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The accidental complexities associated with communica-

1 Introduction tion software stem from limitations with conventional tools

and techniques. For instance, low-level network programming
Communication software for next-generation distributed aipterfaces like Sockets are tedious and error-prone. Likewise,
plications must be flexible and efficient. Flexibility is needdiigher-level distributed computing middleware like CORBA,
to support a growing range of multimedia datatypes, tr&dCOM, and Java RMI lack key features, such as asynchronous
fic patterns, and end-to-end quality of service (QoS) requitéd and end-to-end QoS guarantees. Moreover, conventional
ments. Efficiency is needed to provide low latency to delaljigher-level middleware implementations are not yet opti-
sensitive applications (such as avionics and call processifiged for applications with stringent performance require-
and high performance to bandwidth-intensive applicatiofnts [2, 3].
(such as medical imaging and teleconferencing) over highAnother source of accidental complexity arises from the
speed and mobile networks. widespread use of algorithmic design [4] to develop commu-

This paper outlines the key sources of complexity for corfiication software. Although graphical user-interfaces (GUIs)
munication software and describes how patterns and frarge largely built using object-oriented (OO) design, commu-
works can alleviate much of this complexity. To focus tH#cation software has traditionally been developed with al-
discussion, the paper explains how patterns and framewdiRgthmic design. However, algorithmic design yields non-

have been applied to develop high-performance, concurr@ensible software architectures that cannot be customized
Web servers. rapidly to meet changing application requirements. In an era

of deregulation and stiff global competition, it is prohibitively
] o expensive and time consuming to repeatedly develop applica-
1.1 Sources of Complexity for Communication tions from scratch using algorithmic design techniques.

Software

Despite dramatic increases in computing power and netwdr?2  Alleviating the Complexity of Communica-
bandwidth, however, the cost of developing communication  tion Software with OO Frameworks and
software remains high and the quality remains relatively low. Patterns
Across the industry, this situation has produced a “communi-
cation software crisis,” where computing hardware and n€© techniques provide principles, methods, and tools that sig-
works get smaller, faster, and cheaper; yet communicatitificantly reduce the complexity and cost of developing com-
software gets larger, slower, and more expensive to devetegnication software [5]. The primary benefits of OO stem
and maintain. from its emphasis on modularity, reusability, and extensibil-
The challenges of communication software arise fiam ity. Modularity encapsulates volatile implementation details
herentandaccidentalcomplexities [1]. Inherent complexitiesbehind stable interfaces. Reusability and extensibility enhance
stem from fundamental challenges of developing communisaftware by factoring out common object structures and func-
tion software. Chief among these are detecting and recovetiogality. This paper illustrates how to produce flexible and ef-



ficient communication software using Capplication frame- develop complex communication middleware and applications
worksanddesign patterns [12]. The following are common pitfalls associated with the

A framework is a reusable, “semi-complete” applicatiomse of native OS APIs:
that can be specialized to pTOduce qustom applications E%‘cessive low-level details: Developers must have intimate
A pattern represents a recurring solution to a software de\1<e owled f low-level detail . devel
opment problem within a particular context [7]. Patterns ang - o9c OF OW-IevVe OS details. For instance, develop-

. L . ers must carefully track which error codes are returned by
frameworks can be applied together synergistically to improve o 4
. o . edch system call and handle these OS-specific problems in
the quality of communication software by capturing succesg. L A .
: eir applications. These details divert attention from the
ful software development strategies. Patterns capture abstiac . o .
. : : : foader, more strategic application-related semantics and pro-
designs and software architectures in a systematic format that
: ram structure.
can be readily comprehended by developers. Frameworks c%lp-
ture concrete designs, algorithms, and implementations in gaentinuous re-discovery and re-invention of incompatible
ticular programming languages. higher-level programming abstractions: A common rem-

The examples in the paper focus on developing higkdy for the excessive level of detail with OS APIs is to de-
performance concurrent Web servers using the ACE frarfiee higher-level programming abstractions. For instance, a
work [8]. ACE is an OO framework that provides componenReactor [13] is a useful component for demultiplexing 1/0
that implement core concurrency and distribution patterns jents and dispatching their associated event handlers. How-
related to the domain of communication software. The franexer, these abstractions are often re-discovered and re-invented
work and patterns in this paper are representative of solutiom&nad hocmanner by each developer or project. This pro-
that have been successfully applied to communication syster@ss hampers productivity and creates incompatible compo-
ranging from telecommunication system management [9]rtents that cannot be reused readily within and across projects
enterprise medical imaging [10] and real-time avionics [11]in large software organizations.

This paper is organized as follows: Section 2 presents

overview of patterns and frameworks and motivates the neggs is tedious and error-prone due to their lack of typesafety.

for the type of communication software framework provid or example, many networking applications are programmed

by ACE; S(.-:-ctionls outlines the structure of the ACE faMGiith the Socket API [14]. However, endpoints of communi-
work; Section 4 illustrates how patterns and componentsclgtion in the Socket API are represented as untyped handles.

ACE can 'be appliedto develop h'|gh-performance Web SeIVEfRis increases the potential for subtle programming mistakes
and Section 5 presents concluding remarks. and run-time errors [15]

h potential for errors:  Programming to low-level OS

. Lack of portability: Low-level OS APIs are notoriously
2 Applying Patterns and Frameworks non-portable, even across releases of the same OS. For in-

; ; stance, implementations of the Socket APl on Win32 plat-
to Communication Software forms (WinSock) are subtly different than on UNIX platforms.

21 Common Pitfalls of Developing Communi- Moreover, even WinSock on different versions of Windows
) Ping NT possesses incompatible bugs that cause sporadic failures

cation Software when performing non-blocking connections and when shut-

2.1.1 Limitations of Low-level Native OS APIs ting down processes.

— . Steep learning curve: Due to the excessive level of detail,
Developers of communication software confront recurring . .

) e . Ihe effort required to master OS-level APIs can be very high.
challenges that are largely independent of specific apphcatlL_oOnr instance, it is hard to learn how to program the thread can
requirements. For instance, applications like network file sys-, .. ' . . prog .

