll client
software and configuration template that was generated by the
BGML modelinterpreter. Clients can run periodically at user-
specified times, continuously, or on-demand.

Step 4: Execute DCQA Process. As each client request
arrives, the ISA examines its internal rule base and Skoll
databases and selects a valid configuration, packages the job

e configuration, and sends it to the client. The client executes
cOde\ < it and returns the results to the Skoll server, Whl(?h up.dates its
Generators Script Artifacts databases and executes any adaptation strategies triggered by
the new results.

Internet

Figure 2:Using Model-Driven Skoll 3 Evaluating Correctness and Perfor-

_ _ , mance of QoS-Intensive Software
process that illustrates the use and interactions of the Skoll

components and BMGL tool. This example focuses on Rsuring the (re)usability of QoS-intensive software requires
avionics mission computing system [8] system developed g4t it be adaptable and portatle,, it should be configurable

ing the ACE+TAO middleware described in Section 1. to run efficiently, robustly, and predictably on a wide range of
Step 1. Define the application scenario. A developer hardware, OS, network, and compiler platforms that provide
uses BGML to model the software system and PSA-speciiite-grained knobs to tune QoS behavior. It is therefore impor-
evaluation activities. Specifically, the models are visualtgnt that functional correctness be verified and QoS properties

be validated for the configured operating contexts and envir@rough not a sufficient) condition to validate the functional
ments. This section describes several feasibility studies tbatrectness PSA.

how Skoll can be used to assess and assure PSAs associated

with functional correctness and run-time performance. 3.1.2 Scenario 2: Testing with Default Run-Time Options

3.1 Evaluating Functional Correctness Across Scenario 2 assessed the portability and correctness PSAs of
' ACE+TAO by executing regression tests on each compile-time

Large Configuration Spaces configuration using the default run-time optiong (the con-

Our first study examine three scenarios in which we test diguration new users encounter upon installation). We used

ferent PSAs of ACE+TAO across its numerous configuratiotde 96 regression tests that are distributed with ACE+TAO,
exploring the following hypotheses: each containing its own oracle and reporting success or fail-

1. Our DCQA process helps to strengthen system-widg ON exit. We expanded the configuration model to include
PSAs, such as portability and correctness. options that captured low-level OS and compiler information,
2 The [SCQA process can be easily used to quickly ideh9- indicating the use of static vs. dynamic libraries, multi-

tify problems with software portability and compile-/runlhreading vs. singlethreading, and inlining vs. non-inlining.
time customizations. Also, some ACE+TAO tests can only run in particular config-

urations (such as when the multithreading is selected), so we
We implemented the DCQA processes using the modalso adding test-specific options to the configuration space.

driven Skoll environment and then installed Skoll clients andThe new test-specific options contain one option per test,
one Skoll server across 10+ workstations distributed acrogg@n(7;)), which indicates if that tesf; is runnable in a given
network. All clients ran Linux 2.4.9-3 and used gcc 2.96 gdmpile-time configuration. We also defined constraints over
their compiler (we used a single OS and compiler to simplifiese optionse.g, some tests should run only on configura-
the initial study and analysis, but have since run other studiess that have more than Minimum CORBA features. After
across multiple operating systems and compilers). We then@agaking these changes, the space now had 14 compile time op-
plied functional correctness QA task scenarios to ACE v5.2i8ns with 12 constraints and an additional 120 test-specific
and TAO v1.2.3 to check for clean compilation and perforoonstraints.
regression testing with both default and configurable run-timeafter resolving the constraints, we compiled 2,077 individ-

options. ual tests, of which 98 did not compile and 1,979 did. Of these
1,979 tests, 152 failed, while 1,827 passed. This process took
3.1.1 Scenario 1: Clean Compilation ~52 hours of computer time on the Skoll grid available for the

i experiments.
Scenario 1 assessed whether each ACE+TAQ feature combjy, geveral cases, tests failed for the same reason in the

