J Internet Serv Appl
DOI 10.1007/s13174-011-0051-x

SI: FOME - THE FUTURE OF MIDDLEWARE

R&D challenges and solutions for highly complex distributed

systems: a middleware perspective

Jules White - Brian Dougherty - Richard Schantz -
Douglas C. Schmidt - Adam Porter - Angelo Corsaro

Received: 9 November 2011 / Accepted: 15 November 2011
© The Brazilian Computer Society 2011

Abstract Highly complex distributed systems (HCDSs) are
characterized by a large number of mission-critical, hetero-
geneous inter-dependent subsystems executing concurrently
with diverse—often conflicting—quality-of-service (QoS)
requirements. Creating, integrating, and assuring these prop-
erties in HCDSs is hard and expecting application develop-
ers to perform these activities without significant support is
unrealistic. As a result, the computing and communication
foundation for HCDSs is increasingly based on middleware.
This article examines key R&D challenges that impede the
ability of researchers and developers to manage HCDS soft-
ware complexity. For each challenge that must be addressed
to support HCDSs, the article surveys the state-of-the-art
middleware solutions to these challenges and describes open
issues and promising future research directions.

J. White - B. Dougherty
Virginia Tech, Blacksburg, VA, USA

J. White
e-mail: julesw @vt.edu

B. Dougherty
e-mail: brianpd @vt.edu

R. Schantz
BBN Technologies, Cambridge, MA, USA
e-mail: schantz@bbn.com

D.C. Schmidt ()
Vanderbilt University, Nashville, USA
e-mail: dschmidt@dre.vanderbilt.edu

A. Porter
University of Maryland, College Park, MD, USA
e-mail: aporter@cs.umd.edu

A. Corsaro

PrismTech Corp, Paris, France
e-mail: angelo.corsaro@prismtech.com

Published online: 07 December 2011

Keywords Highly complex distributed systems -
Middleware - Quality of service

1 Introduction

Highly complex distributed systems (HCDSs) include air
traffic control and management, electrical power grid man-
agement systems, large-scale supervisory control and data
acquisition (SCADA), telecommunications, and integrated
health care delivery, as well as many other distributed real-
time and embedded systems—especially those with cyber-
physical world interactions. These types of systems are
characterized by a large number of mission-critical, hetero-
geneous interdependent subsystems executing concurrently
with diverse—often conflicting—quality-of-service (QoS)
requirements.

Developers of HCDSs must manage a number of impor-
tant—often conflicting—system properties, including relia-
bility, predictability, security, and others, as summarized in
Fig. 1 [1].

Creating, integrating, and assuring these properties in
HCDSs is hard and expecting application developers to per-
form these activities without significant support is unreal-
istic. As a result, the computing and communication foun-
dation for HCDSs is increasingly based on middleware. In
the context of HCDSs, middleware is infrastructure software
residing between applications and the underlying operating
systems, networks, and hardware to provide a platform that
abstracts away heterogeneity, provides control over key QoS
properties, and facilitates the construction and management
of HCDSs.

This article examines key R&D challenge areas that im-
pede the ability of researchers and developers to manage
HCDS software complexity. Section 2 explores each chal-
lenge area and describes how middleware—and associated

@ Springer

mailto:julesw@vt.edu
mailto:brianpd@vt.edu
mailto:schantz@bbn.com
mailto:dschmidt@dre.vanderbilt.edu
mailto:aporter@cs.umd.edu
mailto:angelo.corsaro@prismtech.com

J Internet Serv Appl

Fig. 1 Key properties of highly
complex distributed systems

Resource conflicts (i.e., QoS management):
QoS goals must be managed for all system components, despite conflicting resource (e.g., CPU and
memory) demands, e.g., two components may both require 60% utilization of the same processor.

Security and cyber-defense:

To protect and survive against malware and other
cyber attacks, intercomponent communication
may need to employ various secure methods,
with a premium placed on error-free
implementation and configuration.

Dynamic behavior:

A sy 's desired bet may depend on

numerous, dynamically changing and

predictable envir | factors, such as
physical data and r kload

as well as system topolo,

Transient overloads;

must be able to function during
temporary periods of increased

component failures.