. X Cellation mechanism correctly in POSIX Pthreads. It is even
tems, email gateways, object request brokers, and Web seryér: . o .
: . harder to learn how to writefortableapplication using thread
all perform tasks related to connection establishment, service . . . . .
L : . . ancellation mechanisms since they differ widely across OS
initialization, event demultiplexing, event handler dispatc latforms
ing, interprocess communication, shared memory manaBe- '

ment, static and dynamic component configuration, conclmability to handle increasing complexity: OS APIs define
rency, synchronization, and persistence. Traditionally, thdsssic interfaces to mechanisms like process and thread man-
tasks have been implemented inathhocmanner using low- agement, interprocess communication, file systems, and mem-
level native OS application programming interfaces (API®ry management. However, these basic interfaces do not scale
such as the Win32 or POSIX, which are written in C. up gracefully as applications grow in size and complexity. For
Unfortunately, native OS APIs are not an effective way tostance, a Windows NT process only allows 64 thread local



storage (TLS) keys. This number is inadequate for large-scatel frameworks help alleviate the continual re-discovery and

server applications that utilize many DLLs and thread loaad-invention of communication software concepts and compo-

objects. nents by capturing solutions to standard communication soft-
ware development problems [7].

2.1.2 Limitations of Higher-level Distributed Object
Computing Middleware 2.2.1 The Benefits of Patterns

It is possible to alleviate some of the pitfalls with r]ativf’atterns are particularly useful for documenting the structure
OS APIs by using higher-level distributed computing middle- are partl y . : 9
d participants in common micro-architectures for concur-

ware. Common examples of higher-level distributed compﬁ'ﬂ

ing middleware include CORBA [16], DCOM [17], and JavkEncy and communication such as Reactors [13], Active Ob-

RMI [18]. Higher-level distributed computing middleware re]—eCts [23], and Brokers [24]. These patterns are generaliza-

sides between clients and servers and eliminates many tedi%ﬁg,saﬁzo:%?;gﬁ:rg\?g:]rfjéc:; r;?n\:jecpc:r?::/sprgrsmteilélr;%buurlliggt?;r-n
error-prone, and non-portable aspects of developing and magﬂware trameworks and applications
taining distributed applications by automating common net- PP )

work programming tasks such as object location, object a ti_‘l’rad|t|onally, communication software patterns have either

vation, parameter marshaling, fault recovery, and security. een locked in the heads of the expert developers or buried

However, higher-level distributed computing middleware %eep W|th|_ndthe sloqrcehcodel. Allqwmg th|§ l\(/alua(tj)le mforma-
often only a partial solution, for the following reasons: tion fo reside only In these locations Is risky and expensive,
however. For instance, the insights of experienced designers

Lack of portability: ~ Conventional higher-level middlewargy;jj| pe lost over time if they are not documented. Likewise,

is not widely portable. For instance, the Object Adapter coRypstantial effort may be necessary to reverse engineer pat-
ponent in the CORBA 2.0 specification is woefully undeferns from existing source code. Therefore, explicitly captur-
specified [19]. Therefore, servers written in CORBA are npjiy and documenting communication software patterns is es-
portable among ORB products from different vendors. Likgential to preserve design information for developers who en-
wise, DCOM is targeted for Win32 platforms and Java RMl j§ance and maintain existing software. Moreover, knowledge
targeted for applications written in Java. of domain-specific patterns helps guide the design decisions
Lack of features: Conventional higher-level middleware fo0f developers who are building new applications.

cuses primarily on communication. Therefore, it does not

cover ot.her key issues associated Wlth deyeloplng d'Str_'b“P?Qz The Benefits of Erameworks

applications. For instance, conventional higher-level middle-

ware does not specify important aspects of high-performangghough knowledge of patterns helps to reduce development
and real-time distributed server development such as shasgért and maintenance costs, reuse of patterns alone is not suf-
memory, asynchronous I/O, multi-threading, and synchronizgient to create flexible and efficient communication software.
tion [20]. While patterns enable reuse of abstract design and architec-
Lack of performance: Conventional higher-level middle-ture knowledge, abstractions documented as patterns do not
ware incurs significant throughput and latency overhead firectly yield reusable code. Therefore, it is essential to aug-
21]. These overheads stem from excessive data copylMgnt the study of patterns with the creation and use of appli-
non-optimized presentation layer conversions, internal mé&gtion frameworks. Frameworks help developers avoid costly
sage buffering strategies that produce non-uniform behavigrinvention of standard communication software components
for different message sizes, inefficient demultiplexing algBy implementing common design patterns and factoring out
rithms, long chains of intra-ORB virtual method calls, and lag@mmon implementation roles.

of integration with underlying real-time OS and network QoS

mechanisms [22]. 2.2.3 Relationship Between Frameworks and Other

. o _ Reuse Techniques
2.2 Overcoming Communication Software Pit-

falls with Patterns and Frameworks Frameworks provide reusable software components for appli-

cations by integrating sets of abstract classes and defining stan-
Successful developers and software organizations overcatasd ways that instances of these classes collaborate [25]. The
the pitfalls described above by identifying tipatternsthat resulting application skeletons can be customized by inherit-
underly proven solutions and by reifying these patterns ing and instantiating from reuseable components in the frame-
object-oriented application frameworksTogether, patternsworks.



The scope of reuse in a framework can be significanpierform their processing by borrowing threads of control from
larger than using traditional function libraries or conventionsélf-directed application objects. This is illustrated in Fig-
OO class libraries. The increased level of reuse stem from thie 1 (A), where the application-specific logic manages the
fact that frameworks are tightly integrated with key commurévent loop. In contrast, frameworks axetive i.e., they man-
cation software tasks such as service initialization, error hage the flow of control within an application via event dis-
dling, flow control, event processing, and concurrency contrpatching patterns like Reactor [13] and Observer [7]. The

In general, frameworks enhance class libraries in the fokllback-driven run-time architecture of a framework is shown
lowing ways: in Figure 1 (B). This “inversion of control” is referred to ake

, , L Hollywood Principle[26], i.e., “don’t call us, we'll call you.”
Frameworks define “semi-complete” applications that em-

body domain-specific object structures and functionality: | practice, frameworks and class libraries are complemen-
Class libraries provide a relatively small granularity of reusgyy technologies. Frameworks often utilize class libraries in-
For instance, the classes in Figure 1 (A) are typically lowarnally to simplify the development of the framework. For
level, relatively independent, and general components likgtance, portions of ACE use the string and vector contain-
Strings, complex numbers, arrays, and bitsets. In contrasg provided by the C++ Standard Template Library [27] to
manage connection maps and other search structures. In ad-
dition, application-specific callbacks invoked by framework

