
Applying Patterns and Frameworks to Develop
Object-Oriented Communication Software

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, MO 63130

This paper appeared in theHandbook of Programming
Languages, Volume I, edited by Peter Salus, MacMillan Com-
puter Publishing, 1997.

1 Introduction

Communication software for next-generation distributed ap-
plications must be flexible and efficient. Flexibility is needed
to support a growing range of multimedia datatypes, traf-
fic patterns, and end-to-end quality of service (QoS) require-
ments. Efficiency is needed to provide low latency to delay-
sensitive applications (such as avionics and call processing)
and high performance to bandwidth-intensive applications
(such as medical imaging and teleconferencing) over high-
speed and mobile networks.

This paper outlines the key sources of complexity for com-
munication software and describes how patterns and frame-
works can alleviate much of this complexity. To focus the
discussion, the paper explains how patterns and frameworks
have been applied to develop high-performance, concurrent
Web servers.

1.1 Sources of Complexity for Communication
Software

Despite dramatic increases in computing power and network
bandwidth, however, the cost of developing communication
software remains high and the quality remains relatively low.
Across the industry, this situation has produced a “communi-
cation software crisis,” where computing hardware and net-
works get smaller, faster, and cheaper; yet communication
software gets larger, slower, and more expensive to develop
and maintain.

The challenges of communication software arise fromin-
herentandaccidentalcomplexities [1]. Inherent complexities
stem from fundamental challenges of developing communica-
tion software. Chief among these are detecting and recovering

from network and host failures, minimizing the impact of com-
munication latency, and determining an optimal partitioning of
application service components and workload onto processing
elements throughout a network.

The accidental complexities associated with communica-
tion software stem from limitations with conventional tools
and techniques. For instance, low-level network programming
interfaces like Sockets are tedious and error-prone. Likewise,
higher-level distributed computing middleware like CORBA,
DCOM, and Java RMI lack key features, such as asynchronous
I/O and end-to-end QoS guarantees. Moreover, conventional
higher-level middleware implementations are not yet opti-
mized for applications with stringent performance require-
ments [2, 3].

Another source of accidental complexity arises from the
widespread use of algorithmic design [4] to develop commu-
nication software. Although graphical user-interfaces (GUIs)
are largely built using object-oriented (OO) design, commu-
nication software has traditionally been developed with al-
gorithmic design. However, algorithmic design yields non-
extensible software architectures that cannot be customized
rapidly to meet changing application requirements. In an era
of deregulation and stiff global competition, it is prohibitively
expensive and time consuming to repeatedly develop applica-
tions from scratch using algorithmic design techniques.

1.2 Alleviating the Complexity of Communica-
tion Software with OO Frameworks and
Patterns

OO techniques provide principles, methods, and tools that sig-
nificantly reduce the complexity and cost of developing com-
munication software [5]. The primary benefits of OO stem
from its emphasis on modularity, reusability, and extensibil-
ity. Modularity encapsulates volatile implementation details
behind stable interfaces. Reusability and extensibility enhance
software by factoring out common object structures and func-
tionality. This paper illustrates how to produce flexible and ef-

1

ficient communication software using OOapplication frame-
worksanddesign patterns.

A framework is a reusable, “semi-complete” application
that can be specialized to produce custom applications [6].
A pattern represents a recurring solution to a software devel-
opment problem within a particular context [7]. Patterns and
frameworks can be applied together synergistically to improve
the quality of communication software by capturing success-
ful software development strategies. Patterns capture abstract
designs and software architectures in a systematic format that
can be readily comprehended by developers. Frameworks cap-
ture concrete designs, algorithms, and implementations in par-
ticular programming languages.

The examples in the paper focus on developing high-
performance concurrent Web servers using the ACE frame-
work [8]. ACE is an OO framework that provides components
that implement core concurrency and distribution patterns [9]
related to the domain of communication software. The frame-
work and patterns in this paper are representative of solutions
that have been successfully applied to communication systems
ranging from telecommunication system management [9] to
enterprise medical imaging [10] and real-time avionics [11].

This paper is organized as follows: Section 2 presents an
overview of patterns and frameworks and motivates the need
for the type of communication software framework provided
by ACE; Section 3 outlines the structure of the ACE frame-
work; Section 4 illustrates how patterns and components in
ACE can be applied to develop high-performanceWeb servers;
and Section 5 presents concluding remarks.

2 Applying Patterns and Frameworks
to Communication Software

2.1 Common Pitfalls of Developing Communi-
cation Software

2.1.1 Limitations of Low-level Native OS APIs

Developers of communication software confront recurring
challenges that are largely independent of specific application
requirements. For instance, applications like network file sys-
tems, email gateways, object request brokers, and Web servers
all perform tasks related to connection establishment, service
initialization, event demultiplexing, event handler dispatch-
ing, interprocess communication, shared memory manage-
ment, static and dynamic component configuration, concur-
rency, synchronization, and persistence. Traditionally, these
tasks have been implemented in anad hocmanner using low-
level native OS application programming interfaces (APIs),
such as the Win32 or POSIX, which are written in C.

Unfortunately, native OS APIs are not an effective way to

develop complex communication middleware and applications
[12]. The following are common pitfalls associated with the
use of native OS APIs:

Excessive low-level details: Developers must have intimate
knowledge of low-level OS details. For instance, develop-
ers must carefully track which error codes are returned by
each system call and handle these OS-specific problems in
their applications. These details divert attention from the
broader, more strategic application-related semantics and pro-
gram structure.

Continuous re-discovery and re-invention of incompatible
higher-level programming abstractions: A common rem-
edy for the excessive level of detail with OS APIs is to de-
fine higher-level programming abstractions. For instance, a
Reactor [13] is a useful component for demultiplexing I/O
events and dispatching their associated event handlers. How-
ever, these abstractions are often re-discovered and re-invented
in anad hocmanner by each developer or project. This pro-
cess hampers productivity and creates incompatible compo-
nents that cannot be reused readily within and across projects
in large software organizations.

High potential for errors: Programming to low-level OS
APIs is tedious and error-prone due to their lack of typesafety.
For example, many networking applications are programmed
with the Socket API [14]. However, endpoints of communi-
cation in the Socket API are represented as untyped handles.
This increases the potential for subtle programming mistakes
and run-time errors [15].

Lack of portability: Low-level OS APIs are notoriously
non-portable, even across releases of the same OS. For in-
stance, implementations of the Socket API on Win32 plat-
forms (WinSock) are subtly different than on UNIX platforms.
Moreover, even WinSock on different versions of Windows
NT possesses incompatible bugs that cause sporadic failures
when performing non-blocking connections and when shut-
ting down processes.

Steep learning curve: Due to the excessive level of detail,
the effort required to master OS-level APIs can be very high.
For instance, it is hard to learn how to program the thread can-
cellation mechanism correctly in POSIX Pthreads. It is even
harder to learn how to write aportableapplication using thread
cancellation mechanisms since they differ widely across OS
platforms.

Inability to handle increasing complexity: OS APIs define
basic interfaces to mechanisms like process and thread man-
agement, interprocess communication, file systems, and mem-
ory management. However, these basic interfaces do not scale
up gracefully as applications grow in size and complexity. For
instance, a Windows NT process only allows 64 thread local

2

storage (TLS) keys. This number is inadequate for large-scale
server applications that utilize many DLLs and thread local
objects.

