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Abstract. Product-line architectures (PLAs) are a paradigm for developing 
software families by customizing and composing reusable artifacts, rather than 
handcrafting software from scratch. Extensive testing is required to develop re-
liable PLAs, which may have scores of valid variants that can be constructed 
from the architecture’s components. It is crucial that each variant be tested 
thoroughly to assure the quality of these applications on multiple platforms and 
hardware configurations. It is tedious and error-prone, however, to setup nu-
merous distributed test environments manually and ensure they are deployed 
and configured correctly. To simplify and automate this process, we present 
FireAnt, which is a tool for the model-driven development (MDD) of PLA de-
ployment and testing plans. To validate FireAnt, we use a distributed con-
straints optimization system case study to illustrate the cost savings of using an 
MDD approach for the deployment and testing of PLAs. 

1   Introduction 

Product-line architectures (PLAs) [1] enable the development of a group of soft-
ware packages that can be retargeted for different requirement sets by leveraging 
common capabilities, patterns, and architectural styles. The design of a PLA is typi-
cally guided by scope, commonality, and variability (SCV) analysis [2]. SCV cap-
tures key characteristics of software product-lines, including their (1) scope, which 
defines the domains and context of the PLA, (2) commonalities, which describe the 
attributes that recur across all members of the family of products, and (3) variabili-
ties, which describe the attributes unique to the different members of the family of 
products.  

Although PLAs simplify the development of new applications by reusing existing 
software components, they require significant testing to ensure that valid variants 
function properly. Testing is essential since even variants that obey the compositional 
rules of the PLA may not function properly. For example, connecting two compo-
nents with compatible interfaces can produce a non-functional variant due to assump-
tions made by one component, such as boundary conditions, that do not hold for the 



component it is connected to [3]. It is therefore crucial that PLAs undergo significant 
testing to validate the correctness of all possible configurations of their components.  

Deploying, configuring, and testing all valid variants of a PLA without automated 
methods, however, is expensive and or infeasible. Large-scale product variants may 
consist of thousands of component types and instances [4] that must be tested. This 
large solution space presents the following key challenges to developing a PLA: 

Challenge 1 – Creating a model of the PLA’s variant solution space. Tradi-
tional processes of identifying valid PLA variants involve software developers deter-
mining manually the software components that must be in a variant, the components 
that must be configured, and how the components must be composed. Such manual 
approaches are tedious and error-prone and are a significant source of system down-
time [5]. Manual approaches also do not scale well and become impractical with the 
large solution spaces typical of PLAs.  

Challenge 2 - Managing the complexity of hundreds of valid configuration 
and deployment options for product line variants. Ad hoc techniques often employ 
build and configuration tools, such as Make and Another Neat Tool (ANT) [6], but 
application deployers still must manage the large number of scripts required to per-
form the component installations. Developing these scripts can involve significant 
effort and require in-depth understanding of components. Understanding these intri-
cacies and properly configuring applications is crucial to their proper functionality 
and quality of service (QoS) requirements [7]. Incorrect system configuration due to 
operator error has also been shown to be a significant contributor to down-time and 
recovery [5].  

Developing custom deployment and configuration scripts for each variant leads to 
a significant amount of reinvention and rediscovery of common deployment and con-
figuration processes. As the number of valid variants increases, there is a correspond-
ing rise in the complexity of developing and maintaining each variant’s deployment 
and configuration infrastructure. Automated techniques can be used to manage this 
complexity [8,9,10]. 

Challenge 3 - Evolving deployment, configuration, and testing processes as a 
PLA evolves. To be viable, a PLA must evolve as the domain changes, which pre-
sents significant challenges to the maintenance of configuration, deployment, and 
testing processes. Small modifications to composition rules can ripple through the 
PLA, causing widespread changes in the deployment and configuration scripts. Main-
taining and validating the large configuration and deployment infrastructure is hard. 
Moreover, as PLA components evolve, it is essential that regression testing be per-
formed on all PLA variants to identify those that may become non-functional due to 
unforeseen side effects. With a large variant solution space, it becomes hard to rap-
idly evolve and validate the PLA. 