Highly complex distributed systems

demand or in the face of temporary

Context-specific requirements:
Domain-specific design
objectives may cause some
system features, such as
response time, to be valued over
others, such as power
consumption.

4 4

Cyber-physical environment:
Many highly complex distributed
systems require tight
coordination between the
system's computational and
hysical elements.
Time-critical tasks:

complex distributed systems are

that must be met to ensure
end-to-end sy

pr
behavior.

Software tasks executing on highly

often subject to real-time deadlines

Large system size:

Highly complex distributed
systems often comprise many
thousands of (often

Key Properties of
Highly Complex
Distributed Systems

heter

and subsystems.

Interdepend of subsy
Components may not be
standalone and may require
significant, complex interactions
with other subsystems in order
to function.

Integration with existing components & systems:
New and existing components must be
compatible with existing systems to provide on prog

cost-effective sy
upgrades.

tenance and

Heterogeneous components:
Components differ in terms of dependencies

operating systems, communication
protocols, hardware, and QoS requirements.

The need for fault tolerance may require the replication and/or colocation of certain components,
while prohibiting other systems from being placed within a given spatial proximity. It may also
require dynamic reconfiguration in response to failures.

of red y (i.e. fault tolerance):

methods and tools—can effectively assure some aspect(s)
of the HCDS properties shown in Fig. 1. For each chal-
lenge that must be addressed to support HCDSs, we briefly
survey the state-of-the-art middleware solutions to these
challenges, and outline some open issues and future re-
search directions. Section 3 then focuses on the new re-
search directions needed to manage the fundamental under-
lying complexity issue: the effective integration and tradeoff
management of all of the challenge areas simultaneously for
next-generation HCDS requirements.

2 R&D challenges and promising middleware solutions
for highly complex distributed systems

Researchers and developers of middleware for current and
next-generation HCDSs must address the following chal-
lenges to design, implement, and operate these systems, as
shown in Fig. 2.

2.1 Challenge 1: encapsulating heterogeneity at scale

Context HCDSs often run on a variety of processor, oper-
ating system, and middleware platforms that are intercon-
nected by different types of protocols and networking tech-
nologies. Each layer has varying constraints on QoS proper-
ties. For example, next-generation SCADA systems (such as
those used to control smart grid production and large metro

@ Springer

subway infrastructure) need to integrate a wide range of de-
vices, ranging from traditional microcontrollers, to the latest
generation of smartphone and tablet devices while dealing
with varying protocols network and bus interconnects, soft-
ware platforms, and processor types and capabilities. Like-
wise, server infrastructure supporting these systems may
use utility computing systems comprised of a large number
of virtualized, distributed, compute-intensive, and storage-
intensive elements.

State of the art Prior work has explored techniques for de-
veloping and configuring HCDSs with thousands of hetero-
geneous components. Mello Schnorr et al. [2] present vi-
sualization techniques for detecting resource usage anoma-
lies between heterogeneous components in large scale dis-
tributed systems. Albrecht et al. [3] present a framework for
managing distributed applications across a variety of net-
works and computing environments. These techniques pro-
vide management at scale of the myriad of components that
comprise HCDSs.

Open problems Deployment decisions, such as which pro-
cessor to run a software component on, become hard in het-
erogeneous HCDSs due to the myriad of physical resources.
Configuration of software and hardware components is also
hard due to the need to simultaneously fine tune the hetero-
geneous hardware and software resources both locally and

J Internet Serv Appl

Fig. 2 Steps for developing and

assuring highly distributed

1. Enabling interaction <

distributed systems

6. Specifying certifications to
guarantee system behavior

5. Providing fault tolerance
mechanisms to allow
systems to continue to
function despite failures.

T

components.

between subsystems and l

2. Ensuring sufficient
resources to allow a system
to fi tion in a predictable

manner.