2.1.2 Limitations of Higher-level Distributed Object
Computing Middleware

It is possible to alleviate some of the pitfalls with native
OS APIs by using higher-level distributed computing middle-
ware. Common examples of higher-level distributed comput-
ing middleware include CORBA [16], DCOM [17], and Java
RMI [18]. Higher-level distributed computing middleware re-
sides between clients and servers and eliminates many tedious,
error-prone, and non-portable aspects of developing and main-
taining distributed applications by automating common net-
work programming tasks such as object location, object acti-
vation, parameter marshaling, fault recovery, and security.

However, higher-level distributed computing middleware is
often only a partial solution, for the following reasons:

Lack of portability: Conventional higher-level middleware
is not widely portable. For instance, the Object Adapter com-
ponent in the CORBA 2.0 specification is woefully under-
specified [19]. Therefore, servers written in CORBA are not
portable among ORB products from different vendors. Like-
wise, DCOM is targeted for Win32 platforms and Java RMI is
targeted for applications written in Java.

Lack of features: Conventional higher-level middleware fo-
cuses primarily on communication. Therefore, it does not
cover other key issues associated with developing distributed
applications. For instance, conventional higher-level middle-
ware does not specify important aspects of high-performance
and real-time distributed server development such as shared
memory, asynchronous I/O, multi-threading, and synchroniza-
tion [20].

Lack of performance: Conventional higher-level middle-
ware incurs significant throughput and latency overhead [2,
21]. These overheads stem from excessive data copying,
non-optimized presentation layer conversions, internal mes-
sage buffering strategies that produce non-uniform behavior
for different message sizes, inefficient demultiplexing algo-
rithms, long chains of intra-ORB virtual method calls, and lack
of integration with underlying real-time OS and network QoS
mechanisms [22].

2.2 Overcoming Communication Software Pit-
falls with Patterns and Frameworks

Successful developers and software organizations overcome
the pitfalls described above by identifying thepatternsthat
underly proven solutions and by reifying these patterns in
object-oriented application frameworks. Together, patterns

and frameworks help alleviate the continual re-discovery and
re-invention of communication software concepts and compo-
nents by capturing solutions to standard communication soft-
ware development problems [7].

2.2.1 The Benefits of Patterns

Patterns are particularly useful for documenting the structure
and participants in common micro-architectures for concur-
rency and communication such as Reactors [13], Active Ob-
jects [23], and Brokers [24]. These patterns are generaliza-
tions of object-structures that have proven useful to build flex-
ible and efficient event-driven and concurrent communication
software frameworks and applications.

Traditionally, communication software patterns have either
been locked in the heads of the expert developers or buried
deep within the source code. Allowing this valuable informa-
tion to reside only in these locations is risky and expensive,
however. For instance, the insights of experienced designers
will be lost over time if they are not documented. Likewise,
substantial effort may be necessary to reverse engineer pat-
terns from existing source code. Therefore, explicitly captur-
ing and documenting communication software patterns is es-
sential to preserve design information for developers who en-
hance and maintain existing software. Moreover, knowledge
of domain-specific patterns helps guide the design decisions
of developers who are building new applications.

2.2.2 The Benefits of Frameworks

Although knowledge of patterns helps to reduce development
effort and maintenance costs, reuse of patterns alone is not suf-
ficient to create flexible and efficient communication software.
While patterns enable reuse of abstract design and architec-
ture knowledge, abstractions documented as patterns do not
directly yield reusable code. Therefore, it is essential to aug-
ment the study of patterns with the creation and use of appli-
cation frameworks. Frameworks help developers avoid costly
re-invention of standard communication software components
by implementing common design patterns and factoring out
common implementation roles.

2.2.3 Relationship Between Frameworks and Other
Reuse Techniques

Frameworks provide reusable software components for appli-
cations by integrating sets of abstract classes and defining stan-
dard ways that instances of these classes collaborate [25]. The
resulting application skeletons can be customized by inherit-
ing and instantiating from reuseable components in the frame-
works.

3

The scope of reuse in a framework can be significantly
larger than using traditional function libraries or conventional
OO class libraries. The increased level of reuse stem from the
fact that frameworks are tightly integrated with key communi-
cation software tasks such as service initialization, error han-
dling, flow control, event processing, and concurrency control.

In general, frameworks enhance class libraries in the fol-
lowing ways:

Frameworks define “semi-complete” applications that em-
body domain-specific object structures and functionality:
Class libraries provide a relatively small granularity of reuse.
For instance, the classes in Figure 1 (A) are typically low-
level, relatively independent, and general components like
Strings, complex numbers, arrays, and bitsets. In contrast,

APPLICATIONAPPLICATION

SPECIFICSPECIFIC

LOGICLOGIC

USERUSER

INTERFACEINTERFACE

((AA)) CLASS LIBRARY CLASS LIBRARY

ARCHITECTUREARCHITECTURE

NETWORKINGNETWORKING

MATHMATH ADTADTSS

DATADATA

BASEBASE

APPLICATIONAPPLICATION

SPECIFICSPECIFIC

LOGICLOGIC

MATHMATH

((BB)) APPLICATION FRAMEWORK APPLICATION FRAMEWORK

ARCHITECTUREARCHITECTURE

ADTADTSS

INVOKESINVOKES

CALLCALL

BACKSBACKS

NETWORKINGNETWORKING USERUSER

INTERFACEINTERFACE

DATABASEDATABASE

INVOKESINVOKES

EVENTEVENT

LOOPLOOP

EVENTEVENT

LOOPLOOP

Figure 1: Differences Between Class Libraries and OO Frame-
works

components in a framework collaborate to provide a customiz-
able architectural skeleton for a family of related applications.
Complete applications can be composed by inheriting from
and/or instantiating framework components. As shown in Fig-
ure 1 (B), this reduces the amount of application-specific code
since much of the domain-specific processing is factored into
the generic components in the framework.

Frameworks are active and exhibit “inversion of control”
at run-time: Class libraries are typicallypassive, i.e., they

perform their processing by borrowing threads of control from
self-directed application objects. This is illustrated in Fig-
ure 1 (A), where the application-specific logic manages the
event loop. In contrast, frameworks areactive, i.e., they man-
age the flow of control within an application via event dis-
patching patterns like Reactor [13] and Observer [7]. The
callback-driven run-time architecture of a framework is shown
in Figure 1 (B). This “inversion of control” is referred to asThe
Hollywood Principle[26], i.e., “don’t call us, we’ll call you.”

In practice, frameworks and class libraries are complemen-
tary technologies. Frameworks often utilize class libraries in-
ternally to simplify the development of the framework. For
instance, portions of ACE use the string and vector contain-
ers provided by the C++ Standard Template Library [27] to
manage connection maps and other search structures. In ad-
dition, application-specific callbacks invoked by framework
event handlers frequently use class library components to per-
form basic tasks such as string processing, file management,
and numerical analysis.

To illustrate how OO patterns and frameworks are being
successfully applied to communication software, the remain-
der of this paper examines the structure and use of the ACE
framework [8].

3 Overview of ACE

ACE is an object-oriented (OO) framework that implements
core concurrency and distribution patterns [9] for communica-
tion software. ACE provides a rich set of reusable C++ wrap-
pers and framework components that are targeted for develop-
ers of high-performance, real-time services and applications
across a wide range of OS platforms. The components in ACE
provide reusable implementations of the following common
communication software tasks:

� Connection establishment and service initialization[28];

� Event demultiplexing and event handler dispatching[13,
29, 30];

� Interprocess communication[15] and shared memory
management;

� Static and dynamic configuration [8, 31] of communica-
tion services;

� Concurrency and synchronization[29, 23];

� Distributed communication services– such as naming,
event routing [11], logging, time synchronization, and
network locking;

� Higher-level distributed computing middleware compo-
nents– such as Object Request Brokers (ORBs) [20] and
Web servers [32].