Challenge 4 - Ensuring that a PLA is rigorously tested in all valid configura-
tions. Even when model-driven development (MDD) [11] techniques and tools, are 
used to generate the customization, composition, packaging, and deployment code to 
implement PLA variants [9, 12] it is still impossible to ensure that all correctly con-
structed variants will perform as modeled. In mission-critical domains, such as avion-
ics and automotive systems, it is essential that nonfunctional variants be discovered. 
The large number of valid variants, however, makes it hard to test all the valid con-



figurations and deployments. Rapid regression testing in response to component 
changes is even harder. 

Challenge 5 – Identifying the performance characteristics of the variants. The 
performance characteristics of each variant must be well understood to select the ap-
propriate variant to meet the QoS requirements. Only by performing rigorous per-
formance tests on the entire variant solution space is it possible to choose the optimal 
variant for a requirement set. which is hard as the number of variants increases. Per-
formance testing is further complicated in PLAs for distributed systems where the 
deployment and collocation options can have large impacts on the system perform-
ance.  

Challenge 6 - Managing the packaging complexities of a product line variant. 
Each package that is deployed to a target must contain the minimal amount of physi-
cal artifacts, such as DLLs and Java ARchive (JAR) files, required to deploy the 
variant. Minimizing the footprint of the installation artifacts, ensures that the target 
environment does not have wasted disk space and that bandwidth and time is not used 
to transfer unnecessary items to the target. It is also desirable to have a configuration 
process that is specific to the variant to ensure that unexpected complications involv-
ing unused packages do not affect the deployment. Creating individual packages and 
configuration scripts is costly using traditional approaches due to the large solution 
space. Maintaining the packages as the PLA evolves is even more challenging. 

This paper presents three contributions to the deployment, configuration, and test-
ing of PLAs.  First, we describe the structure and functionality of FireAnt, which is 
an open-source model-driven development (MDD) Eclipse plug-in for specifying the 
SCV of a PLA, the artifact and configuration dependencies of each component, and 
the intended deployment destinations of each component. Second, we describe the 
structure and functionality of FireAnt’s deployment, configuration, and test-
generation infrastructure, which explores the variant solution space and produces 
build and deployment scripts to configure each valid variant. Third, we present em-
pirical results that show  FireAnt significantly reduces the overhead of developing 
and maintaining a deployment and testing infrastructure for a PLA. 
The remainder of this paper is organized as follows: Section 2 provides a motivating 
case study example for our work; Section 3 describes the FireAnt MDD tool for mod-
eling PLAs; Section 4 quantifies the benefits of the FireAnt code generation capabili-
ties in the context of our case study; Section 5 compares our work with related re-
search; and Section 6 presents concluding remarks. 

2 Motivating Case Study Example 

To explore the characteristics of testing PLAs, we have developed an Enterprise 
Java Beans (EJB)-based Constraints Optimization System (CONST) that schedules 
pickup requests to vehicles. As shown in Figure 1, CONST manages a list of items 
that must be scheduled for pickup, a list of times that the items must arrive by, and a 
list of vehicles and drivers that are available to perform the pickup. It uses a con-
straint-optimization engine to find a cost effective assignment of drivers and trucks to 
pickups. CONST’s optimization engine can be used to schedule a wide variety of 



shipment types. In one configuration, for example, the system could schedule limou-
sines to customers requiring a ride, whereas in another configuration the system could 
dispatch trucks to highway freight shipments. CONST’s optimization engine must 
therefore be customizable at design-time to handle these various domains effectively. 

 
Figure 1: Highway Freight Shipment Scheduling Architecture 

 
CONST must also be customizable at run-time to adapt to changing operating con-

ditions. During peak traffic times, for instance, its optimization engine may need to 
use traffic-aware routing algorithms, whereas during off-peak times, it may switch to 
faster traffic-unaware algorithms. CONST also needs to handle failures differently, 
depending on the target domain. For scheduling limousines to pickups, for example, a 
degradation of the time required to schedule a reservation below a threshold may 
require CONST’s constraint engine to adapt to improve performance. When schedul-
ing highway freight shipments, however, the threshold may be higher since pickup 
and drop-off windows are more flexible. 