NETWORKING event handlers frequently use class library components to per-
APPLICATION f basic task h tri . fil t
SPECIFIC N orm basic tasks such as string processing, file management,
LOGIC INVOKES VAT and ngmencal analysis. .
> ADTs To illustrate how OO patterns and frameworks are being
EVENT — — successfully applied to communication software, the remain-
L‘(;Ol\i, | INTERFACE | | PATA der of this paper examines the structure and use of the ACE
Lkl framework [8].
(A) CLASS LIBRARY ,
ARCHITECTURE 3 Overview of ACE
P ACE is an object-oriented (OO) framework that implements
MATH core concurrency and distribution patterns [9] for communica-
'\ tion software. ACE provides a rich set of reusable C++ wrap-
" APPLICATIONA CALL pers and framework components that are targeted for develop-
INVO? SPECIFIC BACKS ers of high-performance, real-time services and applications
4 \ Logic [ | across a wide range of OS platforms. The components in ACE
ADT. \* provide reusable implementations of the following common
S - communication software tasks:
(B) APPLICATION FRAMEWORK e Connection establishment and service initializati28];
ARCHITECTURE e Event demultiplexing and event handler dispatcHit®
29, 30];
Figure 1: Differences Between Class Libraries and OO Frame, Interprocess communicatiofi5] and shared memory
works management

components in a framework collaborate to provide a customiz® Static and dynamic configuration [8, 31] of communica-

able architectural skeleton for a family of related applications.

Complete applications can be composed by inheriting frome
and/or instantiating framework components. As shown in Fig-,
ure 1 (B), this reduces the amount of application-specific code
since much of the domain-specific processing is factored into

the generic components in the framework.
[ ]

Frameworks are active and exhibit “inversion of control”
at run-time:  Class libraries are typicallpassivei.e., they

tion services
Concurrency and synchronizati¢29, 23];

Distributed communication services such as naming,
event routing [11], logging, time synchronization, and
network locking;

Higher-level distributed computing middleware compo-
nents— such as Object Request Brokers (ORBs) [20] and
Web servers [32].



This section outlines the structure and functionality of threost versions of UNIX €.g, SunOS 4.x and 5.x; SGI IRIX

ACE framework. Section 4 illustrates how components afdk and 6.x; HP-UX 9.x, 10.x, and 11.x; DEC UNIX, AlX 4.x,

patterns in ACE can be applied to build high-performand@G/UX, Linux, SCO, UnixWare, NetBSD, and FreeBSD),

concurrent Web servers. real-time operating systems.§, VxWorks, Chorus, LynxOS,

and pSoS), and MVS OpenEdition. Due to the abstraction pro-
3.1 The Structure and Functionality of ACE vided by ACE’s OS adaptation layer, a single source tree is
used for all these platforms.

ACE is a relatively large framework, containing over 135,000

lines of C++ code divided int@459 classes. To separate COz 1 2 The ACE C++ Wrapper Layer

cerns and to reduce the complexity of the framework, ACE is

designed using a layered architecture. Figure 2 illustrates lhi& possible to program highly portable C++ applications di-

relationships between ACE components. rectly atop ACE’s OS adaptation layer. However, most ACE
The lower layers of ACE contain a@S adaptemndC++ developers use th€++ wrappers layer shown in Figure 2.

wrappersthat portably encapsulate core OS communicatidfie ACE C++ wrappers simplify the development of applica-

and concurrency services. The higher layers of ACE diens by encapsulating and enhancing the native OS concur-

tend the C++ wrappers to provide reusafslameworks self- rency, communication, memory management, event demulti-

contained distributed service componendmd higher-level plexing, dynamic linking, and file system APIs with typesafe

distributed computing middleware component§ogether, C++ interfaces.

these layers simplify the creation, composition, and configu-The use of C++ alleviates the need for developers to pro-

ration of communication systems. The role of each layerggam to the weakly-typed OS C APIs directly, which improves

outlined below. application robustness. For instance, since the C++ wrappers
are strongly typed, compilers can detect type system violations
3.1.1 The OS Adaptation Layer at compile-time rather than at run-time, which is often the case

with the C-level OS APIs. ACE uses C++ inlining extensively
The OS adaptation layerconstitutes approximately 13% ofo eliminate performance penalties that would otherwise be in-
ACE, i.e, ~18,000 lines of code. This layer resides directlyurred from the additional typesafety and levels of abstraction
atop the native OS APIs written in C. The OS adaptation laysiovided by the OS adaptation layer and the C++ wrappers.
shields the other Iayers in ACE from platform-specific depen-The C++ wrappers pro\/ided by ACE are quite Comprehen-
dencies associated with the following OS APIs: sive, constituting~50% of its source code. Applications can

Concurrency and synchronization: ACE’'s adaptation combine and compose these wrappers by selectively inherit-
layer encapsulates OS concurrency APIs for multi-threadifidg, aggregating, and/or instantiating the following compo-
multi-processing, and synchronization; nents:

Interprocess communication (IPC) and shared memory: Concurrency and synchronization components: ACE ab-
ACE'’s adaptation layer encapsulates OS APIs for local agigiacts native OS multi-threading and multi-processing mecha-
remote IPC and shared memory; nisms like mutexes and semaphores to create higher-level OO

Event demultiplexing mechanisms: ACE's adaptation concurrency abstractions like Active Objects [23] and Poly-
morphic Futures [33].

layer encapsulates OS APIs for synchronous and asyn
chronous demultiplexing 1/O-based, timer-based, sign#RC and filesystem components: The ACE C++ wrappers
based, and synchronization-based events; encapsulate local and/or remote IPC mechanisms [15] such as
Explicit dynamic linking: ~ ACE’s adaptation Iayerencapsu-SOCketS’ TLI’ UNIX FIFOs and STREAM pipes, and W".132
lates OS APIs for explicit dynamic linking, which allows apl_\lamed Pipes. ACE wrappers also encapsulate the OS filesys-
plication services to be configured at installation-time or ruHa-m APls, as well.

time. Memory management components: The ACE memory

File system mechanisms: ACE’s adaptation layer encapsu[nanagement components provide a flexible and extensible ab-

lates OS file system APIs for manipulating files and directgt_raction for managing dynamic allocation and deallocation of
ries shared memory and local heap memory.