4

This section outlines the structure and functionality of the
ACE framework. Section 4 illustrates how components and
patterns in ACE can be applied to build high-performance,
concurrent Web servers.

3.1 The Structure and Functionality of ACE

ACE is a relatively large framework, containing over 135,000
lines of C++ code divided into�450 classes. To separate con-
cerns and to reduce the complexity of the framework, ACE is
designed using a layered architecture. Figure 2 illustrates the
relationships between ACE components.

The lower layers of ACE contain anOS adapterandC++
wrappersthat portably encapsulate core OS communication
and concurrency services. The higher layers of ACE ex-
tend the C++ wrappers to provide reusableframeworks, self-
contained distributed service components, and higher-level
distributed computing middleware components. Together,
these layers simplify the creation, composition, and configu-
ration of communication systems. The role of each layer is
outlined below.

3.1.1 The OS Adaptation Layer

The OS adaptation layerconstitutes approximately 13% of
ACE, i.e., �18,000 lines of code. This layer resides directly
atop the native OS APIs written in C. The OS adaptation layer
shields the other layers in ACE from platform-specific depen-
dencies associated with the following OS APIs:

Concurrency and synchronization: ACE’s adaptation
layer encapsulates OS concurrency APIs for multi-threading,
multi-processing, and synchronization;

Interprocess communication (IPC) and shared memory:
ACE’s adaptation layer encapsulates OS APIs for local and
remote IPC and shared memory;

Event demultiplexing mechanisms: ACE’s adaptation
layer encapsulates OS APIs for synchronous and asyn-
chronous demultiplexing I/O-based, timer-based, signal-
based, and synchronization-based events;

Explicit dynamic linking: ACE’s adaptation layer encapsu-
lates OS APIs for explicit dynamic linking, which allows ap-
plication services to be configured at installation-time or run-
time.

File system mechanisms: ACE’s adaptation layer encapsu-
lates OS file system APIs for manipulating files and directo-
ries.

The portability of ACE’s OS adaptation layer enables it
to run on a wide range of operating systems. The OS plat-
forms supported by ACE include Win32 (i.e., WinNT 3.5.x,
4.x, Win95, and WinCE using MSVC++ and Borland C++),

most versions of UNIX (e.g., SunOS 4.x and 5.x; SGI IRIX
5.x and 6.x; HP-UX 9.x, 10.x, and 11.x; DEC UNIX, AIX 4.x,
DG/UX, Linux, SCO, UnixWare, NetBSD, and FreeBSD),
real-time operating systems (e.g., VxWorks, Chorus, LynxOS,
and pSoS), and MVS OpenEdition. Due to the abstraction pro-
vided by ACE’s OS adaptation layer, a single source tree is
used for all these platforms.

3.1.2 The ACE C++ Wrapper Layer

It is possible to program highly portable C++ applications di-
rectly atop ACE’s OS adaptation layer. However, most ACE
developers use theC++ wrappers layer shown in Figure 2.
The ACE C++ wrappers simplify the development of applica-
tions by encapsulating and enhancing the native OS concur-
rency, communication, memory management, event demulti-
plexing, dynamic linking, and file system APIs with typesafe
C++ interfaces.

The use of C++ alleviates the need for developers to pro-
gram to the weakly-typed OS C APIs directly, which improves
application robustness. For instance, since the C++ wrappers
are strongly typed, compilers can detect type system violations
at compile-time rather than at run-time, which is often the case
with the C-level OS APIs. ACE uses C++ inlining extensively
to eliminate performance penalties that would otherwise be in-
curred from the additional typesafety and levels of abstraction
provided by the OS adaptation layer and the C++ wrappers.

The C++ wrappers provided by ACE are quite comprehen-
sive, constituting�50% of its source code. Applications can
combine and compose these wrappers by selectively inherit-
ing, aggregating, and/or instantiating the following compo-
nents:

Concurrency and synchronization components: ACE ab-
stracts native OS multi-threading and multi-processing mecha-
nisms like mutexes and semaphores to create higher-level OO
concurrency abstractions like Active Objects [23] and Poly-
morphic Futures [33].

IPC and filesystem components: The ACE C++ wrappers
encapsulate local and/or remote IPC mechanisms [15] such as
sockets, TLI, UNIX FIFOs and STREAM pipes, and Win32
Named Pipes. ACE wrappers also encapsulate the OS filesys-
tem APIs, as well.

Memory management components: The ACE memory
management components provide a flexible and extensible ab-
straction for managing dynamic allocation and deallocation of
shared memory and local heap memory.

3.1.3 The ACE Framework Components

The remaining�40% of ACE consists of communication soft-
ware framework components that integrate and enhance the

5

PROCESSESPROCESSES//
THREADSTHREADS

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
IO COMPIO COMP

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C
APIS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

FRAMEWORKS ACCEPTORACCEPTOR CONNECTORCONNECTOR

SELF-CONTAINED

DISTRIBUTED

SERVICE

COMPONENTS

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

C++
WRAPPERS

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

SHAREDSHARED

MALLOCMALLOC

THE ACE ORBTHE ACE ORB

((TAOTAO))

JAWS ADAPTIVEJAWS ADAPTIVE

WEB SERVERWEB SERVER

MIDDLEWARE

APPLICATIONS

REACTORREACTOR//
PROACTORPROACTOR

PROCESSPROCESS//
THREADTHREAD

MANAGERSMANAGERS

ADAPTIVE SERVICE EXECUTIVE ADAPTIVE SERVICE EXECUTIVE (ASX)(ASX)

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

SYNCHSYNCH

WRAPPERSWRAPPERS

MEMMEM

MAPMAP

OS ADAPTATION LAYER

Figure 2: The Layering Structure of Components in ACE

C++ wrappers. These framework components support flexible
configuration of concurrent communication applications and
services [8]. The framework layer in ACE contains the fol-
lowing components:

Event demultiplexing components: The ACE Reactor [13]
and Proactor [30] are extensible, object-oriented demultiplex-
ers that dispatch application-specific handlers in response to
various types of I/O-based, timer-based, signal-based, and
synchronization-based events.

Service initialization components: The ACE Connector
and Acceptor components [28] decouple the active and pas-
sive initialization roles, respectively, from application-specific
tasks that communication services perform once initialization
is complete.

Service configuration components: The ACE Service Con-
figurator [31] supports the configuration of applications whose
services may be assembled dynamically at installation-time
and/or run-time.

Hierarchically-layered stream components: The ACE
Streams components [8] simplify the development of com-
munication software applications that are composed of
hierarchically-layered services,e.g.user-level protocol stacks.

ORB adapter components: ACE can be integrated seam-
lessly with single-threaded and multi-threaded CORBA imple-
mentations via ORB adapters [10].

In general, the ACE framework components facilitate the
development of communication software that may be updated
and extended without modifying, recompiling, relinking, or
even restarting running systems [8]. This degree of flexibility
is achieved in ACE by combining C++ language features like
templates, inheritance, and dynamic binding with design pat-
terns like Abstract Factory, Strategy, and Service Configurator
[7, 31].

3.1.4 Self-contained Distributed Service Components

In addition to its C++ wrappers and framework components,
ACE provides a standard library of distributed services that are
packaged as self-contained components. Although these ser-
vice components are not strictly part of the ACE framework,
they play two important roles:

Factoring out reusable distributed application building
blocks: These service components provide reusable imple-
mentations of common distributed application tasks such as
naming, event routing, logging, time synchronization, and net-
work locking.