To support the degree of customization described above, we developed CONST as 
a PLA using SCV analysis, as follows: 
• The scope is the constraint optimization system architecture and the associated 

components that address the domain of scheduling shipments to vehicles, e.g., 
computing route times between vehicles and shipments, maintaining a list of wait-
ing shipments, and calculating the cost of assigning a vehicle to a shipment. 

• The commonality is the set of components and their interactions that are present 
in all configurations of CONST, which include the scheduler updating the sched-
ule, the route time module answering requests from the schedule, and the dis-
patcher sending routing orders to vehicles. 

• The variability includes how the list of waiting shipments is prioritized, how the 
system calculates the cost of assigning each vehicle/driver combination to pick-
ups, how late pickups and dropoffs are handled, and how the system handles re-
sponse time degradation.  
By applying the SCV analysis to CONST we designed a PLA that enables the cus-

tomization of its optimization engine for various domains. 
CONST variants are composed of two main assemblies of components: the Picku-

pList and the Optimizer. The PickupList may be implemented as either (1) a priori-
tized list for domains, such as freight shipments, where some cargos have higher pri-
orities, or (2) a FIFO list for other domains, such as taxi scheduling. The Optimizer is 
composed of a ConstraintsOptimizationModule, RouteTimeModule, GeoDatabase-



Module, and DispatchingModule, each of which has different valid configurations. 
The DispatchModule has two valid implementations for different system to driver 
communication models. The RouteTimeModule has three different implementations. 
The ConstraintsOptimizationModule can be configured with three different algo-
rithms. Finally, the GeoDatabase can use two different vendor implementations. 
These composition options support a total of 72 valid variants to be constructed from 
the PLA.  

3 Modeling PLA Deployments and Configurations with FireAnt 

To address the challenge of deploying, configuring, and testing a PLA, we have 
developed FireAnt. FireAnt is an MDD tool that allows application developers to de-
scribe the components that form the common building blocks of their PLA and to 
construct AND/OR trees specifying how the blocks can be composed to form valid 
variants. FireAnt significantly reduces the cost of testing a PLA in the following key 
ways: 
1. SCV Capture: FireAnt models components common to the application and al-

lows variability to be described formally using AND/OR trees, which enables de-
velopers to express rules governing a PLA. FireAnt can also capture the deploy-
ment variability in an application, e.g., to specify which components can be de-
ployed together and which cannot.  

2. SCV to Artifact Mapping: FireAnt provides views that allow developers to 
specify the physical artifacts, such as Java Archive (JAR) files, required for a 
common element. Variabilities can be mapped to configuration scripts that con-
figure them properly. 

3. Solution Space Discovery: Using model interpreters, FireAnt can automatically 
infer all valid variants from the commonality and variability trees. FireAnt can 
combine this information with artifact mapping information to show the required 
artifacts and configuration scripts for a variant.  

4. Test, Deployment, and Configuration Infrastructure Generation: FireAnt 
allows developers to describe the target hardware where variants will be de-
ployed. Using a target hardware definition and the artifact mapping, FireAnt can 
automatically package all the archive files required to deploy each variant, as 
well as generate the required configuration scripts. These scripts may be in im-
plemented in a variety of languages. Currently, FireAnt provides bindings for 
generating Another Neat Tool (ANT) build files. 

5. Test Automation: FireAnt can generate a global configuration script that re-
motely deploys, configures, and tests each variant automatically on each possible 
hardware target.  

FireAnt was developed using the Generic Eclipse Modeling System (GEMS) [17], 
which is an open-source MDD environment built as an Eclipse plug-in. A GEMS-
based metamodel describing the domain of PLA deployment, configuration, and test-
ing was constructed and interpreted to create the FireAnt domain-specific modeling 
language (DSML) for PLAs. FireAnt’s modeling environment uses GEM’s support 
for multiple views to capture the SCV, deployment, configuration, and testing re-



quirements of a PLA. The remainder of this section discusses how each of these 
views can be used to manage the complexity of testing a PLA and how the view ad-
dresses each of the challenges described in Section 1. 