The portability of ACE’s OS adaptation layer enables gl 3 The ACE Framework Components
to run on a wide range of operating systems. The OS plat-"

forms supported by ACE include Win32€., WinNT 3.5.x, The remaining-40% of ACE consists of communication soft-
4.x, Win95, and WinCE using MSVC++ and Borland C++)are framework components that integrate and enhance the
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Figure 2: The Layering Structure of Components in ACE

C++ wrappers. These framework components support flexiblén general, the ACE framework components facilitate the
configuration of concurrent communication applications addvelopment of communication software that may be updated
services [8]. The framework layer in ACE contains the foknd extended without modifying, recompiling, relinking, or
lowing components: even restarting running systems [8]. This degree of flexibility

Event demultiplexing components: The ACE Reactor [13] is achieved in ACE by combining C++ language features like

and Proactor [30] are extensible, object-oriented demumpl&mplﬁt(es'&ki)nheritagce, andsdynamic bigcgng \(vitthes]c!gn pat-
ers that dispatch application-specific handlers in respon&:(ﬁtré'S Ike Abstract Factory, Strategy, and Service Configurator

various types of 1/0-based, timer-based, signal-based, '031]'
synchronization-based events.

Service initialization components: The ACE Connector 3-1.4 Self-contained Distributed Service Components

and Acceptor components [28] decouple the active and pas- ddition to its C++ qf K N
sive initialization roles, respectively, from application-specif, adartion to 1ts Wrappers and framework components,

tasks that communication services perform once initializatio E providesa standarq library of distributed services that are
is complete. packaged as self-contained components. Although these ser-

vice components are not strictly part of the ACE framework,
Service configuration components: The ACE Service Con- they play two important roles:

figurator [31] supports the configuration of applications whose

services may be assembled dynamically at installation-tiff@ctoring out reusable distributed application building
and/or run-time. blocks: These service components provide reusable imple-
mentations of common distributed application tasks such as

Hierarchically-layered stream components: The ACE . . : . o
jfaming, event routing, logging, time synchronization, and net-

Streams components [8] simplify the development of co K locki
munication software applications that are composed ‘Yf'< 'OCKING.

hierarchically-layered services.g.user-level protocol StaCkS'Demonstrating common use-cases of ACE components:

ORB adapter components: ACE can be integrated seamThe distributed services also demonstrate how ACE compo-
lessly with single-threaded and multi-threaded CORBA impleents like reactors, service configurators, acceptors and con-
mentations via ORB adapters [10]. nectors, active objects, and IPC wrappers can be used effec-



in args

tively to develop flexible and efficient communication soft-
operation()

ware. CLIENT SERVANT
out args + return value
<+—O

3.1.5 Higher-level Distributed Computing Middleware

Components \ RIDL v

SKELETON|
. . .. . . REAL-TIME
Developing robust, extensible, and efficient communicatio L‘TI&ISJ ORB Q%S (—f OBIECT
. . . . . . INTERFACE

applications is challenging, even when using a communic AP

tion framework like ACE. In particular, developers must still
master a number of complex OS and communication concej

such as:

OS KERNEL

REAL-TIME 1/0
SUBSYSTEM

OS KERNEL

¢ Network addressing and service identification; REAL-TIME 1/0
. ) . ) SUBSYSTEM
e Presentation conversions.g.,encryption, compression,

and network byte-ordering conversions between heter QEIWORK ADAPTERS NETWORK NETWORK ADAPTERS
geneous end-systems with alternative processor bylc-
orderings);

e Process and thread creation and synchronization;

e System call and library routine interfaces to local and re-
mote interprocess communication (IPC) mechanisms. JAWS: JAWS [34] is a high-performance, adaptive Web
server built using the framework components and patterns pro-
It is possible to alleviate some of the complexity of develided by ACE. Figure 4 illustrates the major structural com-
oping applications using ACE by employing higher-level digonents and design patterns in JAWS. JAWS is structured as
tributed computing middleware, such as CORBA [16], DCOM
[17], or Java RMI [18]. Higher-level distributed computing

Figure 3: Components in the TAO Real-time ORB

Reactor/Proactor Singleton

middleware resides between clients and servers and automates| ey /0 strategy Cached Virtual
many tedious and error-prone aspects of distributed applica- [ Tamewerk % ®'%\@ Filesystem
tion development, including: %@ \@ &)
. . . . . A t C letion Tok Tild ~
e Authentication, authorization, and data security; S | xpander N homef

Event Dispatcher

C

Concurrency @
Strategy
Framework

Active Object

e Service location and binding: protocol % J
e Service registration and activation; Protocol <‘

. i . i i Filter N
e Demultiplexing and dispatching in response to events;

Service Configurator

OO0
Service Configurator ‘ @
CHe o

Protocol Pipeline
Framework

Pipes and Filters

¢ Implementing message framing atop bytestream-oriented
communication protocols like TCP;

e Presentation conversion issues involving network byte-
ordering and parameter marshaling.

SUEE)Y

Two middleware applications bundled with the ACE release
include: Figure 4: Architectural Overview of the JAWS Framework

The ACE ORB (TAO): TAO [22] is a real-time implemen-

tation of CORBA built using the framework components angframework of frameworks The overall JAWS framework
patterns provided by ACE. TAO contains the network integpntains the following components and frameworksEaent
face, operating system, communication protocol, and COR@)‘?Spatcher Concurrency Strategyl/O Strategy Protocol
middleware components and features shown in Figure 3. Tﬁ%eline Protocol Handlers andCached Virtual Filesystem

is based on the standard OMG CORBA reference model [16h¢ch framework is structured as a set of collaborating objects
with the enhancements designed to overcome the Shortcﬁﬂblemented using components in ACE. JAW is also freely
ings of conventional ORBs [3] for high-performance and regyajlable at www.cs.wustl.edu/ ~ixh/research/

time applications. TAO, like ACE, is freely available afhe examples in Section 4 are based on the design of JAWS.
www.cs.wustl.edu/ ~schmidt/TAO.html



4 Developing High-performance Web threads or processes (for concurrent Web servers) or managing

Servers with Patterns and Frame- sets of sockethandles (for singIe—threadgd concurrent servers).
Each request is processed blgandler, which goes through a
work Components lifecycle of parsing the request, logging the request, fetching
file status information, updating the cache, sending the file,

The benefits of applying frameworks and patterns to commihd cleaning up after the request is done. When the response

nication software is best introduced by example. This secti@iurns to the client with the requested file, it is parsed by an

describes the structure and functionality high-performang&ML parserso that the file may be rendered. At this stage,

Web servers developed using the patterns and framework ceiarequestemay issue other requests on behalf of the client,

ponents in ACE. Many error handling details are omitted &g, in order to maintain a client-side cache.

keep the code examples concise. In addition, the examples

focus on features that are portable across multiple OS plat-

forms, though noteworthy platform-specific features of AC&2 Overview of an OO Web Server Communi-

(such as asynchronous I/O and I/O completion ports) are de- cation Software Architecture

scribed where appropriate.