Demonstrating common use-cases of ACE components:
The distributed services also demonstrate how ACE compo-
nents like reactors, service configurators, acceptors and con-
nectors, active objects, and IPC wrappers can be used effec-

6

tively to develop flexible and efficient communication soft-
ware.

3.1.5 Higher-level Distributed Computing Middleware
Components

Developing robust, extensible, and efficient communication
applications is challenging, even when using a communica-
tion framework like ACE. In particular, developers must still
master a number of complex OS and communication concepts
such as:

� Network addressing and service identification;

� Presentation conversions (e.g.,encryption, compression,
and network byte-ordering conversions between hetero-
geneous end-systems with alternative processor byte-
orderings);

� Process and thread creation and synchronization;

� System call and library routine interfaces to local and re-
mote interprocess communication (IPC) mechanisms.

It is possible to alleviate some of the complexity of devel-
oping applications using ACE by employing higher-level dis-
tributed computing middleware, such as CORBA [16], DCOM
[17], or Java RMI [18]. Higher-level distributed computing
middleware resides between clients and servers and automates
many tedious and error-prone aspects of distributed applica-
tion development, including:

� Authentication, authorization, and data security;

� Service location and binding;

� Service registration and activation;

� Demultiplexing and dispatching in response to events;

� Implementing message framing atop bytestream-oriented
communication protocols like TCP;

� Presentation conversion issues involving network byte-
ordering and parameter marshaling.

Two middleware applications bundled with the ACE release
include:

The ACE ORB (TAO): TAO [22] is a real-time implemen-
tation of CORBA built using the framework components and
patterns provided by ACE. TAO contains the network inter-
face, operating system, communication protocol, and CORBA
middleware components and features shown in Figure 3. TAO
is based on the standard OMG CORBA reference model [16],
with the enhancements designed to overcome the shortcom-
ings of conventional ORBs [3] for high-performance and real-
time applications. TAO, like ACE, is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .

NETWORKNETWORK

ORBORB QQOOSS
INTERFACEINTERFACE

REALREAL--TIMETIME
ORBORB CORECORE

operation()operation()

RIDLRIDL
STUBSSTUBS

REALREAL--TIMETIME

OBJECTOBJECT

ADAPTERADAPTER

RIDLRIDL
SKELETONSKELETON

in argsin args

out args + return valueout args + return value

CLIENTCLIENT

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK ADAPTERSNETWORK ADAPTERS

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

RIOPRIOP

SERVANTSERVANT

OS KERNELOS KERNEL

HIGHHIGH--SPEEDSPEED

NETWORK ADAPTERSNETWORK ADAPTERS

REALREAL--TIME ITIME I//OO
SUBSYSTEMSUBSYSTEM

Figure 3: Components in the TAO Real-time ORB

JAWS: JAWS [34] is a high-performance, adaptive Web
server built using the framework components and patterns pro-
vided by ACE. Figure 4 illustrates the major structural com-
ponents and design patterns in JAWS. JAWS is structured as

Framework Framework

Tilde

Framework
Cached Virtual
Filesystem

StrategyProtocol Pipeline
Concurrency

Expander

I/O Strategy

~
/home/...

M
em

en
to

Reactor/Proactor Strategy Singleton

S
ta

te
S

er
vi

ce
 C

o
n

fi
g

u
ra

to
r

S
ta

te

StrategyActive ObjectPipes and Filters

A
d

ap
ter

Service Configurator

Protocol
Handler

Protocol
Filter

A
ccep

to
r

Event Dispatcher

Asynchronous Completion Token

Figure 4: Architectural Overview of the JAWS Framework

a framework of frameworks. The overall JAWS framework
contains the following components and frameworks: anEvent
Dispatcher, Concurrency Strategy, I/O Strategy, Protocol
Pipeline, Protocol Handlers, andCached Virtual Filesystem.
Each framework is structured as a set of collaborating objects
implemented using components in ACE. JAW is also freely
available at www.cs.wustl.edu/ �jxh/research/ .
The examples in Section 4 are based on the design of JAWS.

7

4 Developing High-performance Web
Servers with Patterns and Frame-
work Components

The benefits of applying frameworks and patterns to commu-
nication software is best introduced by example. This section
describes the structure and functionality high-performance
Web servers developed using the patterns and framework com-
ponents in ACE. Many error handling details are omitted to
keep the code examples concise. In addition, the examples
focus on features that are portable across multiple OS plat-
forms, though noteworthy platform-specific features of ACE
(such as asynchronous I/O and I/O completion ports) are de-
scribed where appropriate.

4.1 Overview of a Web System

Figure 5 illustrates the general architecture of a Web system.
The diagram provides a layered view of the architectural com-

WWWWWW
SERVERSERVER

2: index.html2: index.html

1: GET ~schmidt1: GET ~schmidt
HTTP/1.0HTTP/1.0

COMMUNICATION PROTOCOL

(E.G., HTTP)

GUI

HTML
PARSER

REQUESTER

GRAPHICS
ADAPTER

NETWORKNETWORK

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

DISPATCHERDISPATCHER

PROTOCOLPROTOCOL

HANDLERSHANDLERS

WWWWWW
CLIENTCLIENT

Figure 5: General Architecture of a Web System

ponents required for anHTTP clientto retrieve an HTML file
from anHTTP server. ThroughGUI interactions, the client
application user instructs the HTTP client to retrieve a file.
The requesteris the active component of the client that com-
municates over thenetwork. It issues a request for the file to
the server with the appropriate syntax of thetransfer proto-
col, in this case HTTP. Incoming requests to theHTTP server
are received by thedispatcher, which is the request demulti-
plexing engine of the server. It is responsible for creating new

threads or processes (for concurrent Web servers) or managing
sets of socket handles (for single-threaded concurrent servers).
Each request is processed by ahandler, which goes through a
lifecycleof parsing the request, logging the request, fetching
file status information, updating the cache, sending the file,
and cleaning up after the request is done. When the response
returns to the client with the requested file, it is parsed by an
HTML parserso that the file may be rendered. At this stage,
therequestermay issue other requests on behalf of the client,
e.g., in order to maintain a client-side cache.

4.2 Overview of an OO Web Server Communi-
cation Software Architecture

Figure 6 illustrates the general object-oriented communication
software architecture for the Web servers covered in this sec-
tion. The roles performed by the components in this architec-

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
AcceptorAcceptor

SockSock
AcceptorAcceptor

EventEvent
DispatcherDispatcher

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
HandlerHandler

SockSock
StreamStream

Figure 6: Object-oriented Communication Software Architec-
ture for a Web Server

ture include the following:

The Event Dispatcher: This component encapsulates the
Web server’s concurrency strategies (such as Thread-per-
Request or Thread Pool) and request dispatching strategies
(such as synchronous Reactive or asynchronous Proactive dis-
patching). The ACE framework allows these strategies to
be customized according to platform characteristics such as
user-level vs. kernel-level threading in the OS, the num-
ber of CPUs in the endsystem, and the existence of special-
purpose OS support for HTTP processing (e.g., the Windows
NT TransmitFile system call [32]).

An HTTP Handler: This component is created for each
client HTTP connection (e.g., from a Web browser). It parses
HTTP requests and performs the work specified by the re-
quests (e.g., retrieving Web pages). AnHTTP Handler con-
tains an ACESOCK Stream, which encapsulates the data
transmission capabilities of TCP/IP sockets.