3.1 Logical Composition View 

To facilitate the analysis of the variant solution space and address Challenge 1 re-
quires a formal grammar to describe the structure of the PLA and its valid configura-
tions. This customization grammar can then be used to automatically generate and 
explore the variant solution space. The Logical Composition View is the aperture for 
capturing the SCV of a PLA. This view allows developers to formalize what compo-
nents are available in the PLA, what assemblies can be constructed, and how each 
assembly is composed. As with other approaches that capture the variants based on 
system structure [18] rather than feature modeling [19][20], in our approach require-
ments are expressed as configurations of components, i.e., features are modeled as 
variabilities in our SCV analysis. 

To capture a formal definition of the PLA, the components on which it is based 
must be modeled. The Component element is the basic building block in the Logical 
Composition View. A Component represents an indivisible unit of functionality, such 
as an EJB or CORBA component. In the CONST application, the various algorithm 
implementations for the constraints optimization engine are represented as EJB com-
ponents. Assemblies are valid compositions of Components and other Assemblies that 
provide a higher level of functionality. Assemblies may require different source arti-
facts for different configurations or compositions. They can be composed by specify-
ing a composition predicate, AND or Exclusive OR and the Components or Assem-
blies to which the predicate should be applied. In CONST, for example, the Con-
straintsOptimizationModule is connected to the Exclusive OR predicate, which can 
be connected to each algorithm packaged with the optimizer to create a variant. This 
composition indicates that the ConstraintOptimizationModule is composed from one 
of the three algorithms. Assemblies can also be constructed hierarchically from other 
Assemblies to capture the compositional variability in a PLA. 

To specify the compositional variability in the PLA, developers build Component, 
Assembly, and Predicate trees, which we call Logical Composition Trees. At the root 
of the tree is an Assembly representing the entire PLA. The root Assembly, Predicate, 
and children specify the modules that must be present to complete the PLA. Each 
level down the tree specifies the composition of smaller pieces of functionality. 

In the CONST system, the root of the tree is the CONST Assembly. The CONST 
Assembly is connected to an AND predicate and the predicate is in turn connected to 
the PickupList and Optimizer Assemblies, which specifies that both a PickupList and 
Optimizer must be present in CONST variants. The CONST Logical Composition 
tree is shown in Figure 2. 

By capturing PLA compositional variability in a Logical Composition tree, devel-
opers can formally specify how valid variants are composed. With a formal specifi-
cation of the variant construction rules, FireAnt can automatically explore the variant 
solution space to discover all valid compositional variants of the PLA. Section 3.4 



discusses how FireAnt explores the solution space and uses it to automate the testing, 
deployment, and configuration of PLAs. 

 

 
Figure 2: CONST Logical Composition Tree 

 
 

Figure 3: Logical Deployment Tree for 
the GeoDatabase Assembly 

 

3.2 Logical Deployment View 

It is essential to formally describe the variability in the deployment of the PLA to 
automate the configuration, deployment, and testing of the variants with multiple 
collocation strategies, hardware and OS platforms, and other performance critical 
variations. FireAnt’s Logical Deployment View is used to specify a deployment 
grammar for the PLA. The Logical Deployment View addresses Challenges 2, 3, and 
4. It is designed to capture and manage the complexity of the large number of de-
ployment possibilities for a variant.  

The Logical Deployment View describes which Assemblies are deployed, which 
Assemblies are collocated, and on what nodes they are deployed. Each top-level as-
sembly is associated with one or more deployment predicates. These predicates are 
the same as in the Logical Deployment View. The predicates are then connected to 
one or more Collocation Groups. The mappings from Assemblies to Collocation 
Groups to Nodes form the Logical Deployment Trees. These trees specify what valid 
deployment variations are allowed in the PLA.  

3.3 Dependency View 

To automate the packaging and configuration of variants and address Challenges 2 
and 6, a dependency model must be developed to associate each component with 
physical artifacts, such as JAR files, it relies on. This mapping from physical artifacts 



to PLA components can be used to automatically manage and package the artifacts 
and configuration scripts required for each variant. 