natioq cqmpiled yvithout error. We selegted .10 bir}ary-valuggme configurations. For example, CTA analysis showed that
compile-time options that control build time inclusion of feﬁ'est compilation failed at a given file for the following op-
tures, such as asynchronous messaging, use of software "ﬁ@r’i‘settings CORBA_MSG = 1 andPOLLER = 0 and
ceptors, and user-specified messaging poficiée alsoiden- ¢ 47,7, BACK = 0). This compilation error stemmed from
tified 7 inter-option constraint®.g, (4 = 1 — B = 0), 4 previously undiscovered bug that occurred because certain
whlch means that if optlon A is enabled then option B has @ files assumed these settings were invalid and thus could
be disabled. The configuration space chosen has a total of,80 occur. Using our model-driven DCQA environment and

valid configurations. process, we were therefore able to determine whether the cur-

By executing the process we determined that 60 of the 8 \ersion of ACE+TAO successfully completes all regres-
valid configurations did not even build — which was a quit§yp tests in its default configuration.

surprise to the ACE+TAO developers! Using CTA analysis
on the results we, for example, automatically characterized L) .]]
a previously undiscovered bug. This bug centered on a p’%":LS Scenario 3: Regression Testing with Configurable

ticular line within the TAO source code and occurred in ex- Run-Time Options

actly 8 configurations each of which shared a particular pgife goal of scenario 3 involved assessing the portability of
of options settings. Using our model-driven DCQA environxce+TAO via execution-based test cases and run-time op-
mentand process, we therefore successfully assessed the §[g py executing the ACE+TAO regression tests over all set-
free compilation attribute of ACE+TAO, which is a Necessagy\gs of their run-time options (such as when to flush cached

1A detailed explanation of the many ACE+TAQ configuration options aFéJnneCtions or what concurrency Strategies the ORB should
available fromwww.dre.vanderbilt/ TAO/docs/ support. See Table 1 for a summary of option settings). We

Name Possible Settings point the causes of specific failures.

ORBCollocation global, per-orb, NO

ORBConnectionPurgingStrategyiru, Ifu, fifo, null P ;

ORBFlushingStrategy leaderfollower, 3.2 /Ldentlfyll_ng Eerf?rmar;.ce S Degradation

reactive, blocking Cross Large configuration spaces

ORBConcurrency reactive, | As QoS-intensive software evolves, developers often run
_ _ thread-per-connection henchmark tests to check for unintended side effects on per-

ORBClientConnectionHandler | MT, ST, RW formance. As with testing, benchmarking highly configurable

ORBConnectStrategy Blocked, Reactive, LF QoS-intensive software systems is difficult due to their enor-

mous configuration spaces. This problem is compounded for
evolving systems in which the the number of configurations
that can be routinely examined before the system changes
again is severely limited. As a result, developers only have
a limited view of their system’s performance PSAs, so prob-
ems not readily seen in the few tested configurations can (and

Table 1: Six ACE+TAO Run-Time Options and their Set-
tings.

modified the configuration model to reflect 6 run-time config
ration options. Overall, there were 648 different combinatioas : . .
0) escape detection until such systems are fielded.

of CORBA liyn-tlrr]ne pol;\ues h ot) Another challenge is that developers often have to handcraft
After making these changes, the compile-time option Spag8iiqual QA tasks (such as regression test cases and bench-

had 14 options and 12 constraints, there were 120 test-Speiliing experiments) to evaluate key performance-related

constraints, and 6 run-time options with no new constrainiss o o by writing such code as interface definitions, com-

Thus, the configuration space for this scenario grew 0 18,734,011 implementations, client test applications and scaffold-

valid configurations (648 run-time x 29 compile-time configs anq startup code. Of course, manually writing this code

uratlons)_. At roughly 30 minutes per testsuite, the entire tes rror-prone since each step may be repeated many times for

process involved around 9,400 hours of computer time on g\f‘ery QA experiment during each (re)validation phase.