8

The HTTP Acceptor: This component is a factory that ac-
cepts connections from clients and createsHTTP Handlers
to process the requests from clients. There is typically one
HTTP Acceptor per server, though certain concurrency
strategies (such as Thread Pool) allocate multiple Accep-
tors to leverage OS multi-threading capabilities. AnHTTP
Acceptor contains an ACESOCK Acceptor , which en-
capsulates the passive connection establishment capabilities of
TCP/IP sockets.

The SOCK Acceptor andSOCK Stream are C++ wrap-
pers provided by ACE. They shield applications from non-
portable, tedious, and error-prone aspects of developing com-
munication software using the native OS socket interfaces
written in C. Other ACE components will be introduced
throughout this section, as well.

4.3 Design Patterns for Web Server Communi-
cation Software

The communication software architecture diagram in Figure 6
explainshow the Web server is structured, but notwhy it is
structured this particular way. To understand why the Web
server contains roles such as Event Dispatcher, Acceptor, and
Handler requires a deeper understanding of the design patterns
underlying the domain of communication software, in general,
and Web servers, in particular. Figure 7 illustrates thestrategic
andtacticalpatterns related to Web servers. These patterns are
summarized below.

Half-Sync/
Half-Async

Active
Object

Reactor/
Proactor

Acceptor

State SingletonStrategy Adapter

TACTICAL PATTERNS

STRATEGIC PATTERNS

Figure 7: Common Design Patterns in Web Servers

4.3.1 Strategic Patterns in JAWS

The following patterns are strategic because they are ubiqui-
tous to the domain of communication software. Therefore,
they significantly influence the software architecture of Web
servers.

The Acceptor pattern: This pattern [28] decouples passive
connection establishment from the service performed once the
connection is established. Figure 8 illustrates the structure of
the Acceptor pattern in the context of Web servers. TheHTTP

CREATE CREATE &&
ACTIVATEACTIVATE

HTTPHTTP
HandlerHandler

peer_stream_
open()

HTTPHTTP
AcceptorAcceptor
peer_acceptor_
handle_input()

HTTP HandlerHTTP Handler

EventEvent
DispatcherDispatcher

NOTIF
IE

S

NOTIF
IE

S

Figure 8: Structure of the Acceptor Pattern

Acceptor is a factory that creates, accepts, and activates a
newHTTP Handler whenever theEvent Dispatcher
notifies it that a connection has arrived from a client. All the
Web server implementations described below use the Accep-
tor pattern to decouple connection establishment from HTTP
protocol processing.

The Reactor pattern: This pattern [13] decouples the syn-
chronous event demultiplexing and event handler notifica-
tion dispatching logic of server applications from the ser-
vice(s) performed in response to events. Figure 9 illustrates
the structure of the Reactor pattern in the context of Web
servers. Both theHTTP Acceptor andHTTP Handler
inherit from the abstractEvent Handler interface and
register themselves with theInitiation Dispatcher
for input events (i.e., connections and HTTP requests), re-
spectively. TheInitiation Dispatcher invokes the
handle input notification hook method of theseEvent
Handler subclass objects when their associated events oc-
cur. The Reactor pattern is used by most of the Web server
concurrency models presented in Section 4.4.

The Proactor pattern: This pattern [30] decouples the
asynchronous event demultiplexing and event handler com-
pletion dispatching logic of server applications from the ser-
vice(s) performed in response to events. Figure 10 illustrates
the structure of the Proactor pattern in the context of Web
servers. As before, both theHTTP Acceptor and HTTP

9

InitiationInitiation
DispatcherDispatcher

handle_events()
register_handler(h)
remove_handler(h)

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timers(h)

11

11

select (handles);
foreach h in handles {
 if (h is output handler)
 table[h]->handle_output () ;
 if (h is input handler)
 table[h]->handle_input ();
 if (h is signal handler)
 table[h]->handle_signal ();
}
timer_queue->expire_timers ();

n
Handles

1

APPLICATION-
DEPENDENT

APPLICATION-
INDEPENDENT

n

HTTP
Handler

HTTP
Acceptor

Figure 9: Structure of the Reactor Pattern

Completion
Dispatcher

handle_events()
register_handle()

1

1

1

Event_Handler

handle_accept()
handle_read_file()
handle_write_file()
handle_timeout()
get_handle()

1

n

HTTP
Handler

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

11

11

overlapped_result =overlapped_result =
 GetQueuedCompleteStatus(); GetQueuedCompleteStatus();
overlapped_result->complete()overlapped_result->complete()

nn
HandlesHandles

11

APPLICATIONAPPLICATION--
DEPENDENTDEPENDENT

APPLICATIONAPPLICATION--
INDEPENDENTINDEPENDENT

nnA

AsyncAsync
OpOp

open()
cancel()

HTTP
Acceptor

Async
Write

Async
Accept

Figure 10: Structure of the Proactor Pattern

Handler inherit from the abstractEvent Handler in-
terface. The difference is that thisEvent Handler de-
fines completionhooks rather thaninitiation hooks. There-
fore, when asynchronous invokedaccept and read oper-
ations complete, theCompletion Dispatcher invokes
the appropriate completion hook method of theseEvent
Handler subclass objects. The Proactor pattern is used in
the asynchronous variant of the Thread Pool in Section 4.4.3.

The Active Object pattern: This pattern [23] decouples
method invocation from method execution, allowing meth-
ods to run concurrently. Figure 11 illustrates the struc-
ture of the Active Object pattern in the context of concur-
rent Web servers. TheClient Interface transforms

ClientClient
InterfaceInterface

get_request()
set_request()

head_request()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn
11

11 11

11

11

1: get_request()

2: insert(get_request')

3: dispatch()

dispatch()
get_request'()
set_request'()

head_request'()

Figure 11: Structure of the Active Object Pattern

method requests (such asget request) into Method
Objects that are stored on anActivation Queue . The
Scheduler , which runs in a separate thread from the client,
dequeues theseMethod Objects and transforms them
back into method calls to perform the specified HTTP pro-
cessing. The Active Object pattern is used in the Thread-
per-Request model in Section 4.4.2, the Thread Pool models
in Section 4.4.3, and the Thread-per-Session model in Sec-
tion 4.4.4,

The Half-Sync/Half-Async pattern: This pattern [29] de-
couples synchronous I/O from asynchronous I/O in a system
in order to simplify concurrent programming effort without
degrading execution efficiency. Figure 12 illustrates the struc-
ture of the Half-Sync/Half-Async pattern in the context the
queue-based Thread Pool model in Section 4.4.3. In this de-
sign, theReactor is responsible for reading HTTP requests
from clients and and enqueueing valid requests on aMessage
Queue. This Message Queue feeds the pool ofActive
Objects that process the requests concurrently.

10

A
S

Y
N

C

T

A
S

K
A

S
Y

N
C

T

A
S

K

L
E

V
E

L
L

E
V

E
L

S
Y

N
C

T

A
S

K
S

Y
N

C

T

A
S

K

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input()

:: Reactor Reactor

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
E

V
E

L
L

E
V

E
L

4: dequeue(msg)4: dequeue(msg)
5: svc(msg)5: svc(msg)

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Message: Message
QueueQueue

2: recv_request(msg)2: recv_request(msg)
3: enqueue(msg)3: enqueue(msg)

ActiveActive
ObjectObject

ActiveActive
ObjectObject ActiveActive

ObjectObject

Figure 12: Structure of the Half-Sync/Half-Async Pattern

4.3.2 Tactical Patterns in JAWS

Web servers also utilize manytactical patterns. For instance,
the following patterns are widely used in ACE and JAWS:

The Strategy pattern: This pattern defines a family of al-
gorithms, encapsulates each one, and make them interchange-
able. JAWS uses this pattern extensively to configure different
concurrency and event dispatching strategies without affecting
the core software architecture of the Web server.