The Dependency View manages the complexity of organizing and maintaining all 
the various physical artifacts required to deploy and configure a variant.  A variant 
may contain hundreds of components, each with multiple physical artifacts required 
for their deployment. As the number of variants grows, it becomes hard to package all 
physical artifacts required to deploy a variant. Our CONST application, for example, 
has 72 unique valid package combinations that can be created for the variants. Each 
possible package requires a unique artifact set.  

3.4 Managed Views: Physical Composition and Deployment 

The large size of the variant space makes it impractical to generate it manually. It 
is therefore essential to provide PLA developers with views of the solution space that 
are generated automatically from grammars describing the PLA’s structure and vari-
ability. These generated views can then be used to address Challenges 1, 4, and 6. 

The FireAnt managed views visualize various aspects of the variant solution 
spaces that are impractical to create by hand. They catalog the current possible com-
positional variants and deployment variations. These views are called managed views 
because they are generated by FireAnt and are not edited by users.  

FireAnt creates the Physical Deployment View by traversing the Logical Composi-
tion Tree and calculating all possible combinations of Assemblies that can be de-
ployed to each node. FireAnt then takes each of these possible variants and deter-
mines the unique packaging combinations of components that are required for all 
possible valid deployments. Each unique package is called an Egg.  

The Physical Composition View shows which physical artifacts are associated with 
each egg. Individual zip archives can be created for each deployment package by 
traversing the Physical Composition View trees. This view manages the complexity 
of determining what physical artifacts should be present in for the deployment of each 
variant’s Assemblies. FireAnt can automatically collect and zip all of the required 
artifacts for a variant’s Assemblies by traversing the Physical Composition Tree. 

4 Empirically Evaluating FireAnt Generative and Analytic 
Capabilities 

A method for estimating the point at which developing a PLA becomes more cost 
effective than a traditional development approach is described in [2]. This paper de-
fines the average economic or time cost of developing a variant manually without a 
PLA to be C0 and the cost of the same development with automation to be C1. To 
develop N variants using a manual approach, therefore, has a total cost of N*C0. A is 
defined to be the initial overhead of performing SCV analysis and creating reusable 
components. C1 is assumed to be smaller than C0. The cost of developing the same N 
variants with a PLA is A + N * C1.  



For small numbers of variants, the initial cost A does not make a PLA cost effec-
tive. As the number of variants, N, grows, however, a PLA becomes more cost effec-
tive since C1 < C0. This section expands on this formula to estimate the cost of testing 
N variants developed manually and N variants developed with a PLA. We then show 
how FireAnt can decrease the initial cost A of developing a testing infrastructure for a 
PLA.  

In the context of testing, we let T0 be the cost of manually developing the infra-
structure to test a variant and T1 be the cost of developing the same infrastructure for 
a PLA variant. T1 should be significantly smaller than T0, since tests for determining 
the correctness of individual components can be reused for each variant. Moreover, 
any tests that check the correctness of a common element among the variants can be 
shared. To develop the testing infrastructure for a new variant, therefore, T1 will only 
be comprised of the cost of developing tests for the unique components of each vari-
ant. With a manual approach, however, the variants do not share common compo-
nents and tests cannot be shared among them making T0 > T1.  

 With a PLA, conversely, we incur an initial cost A of developing a flexible proc-
ess for integrating and orchestrating the tests shared between variants. Even with the 
use of automation tools, such as those available for running JUnit tests, a developer 
must manually specify which tests to run for each variant. The total cost of testing N 
variants is N*T0 for the manual approach and A+N*T1 for the PLA. The goal of de-
veloping a testing infrastructure of a PLA is therefore to minimize A and ensure that 
the overhead of creating reusable tests does not make T1 > T0.  

This section reports the results from a series of experiments on our CONST case 
study. The goal of these experiments was to evaluate the extent to which FireAnt 
minimizes the initial cost A and does not require excess testing overhead that would 
increase T1. Each experiment was repeated using several variations of the PLA to 
investigate how the performance of FireAnt scaled as the solution space grew. For 
testing, we used FireAnt 2.0 with a 2.2 Mhz AMD Athlon 3200 with 1 gigabyte of 
RAM running Windows XP and Eclipse 3.1.0. Our test cases were written using 
JUnit. 