Skoll grid. o) . To address these problems, we used model-driven Skoll to
Several tests failed in this scenario, even though they hﬁglemp and implement a new DCQA process we oain

not failed in scenario 2 when they were run with default rugffects screeningviain effects screening tries tapidly detect

time options. These problems were often located in featugeyradations in performance PSAs across a large configuration

specific code. Interestingly, some tests failed on every S'”Qbaace whenever the system changes. At a high level, main

configuration (including the default configuration tested egiffects screening involves the following steps:

lier), despite succeeding in Scenario 2! These problems werg Compute a formaéxperimental desighased on the sys-

often caused by bugs in optl_on _settmg and processing code. tem’s configuration model. Our approach uses a class
ACE+-I—.AO de\{elopers were mtngued by t.hese findings bg— of experimental designs callestreening designgl0],
cause in p.ract|ce they.rely heawly on testmg by USErs atin- which are highly economical and can reveal significant
Sta”"?‘“"” time (scenario 2) to verify proper mstalllat'l(.)n and low order effectgsuch as individual option settings and
prpwde feedback on system correctness. Our feasibility study option pairs/triples) that significantly affect performance.
raises some guestions about the aQequacy of that gpprogch. We call these most influential option settings “main ef-

Another group of tests had pe_lrtlcularly interesting failure tocts” The tradeoff is that these designs (and the main
patterns. Three of these te;ts failed be_tween 2,500 and 4,400 effects screening process itself) are inappropriate for sys-
times (out of 18,792 executions). We discovered that the fail- ;o ms with many significant higher order effects.

ures occurred only whe@RBCollocation = NO was se- 5 pyecute that experimental design across the DCQA
lected (.e., no other option influenced these failures). This op- DCOQA grid. Each task involves running and measuring
tion allows objects within the same address space to commu- panchmarks on a single configuration dictated by the ex-

nicate directly, saving (de)marshaling and protocol processing perimental design devised in step 1. We used the model-
overhead. The fact that these tests worked when objects com- yiven BGML tool to simplify benchmark creation, exe-

municated directly — but failed when they talked over the net- . \sion and analysis.

work — suggested a problem related to message passing. 1 collect and analyze the data to identify the main effects.
fact,. the source of the prpblem_ was a bug in the ACE+TAO e significance level that demarcates influential options
routines for (de)marshaling object references. Our DCQA .,h pe set by developers.

process thus helped us to not only systematically evaluate the
functional correctness PSA across many different runtime conNow we shift our QA process back to in-house resources.
figurations, but also leveraged that information to help pii¥henever the software changes we evaluate all combinations

Option Index | Option Name Option Settings
ol ORBReactorThreadQueue {FIFO, LIFO}
02 ORBClientConnectionHandler {RW, MT}
03 ORBReactorMaskSignals {0, 1}

o4 ORBConnectionPurgingStrategy {LRU, LFU}
05 ORBConnectionCachePurgePercentage {10, 40

06 ORBConnectionCachelLock {thread, nul}
o7 ORBCorbaObjectLock {thread, nul}
08 ORBObjectKeyTableLock {thread, nul}
09 ORBInputCDRAllocator {thread, nul}
010 ORBConcurrency {reactive, thread-per-connectipr]
oll ORBActiveObjectMapSize {32,128
0l2 ORBUseridPolicyDemuxStrategy {linear, dynami¢
013 ORBSystemidPolicyDemuxStrategy {linear, dynami¢
0l4 ORBUniqueidPolicyReverseDemuxStrategy {linear, dynami¢

Table 2: ACE+TAO Options and their Settings

of the main effects (while defaulting or randomizing all othe$tep 2: Create benchmarks using the model-driven BGML
options). We can do this quickly in-house because the setafl. ACE+TAO developers used BGML (Section 2.1) to
main effects options is much smaller than the total configtempose benchmarking experiments, which involved graph-
ration space. Our hope is that the performances of the miailly modeling the desired number of clients and servers,
effects set mirrors those of the entire configuration space wifrkload characteristics, and performance metrics to be cal-
true, we can get nearly the same information as from exhaaglated. The graphical model is then interpreted to produce a
tive testing at a fraction of the cost. large portion of the benchmarking code (over 90%).