The Adapter pattern: This pattern transforms a non-
conforming interface into one that can be used by a client.
ACE uses this pattern in its OS adaptation layer to encapsu-
late the accidental complexity of the myriad native OS APIs in
a uniform manner.

The State pattern: This pattern defines a composite ob-
ject whose behavior depends upon its state. TheEvent
Dispatcher in JAWS uses the State pattern to seamlessly
support both synchronous and asynchronous I/O.

The Singleton pattern ensures: This pattern ensures a class
only has one instance and provides a global point of access to
it. JAWS uses a Singleton to ensure that only one copy of its
Caching Virtual Filesystem exists in the Web server.

In contrast to the strategic patterns describe earlier, tactical
patterns are domain-independent and have a relatively local-
ized impact on a software design. For instance, Singleton is a
tactical pattern that is often used to consolidate all option pro-
cessing used to configure a Web server. Although this pattern

is domain-independent and thus widely applicable, the prob-
lem it addresses does not impact Web server software architec-
ture as pervasively as strategic patterns like the Active Object
and Reactor. A thorough understanding of tactical patterns is
essential, however, to implement highly flexible software that
is resilient to changes in application requirements and platform
environments.

4.4 Implementing Web Server Concurrency
Models with ACE

Existing Web servers use a wide range of concurrency strate-
gies to implement the role of theEvent Dispatcher .
These strategies include single-threaded concurrency (e.g.,
Roxen), multi-process concurrency (e.g., Apache), and multi-
thread concurrency (e.g., PHTTPD, Zeus, and JAWS). This
section examines common Web concurrency models including
Single-threaded Reactive, Thread-per-Request, Thread Pool,
and Thread-per-Session. Each of these models is discussed
below, focusing on the patterns they use and outlining how
they can be implemented using ACE components.

Note how each concurrency model reuses most of the same
patterns (e.g.,Reactor, Acceptor, and Active Object) and ACE
components (e.g., ACE Reactor , HTTP Acceptor , and
HTTP Handler), by simply restructing these core architec-
tural building blocks in different configurations. This high
degree of consistency is common in applications and frame-
works that are explicitly built using patterns. When patterns
are used to structure and document applications and frame-
works, nearly every class plays a well-defined role and collab-
orates effectively with its related classes.

4.4.1 The Single-threaded Reactive Web Server Model

In the Single-threaded Reactive model, all connections and
HTTP requests are handled by the same thread of control. This
thread is responsible for demultiplexing requests from differ-
ent clients and dispatching event handlers to perform HTTP
processing. If each request is processed in its entirety, the Re-
active Web server is deemediterative. If the processing of
each request is split into chunks that are performed separately
the Reactive Web server is deemed asingle-threaded concur-
rentserver.

The Single-threaded Reactive model is a highly portable
model for implementing theEvent Dispatcher role in
a Web server. This model runs on any OS platform that sup-
ports event demultiplexing mechanisms such asselect or
WaitForMultipleObjects . The structure of a Reactive
Web server based on the ACEReactor is shown in Fig-
ure 13.

The ACEReactor is an OO implementation of the Re-
actor pattern that waits synchronously in a single-thread of

11

 Reactor Reactor

 HTTP HTTP
HandlerHandler

 HTTP HTTP
AcceptorAcceptor

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

6:6: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

 HTTP HTTP
HandlerHandler

1:1: CONNECT CONNECT

2:2: HANDLE INPUT HANDLE INPUT

3:3: CREATE HANDLER CREATE HANDLER

4:4: ACCEPT CONNECTION ACCEPT CONNECTION

5:5: ACTIVATE HANDLER ACTIVATE HANDLER

Figure 13: Single-threaded Reactive Web Server Model

control for the occurrence of various types of events (such
as socket data, signals, or timeouts). When these events
occur, the ACEReactor demultiplexes the event to a
pre-registered ACEEvent Handler object and then dis-
patches the appropriate upcall method (e.g., handle input ,
handle signal , handle timeout) on the object.

Figure 14 illustrates how the Reactor pattern is used to trig-
ger the acceptance of HTTP connections from clients. When a
connection event arrives from a client the ACEReactor in-
vokes thehandle input factory method hook on theHTTP
Acceptor . This hook accepts the connection and creates a
newHTTP Handler object that processes the client request.
Since this model is single-threaded and driven entirely by re-
active I/O, eachHTTP Handler must register with the ACE
Reactor . The Reactor can then trigger the processing of
HTTP requests from clients. When an HTTPGETrequest ar-
rives, the ACEReactor invokes thehandle input hook
method on theHTTP Handler . This hook processes the re-
quest by retrieving the URI from the HTTPGETrequest and
transferring the specified file to the client.

To avoid blocking the server for extended periods of time,
each I/O request can be broken into small chunks and sent sep-
arately. Therefore, the State pattern is typically used to main-
tain eachHTTP Handler ’s state (e.g., awaiting theGETre-
quest, transmitting thenth chunk, closing down, etc.). Like-
wise, theTimer Queue capabilities of the ACEReactor
can be used to prevent denial of service attacks where erro-
neous or malicious clients establish connections and consume

 Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K

L
E

V
E

L

K
E

R
N

E
L

L
E

V
E

L

A
P

P
L

IC
A

T
IO

N

L
E

V
E

L

OS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()

2: accept()
3: make_handler()

 Event
Handler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

 Event Event
HandlerHandler

 HTTP HTTP
AcceptorAcceptor

InitiationInitiation
DispatcherDispatcher

 Event Event
HandlerHandler

 HTTP HTTP
HandlerHandler

4: handle_input()4: handle_input()

5: recv(request)5: recv(request)
6: process(request)6: process(request)

Figure 14: Accepting Connections and Processing HTTP Re-
quests with the Reactor

Web server resources (e.g,. socket handles), but never send
data to or receive data from the server.

The main advantages of the Single-threaded Reactive model
are its portability and its low overhead for processing very
small files. It is not suitable for high-performance Web
servers, however, since it does not utilize parallelism effec-
tively. In particular, all HTTP processing is serialized at the
OS event demultiplexing level. This prevents Web servers
from leveraging the parallelism available in the OS (e.g., asyn-
chronous I/O) and hardware (e.g., DMA to intelligent I/O pe-
ripherals).

4.4.2 The Thread-per-Request Web Server Model

In the Thread-per-Request model, a new thread is spawned to
handle each incoming request. Only one thread blocks on the
acceptor socket. This acceptor thread is a factory that creates a
new handler thread to process HTTP requests from each client.

The Thread-per-Request model is a widely used model for
implementing multi-threaded Web servers. This model runs
on any OS platform that supports preemptive multi-threading.
The structure of a Thread-per-Request Web server based on
the ACEReactor and ACE Active Objects is shown in Fig-
ure 15.

Figure 15 illustrates how the ACEReactor and HTTP
Acceptor components can be reused for the Thread-per-
Request model,i.e., the ACEReactor blocks in the main
thread waiting for connection events. When a connection

12

SERVER

CLIENT

CLIENT
CLIENT

ReactorReactor

 HTTP HTTP
AcceptorAcceptor

HTTPHTTP
HandlerHandler

 HTTP HTTP
HandlerHandler

HTTPHTTP
HandlerHandler

6:6: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

1: CONNECT

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION

5: SPAWN THREAD

Figure 15: Thread-per-Request Web Server Model

event occurs it notifies theHTTP Acceptor factory, which
creates a newHTTP Handler .