Steps for
Developing and
Assuring Highly
Distributed
Distributed
Systems

3. Determining configurations
that meet well-defined
performance requirements

4. Evolving configurations to
meet changing QoS -+

requirements

globally across thousands of components. Addressing the
challenge of heterogeneity involves focusing both on porta-
bility and interoperability. As a result, middleware technolo-
gies need to evolve toward providing native interoperability
and portability between and across applications. Due to the
challenges posed by ultra-large-scale HCDSs [4], interop-
erability cannot be an afterthought since it would introduce
intolerable single points of failure and performance bottle-
necks.

Future research directions Next-generation middleware
needs integrated configuration approaches, such as those
based on model-driven engineering (MDE) [5], to assemble
heterogeneous system components and optimize the con-
necting protocols and middleware to meet end-to-end sys-
tem QoS goals. Manual approaches for crafting these inter-
connecting elements scale poorly nor lack the sophistication
needed to meet HCDS requirements. As a result, automated
configuration methods capable of scaling to the size and
complexity of emerging HCDSs must be developed.

2.2 Challenge 2: deriving valid, high-performance
configurations of highly configurable infrastructure
platforms

Context Middleware platforms provide many options to
configure HCDSs at compile- and/or run-time. Each set of
configuration options can uniquely effect the consumption
of available resources, such as memory, CPU cycles, power,
system cost, and overall performance. For example, the Data
Distribution Service [6] (DDS) is a standards-based middle-
ware platform used heavily in many HCDS domains. DDS
implementations support dynamic discovery facilities as a
means of easily adding additional components as runtime

binding, as well as having scores of QoS policies, options,
and configuration parameters. Together, DDS’s configura-
bility makes the problem of deriving and maintaining ap-
propriate and valid high-performance configurations doable,
yet hard to validate.

State of the art Several tools are have shown promise
for monitoring component interactions and deriving sys-
tem configurations that satisfy the myriad of constraints of
HCDSs. Albrecht et al. [3] provide an online monitoring in-
frastructure that allows system engineers to manage, moni-
tor, and integrate heterogeneous components of highly com-
plex distributed systems. Lee et al. [7] present an integrated
modeling and specification framework that uses MDE tools
to verify heterogeneous components at multiple levels of ab-
straction.

Open problems While flexibility promotes customization
and can enhance QoS, it can also yield a combinatorial num-
ber of potential system configurations, each requiring ex-
tensive quality assurance. In addition to assuring quality,
deployment challenges also arise. As computing platforms
migrate away from traditional single-core computational
resource models to multicore and massively distributed-
core models, where and how resources are allocated to
computing tasks plays a prominent role in ensuring end-
to-end system QoS and can vastly impact system perfor-
mance.

For example, distributing frequently communicating
tasks across separate computing nodes may overwhelm the
interconnection or network links connecting the two, drasti-
cally increasing latency. Deploying the same two tasks to the
same node, however, may reduce network traffic but over-
load the processing node, thereby missing real-time dead-

@ Springer

J Internet Serv Appl

lines and increasing execution time. Next-generation mid-
dleware platforms must optimize these deployment deci-
sions to maximize system performance. Additional restric-
tions, such as financial and resource constraints, can also
invalidate numerous potential configurations for a given us-
age scenario, which can make it hard to find any valid con-
figuration, much less one that optimizes cost, reliability, and
performance simultaneously.

Future research directions While certain configuration
techniques, such as applying constraint solvers, are effective
for configurations with a limited number of configuration
options, the exponential number of potential configurations
makes the use of configuration techniques that rely on ex-
haustive search prohibitively slow for large-scale HCDSs.
Configuration techniques using approximation and sampling
algorithms [8] have shown promise for determining valid,
high-performance configurations in minimal time.

For example, Yilmaz et al. [9] use experimental de-
sign theory to select a small, but effective set of configura-
tions to benchmark during performance evaluation. Fouche
et al. [10] use a mathematical sampling techniques called
covering arrays to select configurations. Westermann and
Happe [11] combine model-driven architecture with partial-
ly-automated performance measurements to identify highly-
performant configurations. Kappler et al. [12] use static
analysis to create performance models for individual and in-
tegrate them to produce system models.