Since the main effects can change over time, the Process&an. . Anoiv the main effects screening process. This
be restarted periodically to recalibrate the main effects option b o APpY 9p X

L . Fe‘-p creates mesolution IVscreening design, which computes
Recalibration frequency will depend on how and how fast t@?fects involving either one or two options, while assuming
system changes.

o that no significant higher order effects exist (in the interests of
We now show results from a two-phase feasibility study thal, e \ve have not included the statistical details of comput-
explored the following hypotheses: ing and interpreting screening designs, which are described
1. Main effects screening quickly identifies a small subsetWu [10]). The final screening design examines only 32
of options whose effect on performance is significant, aenfigurations of the 16,384 total configurations. Note that
lowing the rapid identification and monitoring of the softeenchmarking the entire configuration space takes over 48
ware’s performance attributes. CPU hours, while benchmarking the screening design takes
2. Evaluating all combinations of the main effects set priess than 6 minutes.

duces performance data that is (1) representative of 4 C ¢ hausti d random testing. F
the system’s performance across the entire configurat%ﬁp - Lompare fo exhaus 'Xe ?n d ranf om testin dg.t ofr h
space and (2) more representative of the overall perf‘é?—mp"mSon purposes, we coliected performance data tor the

mance than that produced by observing a similarly-sizgptlre conﬂguratlon space. We also cqnducted random sam-
ples from this data to do further comparisons.

random sample of configurations.

After performing these 4 steps and analyzing the results,
%ee found that only options 02 and 010 had a significant ef-
fect on latency and throughout across the entire configuration
Step 1: Define the application scenario. As a result of space. These results surprised ACE+TAO developers since
changes to the ACE+TAO message queuing strategy, ACERey thought that all 14 run-time options would contribute
TAO developers want to monitor (1) the latency for each redbstantially to latency and throughput. Our analysis of the
quest and (2) total message throughput (events/second)seeeening design data give the same results. We were there-
tween the ACE+TAO client and server. For this version &fre able to get accurate datag%th the cost.

ACE+TAOQ, the developers identified 14 run-time options they In the second phase of the process we used the information
felt affected latency and throughput. Each option is binatltyat 02 and 010 are important options to generate all possible
as shown in Table 2 and the entire configuration space(iis this case 4) configurations for the binary options 02 and

214 = 16, 384. 010. Default values were assigned to the remaining options.

Below, we describe the four steps we followed to evalu
the main effects DCQA process.

We then measured latency and throughput on the benchnthtls far show that Skoll works best if we have a large number
test applications. of client machines to run the experiments, so recruiting users
Our results showed that the performance distributions db-donate their computing resources —and assuring the security
tained from the main effects set were similar to the ones alfthese resources — is becoming increasingly important.
tained from the exhaustive runs at a fraction of the cost. Init's also important to note that the work presented here is
contrast, randomly sampled configurations.(4 chosen at only an initial foray into a broader R&D agenda on DCQA
random) produced very different data. It would therefore Ipeocesses foRemote Analysis and Measurement of Software
an unreliable indicator of performance degradation followirystemgRAMSS) (seemeasure.cc.gt.atl.ga.us/
system changes. Table 3 shows the percentage of obsemmss). To date, only a handful of research efforts [7, 1, 5, 6]
tions for each performance metric in the entire configuratibave studied such processes systematically, so there are many
space that fall into the range of the observations obtained franresolved challenges and risks, such as how best to struc-

screening and random designs. ture DCQA processes, what types of QA tasks can be dis-
tributed effectively, and how the costs/benefits of DCQA pro-
Metric Screening | Random cesses compare to conventional in-house QA processes. To
latency 77% 46% address these issues, we are working with other researchers in
latency variance 64% 30% the RAMSS community to develop tools, services, and algo-
throughput 75% 55% rithms needed to create, prototype, and evaluate various types

)) of DCQA processes focused on functional testing, QoS evalu-
Table 3:Range of Performance Metrics Covered by Screen- aiion and usage profiling of highly configurable software pro-
ing and Random Design gram families.