4.1 Solution Space Exploration Time 

In our CONST case study, we evaluated the time required by FireAnt to discover 
and visualize all valid variants. Our initial implementation of CONST contained 17 
EJBs, each packaged in individual Enterprise Application Resource (EAR) files with 
separate XML deployment descriptors to facilitate packaging. To analyze the impact 
of re-factoring and its affect on FireAnt and the solution space, we created a new type 
of PickupList that was a hybrid priority/FIFO list. A waiting request’s priority was 
determined by the time multiplied by the priority. Adding this PickupList implemen-
tation increased the number of valid variants to 108.  

In our second re-factoring, we provided two new graph representations for the op-
timization algorithm. One implementation used an in-memory graph representation. 
The second implementation used a disk-based graph representation scheme to reduce 
memory footprint. This refactoring increased the number of valid variants to 144. In 



the final re-factoring, we combined both the PickupList and algorithm refactoring, 
which produced 216 valid variants. For each PLA, we calculated the time for FireAnt 
to generate all of the valid configurations (Eggs). The results of the tests are shown in 
Figure 5.  

Figure 4 shows that the time required, Dv, to explore the solution space scaled at a 
rate of approximately N * D1 + K, where D1 is the time to required by FireAnt to dis-
cover a single variant and K a constant overhead. The maximum time required was 
less than 2 seconds. It can be seen that D1 = (DV (72) - DV (216)) / 144 < 700 / 144 = 
4.8ms. We posit that to discover the same set of variants manually, the time required 
would be V(N) * N * D0 + K, where D0 > D1, V(N) is a function of N, and V(N) > V(N-
1) ≥ 1 for all N. That is, discovery of a single variant is slower with a manual process 
and the time to discover all variants becomes increasingly worse as the number of 
variants grows. This is a result of the inability of manual methods to scale as the com-
plexity increases. Even without a V(N) manual scaling factor and optimistically as-
suming D0 = 1000ms, the FireAnt aided method is roughly 200 times faster. If a PLA 
architecture is used with a manual approach for assigning tests to variants, A varies in 
proportion to V(N). By using FireAnt, V(N) is removed and D1 is far smaller than D0, 
and thus, the cost, A, is significantly reduced for large numbers of variants.  

Figure 4: Solution Space Exploration Time 

 

 
Figure 5: FireAnt Packaging Time 

 

4.2 Packaging Time 

FireAnt also has the ability to collect all the resources needed to deploy a variant 
and package them in separate zip files for deployment across a group of nodes. Fire-
Ant uses the Eggs and Dependency Tree to calculate the minimum physical artifacts 
required for each node’s package. Along with the package generator, we created a 



translator that generates ANT build scripts for the deployment of the variant’s pack-
ages. FireAnt can support generation of other scripting languages. We chose ANT, 
however, since it is platform-independent and well supported.  

For each variant/deployment configuration, FireAnt generates local ANT scripts 
that are executed on each node to perform the Assembly installations. The generated 
ANT scripts invoke the appropriate PreDeployment, Deployment, and PostDeploy-
ment scripts required to install each component. After installing each component or 
assembly, the generated ANT scripts invoke any tests associated with the element in 
the Dependency view, which enables automated testing of each variant. FireAnt also 
generates a global deployment script to execute the deployment, configuration, and 
testing of each variant consecutively. Developers simply provide the scripts to con-
figure and deploy the individual assemblies and / or components.  

We used our AMD Athlon 3200 test platform to measure, Ov, which is how long it 
took FireAnt to package all of the resources and generate the ANT build scripts for 
each of the variants. We then measured the time required for FireAnt to collect and 
zip the files for each package. The results are shown in Figure 5. 

The results in this figure show that using FireAnt, Ov, = N * P1, + K, where P1 is 
the time taken to package and generate the configuration script for a single variant  
using FireAnt and K is a constant overhead. Again, a manual approach to accom-
plishing the same task would require that Ov = V(N) *  N * P0 + K, where P0 is the 
time to manually package a variant, P0 > P1, V(N) is a function of N, and V(N) > V(N-
1) ≥ 1 for all N. As can be seen from the results, P1 < (12000 – 2000) / 144 = 69.4ms.  