Figure 6 illustrates the general object-oriented communication

software architecture for the Web servers covered in this sec-

tion. The roles performed by the components in this architec-

Figure 5 illustrates the general architecture of a Web system

The diagram provides a layered view of the architectural cony

4.1 Overview of a Web System

HTTP
Handler

Sock
Stream

HTTP
Handler

Sock
Stream

1: GET ~schmidt

WWWwW HTTP/1.0 WWW
_—

CLIENT SERVER

HTTP

2: index.html Handler
PROTOCOL
HANDLERS Stream
Event
E E E E Dispatcher
Ealt DISPATCHER
REQUESTER [}
ooooooo i »2‘ *2-
0000
» Figure 6: Object-oriented Communication Software Architec-
GARDAPHICS [ % ture for a Web Server
)

ture include the following:
0S KERNEL

0S 1/0 SUBSYSTEM

OS KERNEL

0S 1/0 SUBSYSTEM

The Event Dispatcher: This component encapsulates the
Web server's concurrency strategies (such as Thread-per-
Request or Thread Pool) and request dispatching strategies
(such as synchronous Reactive or asynchronous Proactive dis-
patching). The ACE framework allows these strategies to
Figure 5: General Architecture of a Web System be customized according to platform characteristics such as
user-level vs. kernel-level threading in the OS, the num-
ponents required for adTTP clientto retrieve an HTML file ber of CPUs in the endsystem, and the existence of special-
from anHTTP server ThroughGUI interactions, the client purpose OS support for HTTP processiegy, the Windows
application user instructs the HTTP client to retrieve a fil&lT TransmitFile  system call [32]).
The requestelis the active component of the client that com- . .
municates over thaetwork It issues a request for the file td\ HTTP Handler: ~ This component is created for each
the server with the appropriate syntax of thensfer proto- client HTTP connectiond.g, from a Web browser). It parses
col, in this case HTTP. Incoming requests to HETP server 11TP requests and performs the work specified by the re-
are received by thdispatcher which is the request demulti-Auests€.g, retrieving Web pages). AHTTP Handler con-

plexing engine of the server. Itis responsible for creating n&gins an ACESOCK Stream, which encapsulates the data
transmission capabilities of TCP/IP sockets.

NETWORK ADAPTERS

NETWORK




The HTTP Acceptor: This component is a factory that ac4.3.1 Strategic Patterns in JAWS
cepts connections from clients and creaddg P Handlers

to process the requests from clients. There is typically oh
HTTP Acceptor per server, though certain concurren
strategies (such as Thread Pool) allocate multiple Acc
tors to leverage OS multi-threading capabilities. WATP SE€Vers.

Acceptor  contains an ACESOCK  Acceptor , which en- e acceptor pattern:  This pattern [28] decouples passive

capsulates the passive connection establishment capabilitiggphection establishment from the service performed once the

TCP/IP sockets. connection is established. Figure 8 illustrates the structure of
the Acceptor pattern in the context of Web servers. Hilid@P

fe following patterns are strategic because they are ubiqui-
us to the domain of communication software. Therefore,
dhey significantly influence the software architecture of Web

——— e —

The SOCK Acceptor andSOCK Stream are C++ wrap-
pers provided by ACE. They shield applications from non- S~ - //~~:1-I_TII:_I-I_and_le_rJ|
portable, tedious, and error-prone aspects of developing con (/ HTTP \ '  HTTP \

/ P

—_———

munication software using the native OS socket interface:\  Hapdler / 4 Acceptor b
written in C. Other ACE components will be introduced | ) p —— ———— |
h h hi : I | peer_stream_ [ peer_acceptor_ _~
throughout this section, as well. \ open() .~ " CREATE & Q\\hand]e_input() I
~——— ACTIVATE e
—_— _ 5
. . s — N
4.3 Design Patterns for Web Server Communi- <" Event ¢
- \ /
cation Software ' Dispatcher,
N 7/

The communication software architecture diagram in Figure 6 T
explainshow the Web server is structured, but nehy it is
structured this particular way. To understand why the Web
server contains roles such as Event Dispatcher, Acceptor, Af6€ptor is a factory that creates, accepts, and activates a
Handler requires a deeper understanding of the design patt8gy¥¢HTTP Handler whenever thecvent Dispatcher
underlying the domain of communication software, in generggtifies it that a connection has arrived from a client. All the
and Web servers, in particular. Figure 7 illustratesstihategic Web server implementations described below use the Accep-
andtactical patterns related to Web servers. These patterns {@¥epattern to decouple connection establishment from HTTP
summarized below. protocol processing.

The Reactor pattern: This pattern [13] decouples the syn-
chronous event demultiplexing and event handler notifica-

Figure 8: Structure of the Acceptor Pattern

tion dispatching logic of server applications from the ser-
Acceptor vice(s) performed in response to events. Figure 9 illustrates
5 the structure of the Reactor pattern in the context of Web
/u servers. Both théiTTP Acceptor andHTTP Handler
Half-Sync/ inhgrit from the abstrchver?t. Handle_r interface and
register themselves with thimitiation Dispatcher
Half-Async for input events i(e.,, connections and HTTP requests), re-
/ spectively. Thelnitiation Dispatcher invokes the
Reactor/ handle _input notification hook method of thedevent
Proactor Handler subclass objects when their associated events oc-
cur. The Reactor pattern is used by most of the Web server
SIRATHGIC PATTERNS concurrency models presented in Section 4.4,
TACTICAL PATTERNS

The Proactor pattern: This pattern [30] decouples the
Strategy State Adapter || Singleton asynchronous event demultiplexing and event handler com-
pletion dispatching logic of server applications from the ser-
vice(s) performed in response to events. Figure 10 illustrates
the structure of the Proactor pattern in the context of Web
servers. As before, both tHdTTP Acceptor andHTTP

Figure 7: Common Design Patterns in Web Servers



select (handles);

foreach h in handles {
if (h is output handler)
table[h]->handle_output () ;
if (h is input handler)
table[h]->handle_input ();
if (h is signal handler)
table[h]->handle_signal ();

timer_queue->expire_timers ();|

T

\ handle_events()
/ register_handler(h) /’
‘ remove handler(h) e

\ T =

|
|
|
|
|
|
./ Tnitiation
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Figure 9: Structure of the Reactor Pattern
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l\ / Acceptor / The Active Object pattern: This pattern [23] decouples
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Handler inherit from the abstracEvent Handler in-
terface. The difference is that thisvent Handler de-
fines completionhooks rather thamitiation hooks. There-
fore, when asynchronous invokedcept andread oper-
ations complete, th€ompletion Dispatcher invokes

the appropriate completion hook method of thdseent
Handler subclass objects. The Proactor pattern is used in
the asynchronous variant of the Thread Pool in Section 4.4.3.