The primary difference between the Thread-per-Request
model and the Single-threaded Reactive model is that a new
thread is spawned in eachHTTP Handler to process every
client request concurrently. Thus, theHTTP Handler plays
the role of an Active Object,i.e., the ACEReactor thread
that accepts the connection and invokes theHTTP Handler
executes concurrently with the threads that perform HTTP
processing. In HTTP 1.0, the lifecycle of anHTTP Handler
Active Object is complete once the file transfer operation is
finished.

The Thread-per-Request model is useful for handling re-
quests for large files from multiple clients. It is less useful for
small files from a single client due to the overhead of creating
a new thread for each request. In addition, Thread-per-Request
can consume a large number of OS resources if many clients
perform requests simultaneously during periods of peak load.

4.4.3 The Thread Pool Web Server Model

In the Thread Pool model, a group of threads are pre-spawned
during Web server initialization. Each thread blocks on the
same acceptor socket, waiting for connections to arrive from
clients. Pre-spawning eliminates the overhead of creating a
new thread for each request. It also bounds the number of OS
resources consumed by a Web server.

The Thread Pool model is generally the most efficient

way to implement theEvent Dispatcher in high-
performance Web servers [32]. This model is most effective
on OS platforms (such as Windows NT and Solaris 2.6) that
permit simultaneous calls to theaccept function on the same
acceptor socket. On platforms that do not allow this (such as
most SVR4 implementations of UNIX) it is necessary to ex-
plicitly serializeaccept with an ACEMutex synchroniza-
tion object.

There are several variations of the Thread Pool model. Fig-
ure 16 and Figure 17 illustrate thehandle-basedandqueue-
basedsynchronous Thread Pool models, respectively. Fig-
ure 18 illustrates the asynchronous Thread Pool model. Each
of these variants is outlined below:

The Handle-based Synchronous Thread Pool: As shown
in Figure 16, this model does not use a Reactor. Instead,

1:1: HTTP HTTP

 REQUEST REQUEST

4:4: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

EventEvent
DispatcherDispatcher

HTTPHTTP
AcceptorAcceptor HTTP HTTP

AcceptorAcceptor

2:2: ACCEPT CONNECTION ACCEPT CONNECTION

3:3: MORPH INTO HANDLER MORPH INTO HANDLER

Figure 16: Handle-based Synchronous Thread Pool Web
Server Model

each thread in the pool directly invokes thehandle input
method of theHTTP Acceptor , which blocks awaiting
client connections on the acceptor socket handle. When
clients connect, the OS selects a thread from the pool of
HTTP Acceptors to accept the connection. Once a con-
nection is established, the acceptor “morphs” into anHTTP
Handler , which performs a synchronousread on the newly
connected handle. After the HTTP request has been read, the
thread performs the necessary computation and filesystem op-
erations to service the request. The requested file is then trans-
mitted synchronously to the client. After the data transmission
completes, the thread returns to the pool and reinvokesHTTP
Acceptor ’s handle input method.

13

Client requests can execute concurrently until the number
of simultaneous requests exceed the number of threads in the
pool. At this point, additional requests are queued in the ker-
nel’s socket listen queue until a thread in the pool finishes
its processing and becomes available. To reduce latency, the
Thread Pool can be configured to always have threads avail-
able to service new requests. However, the number of threads
needed to support this policy can be very high during peak
loads as threads block in long-duration synchronous I/O oper-
ations.

One drawback with the handle-based Thread Pool model is
that the size of the socket listen queue is relatively small (i.e.,
around 8 to 10 connections on most OS platforms). Therefore,
high volume servers that receive hundreds of Web hits per sec-
ond may not be able to accept connections fast enough to keep
the kernel from rejecting clients. Moreover, it is not possible
to prioritize which connections are dropped since the kernel
does not distinguish among different clients.

The Queue-based Synchronous Thread Pool:As shown
in Figure 17, this model uses the Half-Sync/Half-Async pat-
tern, which combines the Reactor and Active Object patterns.
In this model, the ACEReactor thread accepts connections

 Reactor

 HTTP
Handler

SERVER

CLIENT

CLIENT
CLIENT

 HTTP
Handler

4:4: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

ActiveActive
ObjectObject

ActiveActive
ObjectObject

ActiveActive
ObjectObject

ActiveActive
ObjectObject

MessageMessage
QueueQueue

 HTTP HTTP
AcceptorAcceptor

 HTTP HTTP
HandlerHandler

1:1: HTTP HTTP

 REQUEST REQUEST

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

5:5: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

Figure 17: Queue-based Synchronous Thread Pool Web
Server Model

from clients (via theHTTP Acceptor) and manages all the
HTTP Handlers .

When HTTP requests arrive from clients they are vali-
dated briefly by the associatedHTTP Handler in the ACE
Reactor thread and then enqueued in the thread-safe ACE
Message Queue that joins the “async” and “sync” layers
in the Web server. Each Active Object in the thread pool

invokes thedequeue method of the request queue, which
blocks awaiting client requests.

Once an HTTP request has been dequeued by a thread in
the pool this thread performs the necessary computation and
filesystem operations to service the request. The requested
data is then transmitted synchronously to the client. After
the data transmission completes the thread returns to the pool
and reinvokesdequeue method to retrieve another HTTP re-
quest.

In contrast with the handle-based Thread Pool model, the
queue-based Thread Pool design makes it possible to accept
(or reject) all incoming connections rapidly and prioritize how
each client is processed. The primary drawback stems from
the extra context switching and synchronization required to
manage the queue in the Web server.

The Asynchronous Thread Pool: As shown in Figure 18,
this model uses the ACEProactor , which manages an I/O
completion port. An I/O completion port is a thread-safe

ProactorProactor

7:7: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

6:6: DEQUEUE COMPLETION DEQUEUE COMPLETION

&& PROCESS PROCESS

REQUESTREQUEST

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

HTTPHTTP
HandlerHandler

I/OI/O
CompletionCompletion

PortPort

AsyncAsync
ReadReadAsyncAsync

WriteWrite

AsyncAsync
AcceptAccept

AsyncAsync
AcceptAccept

3:3: HTTP HTTP

 REQUEST REQUEST

1:1: INITIATE ASYNC ACCEPT INITIATE ASYNC ACCEPT

2:2: RUN EVENT LOOP RUN EVENT LOOP

4:4: ACCEPT COMPLETES ACCEPT COMPLETES

5:5: QUEUE COMPLETION QUEUE COMPLETION

Figure 18: Asynchronous Thread Pool Web Server Model

queue of I/O completion notifications that resides in the OS
kernel (in contrast, the queue-based Thread Pool managed
the thread in user-space). Each I/O operation is initiated and
“handed off” to the kernel, where it runs to completion. There-
fore, the initiating thread does not block. When these opera-
tions complete asynchronously, the kernel queues the resulting
notifications at the appropriate I/O completion port.

Like the synchronous Thread Pool model, the asynchronous

14

Thread Pool is created during Web server initialization. Un-
like the synchronous model, however, the threads wait on an
I/O completion port rather than waiting onaccept . The OS
queues up results from all asynchronous operations (e.g., asyn-
chronous accepts, reads, and writes) on the I/O completion
port. The result of each asynchronous operation is handled by
a thread selected by the OS from the pool of threads waiting
on the completion port. The thread that dequeues the com-
pletion notification need not be the same one that initiated the
operation.