Assuming that a manual process could package all the artifacts required for a vari-
ant in 1000ms (which is extremely optimistic), the FireAnt aided method is still ~14 
times faster. The FireAnt method again removes a V(N) manual scaling factor, as 
well, from the cost A. FireAnt’s packaging provides the ability to calculate and re-
package all the variants automatically when new components are added to the PLA, 
which reduces developer effort and ensures that each variant’s package footprint is 
always up-to-date. Thus, using FireAnt reduces the cost of R refactorings by R * 
(V(N) – 1) * 14. For large values of N, this cost savings will be significant. 

4.3 Results Summary 

FireAnt uses the managed views described in Section 3.4 to automate (1) the gen-
eration of deployment scripts for variants, (2) the packaging of artifacts for variants, 
and (3) the testing of variants. These capabilities reduce the upfront cost, A, and en-
able rigorous testing of PLAs. They also address each of the six key challenges out-
lined in Section 1. 

Due to the large number of variants it becomes costly for PLA developers to 
manually find and manage all possible variants without MDD tool support. This 
complexity increases the initial cost, A, of developing a PLA testing infrastructure 
since a developer must find all valid variants and determine which tests are required 
to ensure the proper functioning of each. In other words, A ≥ Dv + Ov, where Dv is 
the time required to find each valid variant and Ov is the time required to generate an 
orchestration script for each variant that will execute the proper tests. FireAnt reduces 



A by automatically exploring the solution space and producing visualizations of valid 
variants for the developer. These capabilities significantly aid developer understand-
ing of PLA variability and enables for the automated testing and packaging of each 
variant. Without identifying all possible variants of the PLA, it is hard to ensure that 
the PLA is tested properly, which is important in mission-critical domains. 

5 Related Work 

 In [24], Kang et al., propose a modeling technique for PLAs called Feature Ori-
ented Reuse Method (FORM). FORM captures the key variabilities in a PLA as fea-
tures that can be present in a variant. A market analysis is first performed on the PLA 
to categorize and understand the important features of the variants. These features are 
then cataloged and mapped to the underlying object model to determine how they 
affect the underlying system structure. FireAnt uses a more general model of the 
variability in a PLA. First, FireAnt allows for variations in the configuration parame-
ters of the underlying object model, such as thread priorities, to be modeled as vari-
abilities. Small permutations in threading models can be applied to variants with 
identical features. That is, FireAnt allows for more flexibility in what is considered a 
variability. This can be particularly important for performance testing purposes where 
many configurations of a single feature variant may wish to be tested. Another key 
difference between FORM and FireAnt is that FireAnt provides a model-driven de-
velopment tool that can automate the generation and management of an entire product 
line’s deployment, configuration, and testing infrastructure. These powerful genera-
tive capabilities are what decrease the initial cost, A, and incremental costs of testing 
variants. 

An algebra for specifying and deriving fault dependencies and propagations be-
tween components is proposed in [15], which focuses on investigating how known 
dependencies and assumptions of components can help predict fault propagation. 
FireAnt is designed not to predict fault propagation but to discover the component 
fault properties. FireAnt can be used to automate the discovery of faulty component 
compositions and configurations in PLAs, which helps identify and catalog the as-
sumptions that were not being met by failing variants. The success of future evolu-
tions to the PLA could then be predicted using the dependency algebra. FireAnt tests 
all known configurations of components and assumes that the tests provided by de-
velopers properly cover each variant. The dependency algebra in [15], could be used 
to help properly craft the test scripts invoked by FireAnt. 

Another approach to model-driven testing is presented in [24] that uses the UML 
2.0 Testing Profile and model transformations to generate tests. This work provides 
an effective means of relating the system design to the design of the testing process. 
This approach, as with other approaches, does provide a mechanism for automatically 
exploring a solution space and determining which tests should be applied to which 
variants, which is critical for PLAs. A UML-driven testing process, however, could 
be used in conjunction with FireAnt. FireAnt does not place restrictions on the testing 
framework or how tests are developed. Thus, developers could first use a UML-based 
test development infrastructure to produce tests that were orchestrated by FireAnt.  