2.3 Challenge 3: supporting diverse QoS requirements

Context Different uses and application classes within
HCDSs require multiple different, and sometimes conflict-
ing QoS requirements. For example, streaming real-time
video requires low jitter and predictable end-to-end time-
liness properties, which must also scale to large numbers of
devices on a network. In other distributed applications, such
as air traffic control and management, a high degree of re-
liability as well as the persistence of some key information
is paramount. Even infrequent, minor violations of QoS re-
quirements in these domains can lead to catastrophic results.
It is therefore critical that (often diverse) QoS requirements
be met, despite disruption, and with appropriate tradeoffs.

State of the art Schantz et al. [13] present several ap-
proaches for evolving middleware to handle a wide range
of QoS concerns, including real-time constraints, scalabil-
ity, and security. Otte et al. [14] investigate methods for en-
capsulating QoS behaviors as components, thereby allowing
QoS requirements to be met through component assembly
and deployment. Multi-layered dynamic QoS management
has been under investigation for some time, and numerous

@ Springer

prototypes have been built and studied [15, 16]. This exist-
ing work demonstrates feasibility of the managed QoS ap-
proach. These approaches, however, have not yet achieved
full operational status nor been scaled to open-ended, and
widespread unforeseen anomalous conditions that may arise
in large-scale HCDS:s.

Open problems Next-generation middleware must satisfy
the combination of stringent, system-specific QoS while
providing high performance and ensuring secure confiden-
tial communication at scale. These challenges must be ad-
dressed holistically to overcome today’s point solutions that
address only some dimensions of the overall problem space.
Deployment in these scenarios involves cost-effectively se-
lecting resources that will meet the different QoS require-
ments specific to a given system objective.

For example, deployment solutions in power-constrained
environments, such as building automation or disaster recov-
ery, must ensure that resources are released automatically to
conserve power as computational demands ease. The config-
uration problem must deal with determining the right set of
parameters to choose for the platforms so that application-
specific QoS requirements are met locally and globally.

Future research directions Addressing the challenge of di-
verse QoS requirements involves creating next-generation
middleware that can support a wide range of QoS policies
that can be cooperatively enforced at varying levels from the
OS to the network to the middleware and to the application.
Moreover, mechanisms are needed to reconcile and adjust
policies [17] to handle conflicting QoS requirements at the
system level, even as they arise at runtime.

2.4 Challenge 4: static configuration and dynamic
reconfiguration

Context Due to the dynamic environments in which
HCDSs operate, it is often necessary to redeploy and recon-
figure these systems depending on availability of resources
(some of which may have failed or become overloaded), and
on the current demand on the system. In general, configu-
ration decisions are made at multiple time scales, including
(1) compile time, when the target platform is compiled for
the use case in which it will be used, (2) deployment time,
when applications are deployed on the target platforms, and
(3) run time, when dynamic reconfiguration and redeploy-
ment decisions are made.

State of the art Static analysis and dynamic reconfig-
uration tools can enhance HCDS performance. Surajbali
et al. [18] present an approach that uses aspect-oriented
programming to develop dynamically reconfigurable mid-
dleware. Otte et al. [19] describe a dynamic reconfigu-
ration technique aimed at increasing the performance of

J Internet Serv Appl

component-based middleware. Atighetchi and Pal [20] use
redundant configuration and dynamic reconfiguration tech-
niques to accomplish degrees of survivability under cyber-
attack.

Open problems Manually selecting HCDS design and con-
figuration options is hard due to the myriad of QoS con-
straints and a vast selection of available components offer-
ing a range of functionality and differing resource require-
ments. This problem is exacerbated when extended from
static or infrequent configuration to systems needing fre-
quent dynamic reconfiguration, such as systems augmented
with cyber defense capabilities. These systems require rapid
dynamic reconfiguration in response to the detection or even
anticipation of cyber threats, malware, or system failures to
remove/replace tainted components and mitigate the effects
of cyber attacks.