The asynchronous Thread Pool model is typically less re-
source intensive and provides more uniform latency under
heavy workloads than synchronous Thread Pool models [32].
It is also more scalable since the same programming model
works for a single thread, as well as multiple threads. The
primary drawback with the asynchronous Thread Pool is that
it is not portable to platforms that lack asynchronous I/O and
proactive event dispatching. Windows NT 4.0 is the main con-
temporary operating system that support I/O completion ports
in its OS API. The ACEProactor encapsulates the Win-
dows NT 4.0 I/O completion port asynchronous demultiplex-
ing mechanism within a typesafe C++ wrapper.

4.4.4 The Thread-per-Session Web Server Model

In the Thread-per-Session model the newly created handler
thread is responsible for the lifetime of the entire client ses-
sion, rather than just a single request from the client. As with
the Thread-per-Request model, only one thread blocks on the
acceptor socket. This acceptor thread is a factory that creates a
new handler thread to interact with each client for the duration
of the session. Therefore, the new thread may serve multiple
requests from a client before terminating.

The Thread-per-Session model is not appropriate for HTTP
1.0 since protocol establishes a new connection for each re-
quest. Thus, Thread-per-Session is equivalent to Thread-per-
Request in HTTP 1.0. This model is applicable in HTTP 1.1,
however, since it supports persistent connections [35, 36]. Fig-
ure 19 illustrates the Thread-per-Session model.

Thread-per-Session provides good support for prioritization
of client requests. For instance, higher priority clients can be
associated with higher priority threads. Thus, request from
higher priority clients will be served ahead of requests from
lower priority clients since the OS can preempt lower prior-
ity threads. One drawback to Thread-per-Session is that con-
nections receiving considerably more requests than others can
become a performance bottleneck. In contrast, the Thread-
per-Request and Thread Pool models provide better support
for load balancing.

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

 HTTP HTTP
HandlerHandler

 HTTP HTTP
HandlerHandler

 HTTP HTTP
HandlerHandler HTTP HTTP

AcceptorAcceptor

 Reactor Reactor

2:2: CREATE CREATE,, ACCEPT ACCEPT,,
 AND ACTIVATE AND ACTIVATE

 HTTP HTTP__HANDLERHANDLER

1:1: HTTP HTTP

 REQUEST REQUEST

3:3: SPAWN THREAD SPAWN THREAD

 PER CONNECTION PER CONNECTION

4:4: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

Figure 19: Thread-per-Session Web Server Model

5 Concluding Remarks

Computing power and network bandwidth has increased dra-
matically over the past decade. However, the design and im-
plementation of communication software remains expensive
and error-prone. Much of the cost and effort stems from the
continual re-discovery and re-invention of fundamental design
patterns and framework components across the software in-
dustry. Moreover, the growing heterogeneity of hardware ar-
chitectures and diversity of OS and network platforms make it
hard to build correct, portable, and efficient applications from
scratch.

Object-oriented application frameworks and design patterns
help to reduce the cost and improve the quality of software
by leveraging proven software designs and implementations to
produce reusable components that can be customized to meet
new application requirements. The ACE framework described
in this paper illustrates how the development of communi-
cation software, such as high-performance Web servers, can
be simplified and unified. The key to the success of ACE is
its ability to capture common communication software design
patterns and consolidate these patterns into flexible framework
components that efficiently encapsulate and enhance low-level
OS mechanisms for interprocess communication, event de-
multiplexing, dynamic configuration, concurrency, and syn-
chronization.

The ACE C++ wrappers, framework components, dis-
tributed services, and higher-level distributed computing mid-
dleware components described in this paper are freely avail-
able at www.cs.wustl.edu/ �schmidt/ACE.html .
This URL contains complete source code, documentation, and

15

example applications, including JAWS. ACE has been used in
research and development projects at many universities and
companies. For instance, it has been used to build avionics
systems at Boeing [11]; telecommunication systems at Bell-
core [13], Ericsson [37], and Motorola [9]; medical imaging
systems at Siemens [31] and Kodak [10]; and many academic
research projects.

References
[1] F. P. Brooks, The Mythical Man-Month. Reading, MA:

Addison-Wesley, 1975.

[2] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[3] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” inProceedings of the
Fourth IEEE Real-Time Technology and Applications Sympo-
sium, (San Francisco, CA), IEEE, December 1997.

[4] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[5] M. E. Fayad and D. C. Schmidt, “Object-Oriented Application
Frameworks,”Communications of the ACM, vol. 40, October
1997.

[6] R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22–35,
June/July 1988.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[8] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[9] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2, no. 1,
1996.

[10] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design
and Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[11] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[12] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”Submitted to the IEEE Commu-
nications Magazine, 1998.

[13] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dispatch-
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addison-
Wesley, 1995.

[14] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operating
System. Addison Wesley, 1996.

[15] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Programming,”
in Proceedings of the1st Conference on Object-Oriented Tech-
nologies and Systems, (Monterey, CA), USENIX, June 1995.

[16] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[17] D. Box,Essential COM. Addison-Wesley, Reading, MA, 1997.

[18] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,”USENIX Computing Systems,
vol. 9, November/December 1996.

[19] D. C. Schmidt and S. Vinoski, “Object Adapters: Concepts
and Terminology,”C++ Report, vol. 11, November/December
1997.

[20] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
“A High-Performance Endsystem Architecture for Real-time
CORBA,” IEEE Communications Magazine, vol. 14, February
1997.

[21] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computing, vol. 47, no. 4, 1998.

[22] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[23] R. G. Lavender and D. C. Schmidt, “Active Object: an Ob-
ject Behavioral Pattern for Concurrent Programming,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[25] R. Johnson, “Frameworks = Patterns + Components,”Commu-
nications of the ACM, vol. 40, Oct. 1997.

[26] J. Vlissides, “The Hollywood Principle,”C++ Report, vol. 8,
Feb. 1996.

[27] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[28] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[29] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Pattern Languages of Program Design(J. O.
Coplien, J. Vlissides, and N. Kerth, eds.), Reading, MA:
Addison-Wesley, 1996.

16

[30] T. Harrison, I. Pyarali, D. C. Schmidt, and T. Jordan, “Proac-
tor – An Object Behavioral Pattern for Dispatching Asyn-
chronous Event Handlers,” inThe 4

th Pattern Languages of
Programming Conference (Washington University technical re-
port #WUCS-97-34), September 1997.

[31] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of the
3
rd Conference on Object-Oriented Technologies and Systems,

USENIX, June 1997.

[32] J. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server
Performance Over High-speed Networks,” inProceedings of the
2
nd Global Internet Conference, IEEE, November 1997.

[33] R. H. Halstead, Jr., “Multilisp: A Language for Concurrent
Symbolic Computation,”ACM Trans. Programming Languages
and Systems, vol. 7, pp. 501–538, Oct. 1985.

[34] D. C. Schmidt and J. Hu, “Developing Flexible and High-
performance Web Servers with Frameworks and Patterns,”ACM
Computing Surveys, vol. 30, 1998.

[35] J. C. Mogul, “The Case for Persistent-connection HTTP,” in
Proceedings of ACM SIGCOMM ’95 Conference in Computer
Communication Review, (Boston, MA, USA), pp. 299–314,
ACM Press, August 1995.

[36] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” Standards Track
RFC 2068, Network Working Group, January 1997. Available
from http://www.w3.org/.

[37] D. C. Schmidt and P. Stephenson, “Experiences Using Design
Patterns to Evolve System Software Across Diverse OS Plat-
forms,” in Proceedings of the9th European Conference on
Object-Oriented Programming, (Aarhus, Denmark), ACM, Au-
gust 1995.

17