Other approaches to testing large-scale systems involve MDD tools that generate 
test cases from operational profiles [21]. FireAnt automates the testing of all variants. 
A complementary approach is to use statistical methods to generate test cases. Test 
cases created from tools, such as in [21], could be used to generate the testing orches-
trated by FireAnt. Unlike FireAnt, however, this tool is not specific to PLAs.  

Model-driven component design tools, such as Cadena [16], exist for Eclipse. Ca-
dena is a model-driven development tool for designing component systems that pro-
vides the capability to package components, generate build scripts for them, and gen-
erate test infrastructure. Cadena supports development of multiple models to provide 
strongly typed modeling for PLAs. These tools, however, focus on the structure and 
implementation of the PLA. Furthermore, this approach is tailored to modeling spe-
cific variants of the PLA. Cadena is not designed to explore solution spaces and gen-
erate test infrastructure to cover all possible PLA variants. Again, this generative 
capability is one of the keys to rigorously testing a PLA to identify non-functional 
variants and unknown component dependencies, decreasing the cost of testing, and 
mitigating the cost of PLA evolution on the deployment, configuration, and testing 
infrastructure. 

Techniques for improving the reuse of components by identifying and adapting 
components with compatible interfaces are presented in [22]. FireAnt can be applied 
to allow developers using these techniques to run automated tests of their assump-
tions about the compatibility of various components’ interfaces. The results could 
then be used to refine the component dependency relationships. Pairing these works 
could provide an iterative environment for modeling and testing component composi-
tions created through adaptive reuse. 

6 Concluding Remarks 

Product-line architectures (PLAs) can significantly improve the reuse of software 
components and decrease the cost of developing applications. The large number of 
valid variations in a PLA must be tested to ensure that only working configurations 
are used. Due to the large solution spaces it is infeasible or overly costly to use tradi-
tional ad hoc methods to test a PLA’s variants.  

By using MDD tools to capture the compositional and deployment variability in 
PLAs, we showed that much of the deployment, configuration, and testing of PLAs 
can be automated. This automation frees developers to focus on implementing reus-
able components and deployment and configuration scripts for known working units 
of functionality. Our experiments have shown that FireAnt can significantly reduce 
both the initial cost, A, of developing a PLA and the testing cost T1 of each variant. 
FireAnt accomplishes this cost reduction by automating tedious and error-prone man-
ual tasks, such as solution space exploration. 

The following are our lessons learned from developing FireAnt and applying it to 
the EJB-based Constraints Optimization System (CONST) that schedules pickup re-
quests to vehicles:  
• There may be unanticipated problems caused by the composition of two or more 

assemblies that may not be scriptable by FireAnt. More work is needed to identify 



how to automate the generation of the deployment and configuration glue of PLA 
variants. 

• Deployment variations greatly expand the solution space since each variant must 
be tested with each deployment variation. It is thus important to only model realis-
tic deployment scenarios to restrict this space. 
In future work, we are pursuing the use of FireAnt to create self-tuning installa-

tions. Many high-performance parallel computing applications, such as the Automati-
cally Tuned Linear Algebra Software (ATLAS) [23], run performance tests in multi-
ple configurations as part of the installation process. These applications can then in-
terpret the performance results to optimize themselves for the given hardware.  

We also plan to expand on the ATLAS approach by allowing FireAnt users to de-
fine a fitness function based on the performance metrics collected from the individual 
component tests. The FireAnt test automation framework will then be used to itera-
tively deploy variants in various configurations in an attempt to maximize this fitness 
function.  

Developers only need to create the tests to collect the appropriate data, such as ser-
vice rate, and then provide the logic to perform analyses on the results, such as 
throughput analysis using queuing networks, to score the configurations. FireAnt will 
use this cost function to automatically deploy, configure, test, and score each candi-
date variant in each valid component to hardware configuration. After all testing com-
pletes, FireAnt will collect the results and install the variant/component to hardware 
configuration with the highest score. 
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