method invocation from method execution, allowing meth-
ods to run concurrently. Figure 11 illustrates the struc-
ture of the Active Object pattern in the context of concur-

rent Web servers. The€lient Interface transforms
‘/ N~ N 3 Toop {
/) Client A _,g m = actQueue.remove()
<~ Interface dispatch (m)
N b\ }
% get request() 1: get_request() _

—

set_request() ;

\ head_request() //

N P

~ N = .
N~ N 3:dispatch()

N (Scheduler)/// N
- dispateh() - “ Y Actlvatlon )
\ get t / < /
VISIBLE ) e Tequet() / y Queue |
10 { “ ;7 insert() \
CLIENTS { head_request()| 4 1 remove() |
1 R msert(getﬁrequest‘)\ - 1
1 - ——— e n —
INVISIBLE ) TN
T0 7~ Resource < <~ Method '
CLIENTS 4 Representatlon ( Objects |
——— ~——

Figure 11: Structure of the Active Object Pattern

method requests (such aget _request ) into Method

\ Objects that are stored on afsctivation Queue . The
Acceptor /| Scheduler , which runs in a separate thread from the client,
\:: dequeues these/lethod Objects  and transforms them

, { Async \} back into method calls to perform the specified HTTP pro-
—E | 'Accept / cessing. The Active Object pattern is used in the Thread-
I/

per-Request model in Section 4.4.2, the Thread Pool models
in Section 4.4.3, and the Thread-per-Session model in Sec-
tion 4.4.4,

The Half-Sync/Half-Async pattern: This pattern [29] de-
couples synchronous I/O from asynchronous I/O in a system
in order to simplify concurrent programming effort without
degrading execution efficiency. Figure 12 illustrates the struc-
ture of the Half-Sync/Half-Async pattern in the context the
gueue-based Thread Pool model in Section 4.4.3. In this de-
sign, theReactor is responsible for reading HTTP requests
from clients and and enqueueing valid requests bleasage
Queue. ThisMessage Queue feeds the pool oActive
Objects that process the requests concurrently.
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is domain-independent and thus widely applicable, the prob-
lem it addresses does not impact Web server software architec-
Object ture as pervasively as strategic patterns like the Active Object
and Reactor. A thorough understanding of tactical patterns is
essential, however, to implement highly flexible software that
is resilient to changes in application requirements and platform
environments.

Active
Object

SYNC TASK
LEVEL

\4: dequeue(msg)
5: sve(msg

: Message
Queue
: HTTP l l 8

Handler JLanrne
andler

) (ms) 4.4 Implementing Web Server Concurrency
: S| S! .
31 enquene(msg) Models with ACE

QUEUEING
LEVEL

Existing Web servers use a wide range of concurrency strate-

gies to implement the role of thEvent Dispatcher

These strategies include single-threaded concurreaay, (

1: handle_input() Roxen), multi-process concurrena.g, Apache), and multi-

thread concurrencye(g, PHTTPD, Zeus, and JAWS). This

section examines common Web concurrency models including

Single-threaded Reactiy&hread-per-Requesthread Pool

Figure 12: Structure of the Half-Sync/Half-Async Pattern and Thread-per-SessionEach of these models is discussed

below, focusing on the patterns they use and outlining how
they can be implemented using ACE components.

4.3.2 Tactical Patterns in JAWS Note how each concurrency model reuses most of the same

. . , patterns €.g.,Reactor, Acceptor, and Active Object) and ACE
Web servers also utilize marngctical patterns. For '”Stance'componentse(.g ACE Reactor , HTTP Acceptor , and

the following patterns are widely used in ACE and JAWS:  [it1p Handler ), by simply restructing these core architec-

This pattern defines a family of al_tural building blocks in different configurations. This high

The Strategy pattern: ) . . L
dree of consistency is common in applications and frame-

gorithms, encapsulates each one, and make them interchaﬂ e X .
able. JAWS uses this pattern extensively to configure differdffirs that are explicitly built using patterns. When patterns
used to structure and document applications and frame-

concurrency and event dispatching strategies without affectH .
the core software architecture of the Web server works, nearly every class plays a well-defined role and collab-
' orates effectively with its related classes.

The Adapter pattern: This pattern transforms a non-
conforming interface into one that can be used by a clieatq.1 The Single-threaded Reactive Web Server Model
ACE uses this pattern in its OS adaptation layer to encapsu-

late the accidental complexity of the myriad native OS APIs | the Single-threaded Reactive model, all connections and
a uniform manner. HTTP requests are handled by the same thread of control. This

thread is responsible for demultiplexing requests from differ-
The State pattern: This pattern defines a composite okent clients and dispatching event handlers to perform HTTP
ject whose behavior depends upon its state. Elkent processing. If each request is processed in its entirety, the Re-
Dispatcher in JAWS uses the State pattern to seamlesslgtive Web server is deemétgrative If the processing of
support both synchronous and asynchronous I/O. each request is split into chunks that are performed separately

) ) the Reactive Web server is deemesiiagle-threaded concur-
The Singleton pattern ensures: This pattern ensures a clasgantserver.

only has one instance and provides a global point of access t9ne single-threaded Reactive model is a highly portable
it. JAWS uses a Singleton to ensure that only one copy of itg,qel for implementing th&vent Dispatcher role in

: Reactor

ASYNC TASK
LEVEL

Caching Virtual Filesystem exists in the Web server. a Web server. This model runs on any OS platform that sup-
ports event demultiplexing mechanisms suctselect or
In contrast to the strategic patterns describe earlier, tactid&itForMultipleObjects . The structure of a Reactive

patterns are domain-independent and have a relatively lotsleb server based on the AGReactor is shown in Fig-
ized impact on a software design. For instance, Singleton igra 13.

tactical pattern that is often used to consolidate all option pro-The ACEReactor is an OO implementation of the Re-
cessing used to configure a Web server. Although this pattaotor pattern that waits synchronously in a single-thread of

11



REGISTERED 2: accept()

OBJECTS 5: recv(request) 3: make_handler()
6: process(request)

2: HANDLE INPUT

3: CREATE HANDLER

4: ACCEPT CONNECTION
5: ACTIVATE HANDLER

HTTP
Acceptor

HTTP
Handler

HTTP
Handler

HTTP
Handler

Event
Handler

Event
Handler

APPLICATION
LEVEL

FRAMEWORK
LEVEL

KERNEL
LEVEL

Figure 14: Accepting Connections and Processing HTTP Re-

. . . uests with the Reactor
Figure 13: Single-threaded Reactive Web Server Model d