4 Concluding Remarks References

This article motivated the need for — and design of — modeli] J. Bowrir;tg, A. ?rSO. anth. ﬁ]& Harrgl_d. M(;r;ﬁor%% girzl:?\%/%oll Cfgflvavare
; i atri ; ; using software tomography. Proceedings of the -
driven distributed continuous quality assurance (DCQA) pro- SIGSOFT Workshop on Program Analysis for Software Tools And Engi-

cesses and showed several examples of how these processeseering pages 2-9. ACM Press, 2002.

can be used by developers of QoS-intensive software to héBp L. Breiman, J. Freidman, R. Olshen, and C. Sto@assification and

assess and assure persistent software attributes (PSAs). WeRegression TreesNadsworth, Monterey, CA, 1984.

rapidly implemented two such DCQA processes using moddf) §.&rsa, 3. Stanavte, », Ledecs and T Bapy. loce niegrated

driven tools, executed them in the Skoll environment, and 91(1):145-164, Jan. 2003.

demonstrated their effectiveness via several feasibility studigg A. S. Krishna, N. Wang, B. Natarajan, A. Gokhale, D. C. Schmidt, and

involving the widely used ACE+TAO middleware. Model Implementations. [Aoceedings of (e 10th Real e Technar
These studies, presented in Section 3 showed how DCQA ogy and Application Symposium (RTAS ‘0fronto, CA, May 2004.

processes helped ensure key PSAs, such as functional correct/EEE.

ness, maintainability, portability, and efficiency by: (hpni- [5] B. Liblit, A. Aiken, and A. X. Zheng. Distributed program sampling. In

. - . . . Proceedings of ACM Programming Languages Design and Implementa-
toring (e.g, the clean compilation scenarios described in Sec- ign (pLD|)g'03’ San Dieg%, Camorgnia, J%negzoogl 9 P

tion 3.1.1), (2)safeguardinge.qg, via feedback to developers [6] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and

on failing configurations and its isolation as described in Sec- B. Natarajan. Skoll: Distributed Continuous Quality Assuranceris

. - L e . ceedings of the 26ttEEE/ACM International Conference on Software
tion 3.1.3), (3)summarizing(e.g, via identification of main Engineering Edinburgh, Scotland, May 2004. IEEE/ACM.

?ﬁeCtS .conf|gurat|ons that hlghlly mfluenpe QoS gs descr'b?ﬂ A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system: Con-
in Section 3.2), and (4)easserting(e.g, via rerunning tests tinuous evolution of software after deployment. Rroceedings of the
to validate main effects options) these attributes on a range g”;?g‘g&ogﬁésssynggggf“m on Software Testing and Analysiges 65—
of platforms. They also showed how Sk.oll-.based DCQA P'Qs) D. C. Sharp and W. C. Roll. Model-Based Integration of Reusable
cesses reduced the level of effort — both in time and resources — Component-Based Avionics System. Rmoceedings of the Workshop
required to assure the PSAs mentioned above in rapidly chang- °" Model-Driven Embedded Systems in RTAS 20 2003.

i ; ; ; ; 9] E. Turkay, A. Gokhale, and B. Natarajan. Addressing the Middleware
ing environments characterized by a multitude of conflguré Configuration Challenges using Model-based Technique$rdneed-

tion options and diverse OS/compiler platforms. ings of the 42nd Annual Southeast Confereridantsville, AL, Apr.
Despite our initial progress, much work remains to be done. 2004. ACM.

For example, currently the overhead of specifying DCQA prgol gér'; nfét‘ef‘r/%g;‘% r?ﬂé;mfg?o%v?gg%rga Planning, Analysis, and

cesses is more than we would like. We also do not yet support

QA tasks that require human evaluation, such as evaluating

usability or code maintainability. Moreover, our experiments