. eb server resources.f),. socket handles), but never send
control for the occurrence of various types of events (SUVY'I 0 )

as socket data, signals, or timeouts). When these ev r?tﬁsito or.reczwe datafrofrnr;[hes.serlver.h ded R . del
occur, the ACEReactor demultiplexes the event to a e main advantages of the Single-threaded Reactive mode

pre-registered ACEEvent Handler  object and then dis- are its portability and its low overhead for processing very

patches the appropriate upcall methedy( handle _input small files. It is not suitable for high-performance Web
handle _signal ,handle timeout )on the object servers, however, since it does not utilize parallelism effec-

%‘g_ely. In particular, all HTTP processing is serialized at the

Figure 14 illustrates how the Reactor pattern is used to tr d ltiolexing level. Thi Web
ger the acceptance of HTTP connections from clients. Whe g event demultiplexing level. IS prevents Web servers

connection event arrives from a client the AGactor in- oM leveraging the parallelism available in the @3 asyn-

vokes thehandle _input factory method hook on tHeTTP ghronous I/0) and hardware.j, DMA to intelligent I/O pe-

Acceptor . This hook accepts the connection and createé'%herals)'

newHTTP Handler objectthat processes the client request.

Since this model is single-threaded and driven entirely by ©4.2 The Thread-per-Request Web Server Model

active 1/0, eachHTTP Handler must register with the ACE

Reactor . The Reactor can then trigger the processing fthe Thread-per-Request model, a new thread is spawned to

HTTP requests from clients. When an HTGETrequest ar- handle each incoming request. Only one thread blocks on the

rives, the ACEReactor invokes thehandle _input hook acceptor socket. This acceptor thread is a factory that creates a

method on thédTTP Handler . This hook processes the renew handler thread to process HTTP requests from each client.

quest by retrieving the URI from the HTTBETrequest and  The Thread-per-Request model is a widely used model for

transferring the specified file to the client. implementing multi-threaded Web servers. This model runs
To avoid blocking the server for extended periods of timen any OS platform that supports preemptive multi-threading.

each I/O request can be broken into small chunks and sent 3dy structure of a Thread-per-Request Web server based on

arately. Therefore, the State pattern is typically used to mdime ACEReactor and ACE Active Objects is shown in Fig-

tain eachtHTTP Handler ’s state €.g, awaiting theGETre- ure 15.

quest, transmitting the?” chunk, closing down, etc.). Like- Figure 15 illustrates how the ACReactor andHTTP

wise, theTimer Queue capabilities of the ACEReactor ~ Acceptor components can be reused for the Thread-per-

can be used to prevent denial of service attacks where eRequest modeli.e., the ACEReactor blocks in the main

neous or malicious clients establish connections and consulhmead waiting for connection events. When a connection

12



way to implement theEvent Dispatcher in high-
performance Web servers [32]. This model is most effective
on OS platforms (such as Windows NT and Solaris 2.6) that
permit simultaneous calls to tlecept function on the same
acceptor socket. On platforms that do not allow this (such as
most SVR4 implementations of UNIX) it is necessary to ex-
plicitly serializeaccept with an ACEMutex synchroniza-
tion object.

There are several variations of the Thread Pool model. Fig-
ure 16 and Figure 17 illustrate thendle-basednd queue-
basedsynchronous Thread Pool models, respectively. Fig-
ure 18 illustrates the asynchronous Thread Pool model. Each
of these variants is outlined below:

2: HANDLE INPUT
3: CREATE HANDLER —>2
4: ACCEPT CONNECTION

5: SPAWN THREAD

HTTP
Acceptor

Handler

!
|
|
I

|

6: PROCESS HTTP REQUEST

The Handle-based Synchronous Thread Pool: As shown
in Figure 16, this model does not use a Reactor. Instead,

Figure 15: Thread-per-Request Web Server Model

event occurs it notifies thdTTP Acceptor factory, which
creates a neMTTP Handler .

The primary difference between the Thread-per-Reques
model and the Single-threaded Reactive model is that a ne'
thread is spawned in ea¢hiTTP Handler to process every
client request concurrently. Thus, tRETP Handler plays
the role of an Active Object,e., the ACEReactor thread
that accepts the connection and invokesHi@ P Handler
executes concurrently with the threads that perform HTTF
processing. INHTTP 1.0, the lifecycle of iTTP Handler
Active Obiject is complete once the file transfer operation is ¢
finished.

The Thread-per-Request model is useful for handling f8yure 16: Handle-based Synchronous Thread Pool Web
quests for large files from multiple clients. It is less useful f@faryer Model
small files from a single client due to the overhead of creating

anew thread for each request. In addition, Thread-per-Reqg@gh thread in the pool directly invokes thendle _input

can consume a large number of OS resources if many cliefsthod of theHTTP Acceptor , which blocks awaiting

perform requests simultaneously during periods of peak loagient connections on the acceptor socket handle. When
clients connect, the OS selects a thread from the pool of

4.4.3 The Thread Pool Web Server Model HTTP Acceptors toaccept the connection. Once a con-
nection is established, the acceptor “morphs” intoHanrP

In the Thread Pool model, a group of threads are pre-spawirthdler , which performs a synchronotsad on the newly

during Web server initialization. Each thread blocks on tl@nnected handle. After the HTTP request has been read, the

same acceptor socket, waiting for connections to arrive frahmead performs the necessary computation and filesystem op-

clients. Pre-spawning eliminates the overhead of creatingrations to service the request. The requested file is then trans-

new thread for each request. It also bounds the number of @ifted synchronously to the client. After the data transmission

resources consumed by a Web server. completes, the thread returns to the pool and reinvekesP

The Thread Pool model is generally the most efficieAtceptor ’s handle _input method.
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Client requests can execute concurrently until the numlirokes thedequeue method of the request queue, which
of simultaneous requests exceed the number of threads inkloeks awaiting client requests.
pool. At this point, additional requests are queued in the ker-Once an HTTP request has been dequeued by a thread in
nel’'s socket listen queue until a thread in the pool finishése pool this thread performs the necessary computation and
its processing and becomes available. To reduce latency,filegystem operations to service the request. The requested
Thread Pool can be configured to always have threads awddlta is then transmitted synchronously to the client. After
able to service new requests. However, the number of thretidsdata transmission completes the thread returns to the pool
needed to support this policy can be very high during peakd reinvokeslequeue method to retrieve another HTTP re-
loads as threads block in long-duration synchronous I/O opguest.
ations. In contrast with the handle-based Thread Pool model, the

One drawback with the handle-based Thread Pool modefjigeue-based Thread Pool design makes it possible to accept
that the size of the socket listen queue is relatively small ( (or reject) all incoming connections rapidly and prioritize how
around 8 to 10 connections on most OS platforms). Therefagach client is processed. The primary drawback stems from
high volume servers that receive hundreds of Web hits per ste- extra context switching and synchronization required to
ond may not be able to accept connections fast enough to keemage the queue in the Web server.

the kernel from rejecting clients. Moreover, it is not possible

to prioritize which connections are dropped since the kerdd]® Asynchronous Thread Pool: As shown in Figure 18,
does not distinguish among different clients. this model uses the ACBroactor , which manages an I/O

completion port. An I/O completion port is a thread-safe
The Queue-based Synchronous Thread Pool:As shown

in Figure 17, this model uses the Half-Sync/Half-Async pe
tern, which combines the Reactor and Active Object patter

In this model, the ACEReactor thread accepts connection 1: INITIATE ASYNC ACCEPT
2: RUN EVENT LOOP
4: ACCEPT COMPLETES

5: QUEUE COMPLETION

2: HANDLE INPUT
3: ENQUEUE REQUEST

6: DEQUEUE COMPLETION

& PROCESS

4: DEQUEUE &
PROCESS

5: PROCESS HTTP REQUEST

|

Figure 17: Queue-based Synchronous Thread Pool Weligure 18: Asynchronous Thread Pool Web Server Model

Server Model
gueue of 1/0O completion notifications that resides in the OS

from clients (via theHTTP Acceptor ) and manages all thekernel (in contrast, the queue-based Thread Pool managed

HTTP Handlers . the thread in user-space). Each 1/O operation is initiated and
When HTTP requests arrive from clients they are valihanded off” to the kernel, where it runs to completion. There-

dated briefly by the associatétT TP Handler in the ACE fore, the initiating thread does not block. When these opera-

Reactor thread and then enqueued in the thread-safe AG&nhs complete asynchronously, the kernel queues the resulting

Message Queue that joins the “async” and “sync” layersnotifications at the appropriate I/O completion port.

in the Web server. Each Active Object in the thread poolLike the synchronous Thread Pool model, the asynchronous
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Thread Pool is created during Web server initialization. Un-
like the synchronous model, however, the threads wait on a
I/O completion port rather than waiting @etcept . The OS 3: SPAWN THREAD 2: CREATE, ACCEPT,
queues up results from all asynchronous operatiems &syn- HTTP_HANDLER

chronous accepts, reads, and writes) on the 1/O completio
port. The result of each asynchronous operation is handled t
a thread selected by the OS from the pool of threads waitin
on the completion port. The thread that dequeues the corr
pletion notification need not be the same one that initiated th:

operation.

The asynchronous Thread Pool model is typically less re
source intensive and provides more uniform latency unde
heavy workloads than synchronous Thread Pool models [32
It is also more scalable since the same programming modt
works for a single thread, as well as multiple threads. The
primary drawback with the asynchronous Thread Pool is tha
it is not portable to platforms that lack asynchronous 1/0 anc
proactive event dispatching. Windows NT 4.0 is the main con-
temporary operating system that support I/O completion ports
in its OS API. The ACEProactor encapsulates the Win-

dows NT 4.0 I/O completion port asynchronous demultiple5- Concluding Remarks
ing mechanism within a typesafe C++ wrapper.

Figure 19: Thread-per-Session Web Server Model

Computing power and network bandwidth has increased dra-
matically over the past decade. However, the design and im-
plementation of communication software remains expensive
and error-prone. Much of the cost and effort stems from the
, ontinual re-discovery and re-invention of fundamental design
In the Thread-per-Session model the newly created handlgge s and framework components across the software in-
thread is responglble for the lifetime of the entlrg client se&Ustry. Moreover, the growing heterogeneity of hardware ar-
sion, rather than just a single request from the client. As Wiljitoctres and diversity of OS and network platforms make it

the Thread-per-Request model, only one thread blocks onjg 1, 1ild correct, portable, and efficient applications from
acceptor socket. This acceptor thread is a factory that creatgsdich

new handler thread to interact with each client for the duration ., . . . .
. .~ Object-oriented application frameworks and design patterns
of the session. Therefore, the new thread may serve muIURI

: o eFfp to reduce the cost and improve the quality of software
requests from a client before terminating. : ; ; .
by leveraging proven software designs and implementations to
The Thread-per-Session model is not appropriate for HT hRbduce reusable components that can be customized to meet
1.0 since protocol establishes a new connection for eachngw application requirements. The ACE framework described
quest. Thus, Thread-per-Session is equivalent to Thread-Retthis paper illustrates how the development of communi-
Request in HTTP 1.0. This model is applicable in HTTP 1.dation software, such as high-performance Web servers, can
however, since it supports persistent connections [35, 36]. Fig- simplified and unified. The key to the success of ACE is
ure 19 illustrates the Thread-per-Session model. its ability to capture common communication software design
Thread-per-Session provides good support for prioritizatipatterns and consolidate these patterns into flexible framework
of client requests. For instance, higher priority clients can Bemponents that efficiently encapsulate and enhance low-level
associated with higher priority threads. Thus, request fréa$ mechanisms for interprocess communication, event de-
higher priority clients will be served ahead of requests fromultiplexing, dynamic configuration, concurrency, and syn-
lower priority clients since the OS can preempt lower prioghronization.
ity threads. One drawback to Thread-per-Session is that confhe ACE C++ wrappers, framework components, dis-
nections receiving considerably more requests than othersitdouted services, and higher-level distributed computing mid-
become a performance bottleneck. In contrast, the Thredlware components described in this paper are freely avail-
per-Request and Thread Pool models provide better suppdte at www.cs.wustl.edu/ ~schmidt/ACE.html
for load balancing. This URL contains complete source code, documentation, and

4.4.4 The Thread-per-Session Web Server Model
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example applications, including JAWS. ACE has been usediB] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
research and development projects at many universities and Concurrent Event Demultiplexing and Event Handler Dispatch-
companies. For instance, it has been used to build avionics ing." in Pattern Languages of Program Desigh O. Coplien

systems at Boeing [11]; telecommunication systems at Bell-

core [13], Ericsson [37], and Motorola [9]; medical imagin,r;;illl
systems at Siemens [31] and Kodak [10]; and many acade

research projects.
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