Future research directions MDE tools can be used to cap-
ture the myriad of available configuration options for various
system components, such as operating systems and middle-
ware, and to facilitate the deployment and configuration at
compile and deployment time. These tools allow designers
to track the impact of including a given component in a de-
sign configuration on overall system cost, performance, and
QoS. Configuration derivation techniques using approxima-
tion algorithms and meta-heuristic techniques have shown
promise for rapidly determining valid, high performance
configurations that meet QoS requirements, which make
them ideal when configurations must be determined quickly
and dynamically, such as in cyber defense systems [21].
Rapid, real-time response requirements along with low tol-
erance for false positives exacerbate the challenges in this
area.

2.5 Challenge 5: developing robust, extensible and
adaptive programming and communication models

Context Many HCDSs are mission- and business-criti-
cal, which means that they must meet functional and non-
functional requirements despite failures, errors, and attacks.
These HCDSs must therefore maintain safety properties
while simultaneously supporting and including independent
extension and evolution of their subsystems. Doing so will
require significantly more advanced hybrid software engi-
neering and development environments keyed to integrating
these issues within a consistent overall framework.

State of the art Providing extensibility and supporting sys-
tem evolution are critical to increasing the longevity and
effectiveness of HCDSs. Aguilera et al. [22] present a ser-
vice that allows heterogeneous components to interact with

memory through a common interface in a scalable, con-
sistent manner while hiding complex details, such as ac-
counting for concurrency and failures. Kramer et al. [23] de-
scribe the requirements that allow a system to become self-
managing, thereby increasing robustness and facilitating
system evolution. Environments based upon loose-coupling
principles, such as publish and subscribe architectures [24],
are an important starting point for dealing with system evo-
lution and change. Environments that focus on the entire in-
formation object life-cycle [25] are also be investigated.

Open problems Deployment and configuration issues are
also highly influenced by the various programming mod-
els used by the systems and supported by the software
hosting platforms. Programming models can vary signifi-
cantly, ranging from sophisticated component and object-
based programming abstractions all the way down to simple
push messaging models. Moreover, the applications hosted
on these platforms may also require different communica-
tion characteristics.

For example, the flow of goods within a warehouse or an
assembly plant works well in a synchronous data flow model
where different elements (such as cranes and conveyer belts)
move goods within the warehouse in an orchestrated fash-
ion. Conversely, an intelligent transportation system encom-
passing automobiles fitted with sensors for monitoring prox-
imity to other automobiles or for sensing road conditions
may need an asynchronous, reactive model to operate effec-
tively. Programming and communication models must there-
fore provide the extensibility needed to tailor them to meet
system-specific requirements.

Future research directions To address this challenge, next-
generation middleware should be built atop sound type sys-
tems that allow users to specify custom types and pre-
serve the semantics of these types end-to-end [26]. These
type systems should support type extensibility and evo-
lution, thereby facilitating incremental updates/upgrades,
while maintaining system type invariants.

Moreover, since communication models may comprise a
mix of synchronous request-response, asynchronous peer-
to-peer, or publish/subscribe models in different parts of
HCDSs, the extensibility of the middleware infrastructure
hosting application and system functionality will need to in-
tegrate and adapt according to the model of programming
and communication used. Deployment must ensure that the
platforms support the different models outlined above.

2.6 Challenge 6: certifying dynamic runtime behavior
Context Many mission-critical HCDSs must undergo for-
mal evaluation prior to being deployed into operational ser-

vice to ensure the system meets its demand and resource re-
quirements. As the complexity embedded in various aspects

@ Springer

J Internet Serv Appl

of the previous individual challenge areas encroach into sys-
tem designs, those HCDSs become more dynamic.

Current certification procedures, techniques, and ap-
proaches, however, are geared to static systems. As dynamic
behaviors become more prevalent these procedures, tech-
niques, and approaches must therefore change to scale up.

State of the art Several projects have focused on large-
scale testing of complex, but statically configurable systems.
For example, Porter et al. [27] describe the Skoll system that
supports the large scale testing of systems, with complex,
interacting configuration options, across a large computing
grid. Yilmaz et al. [9] applied Skoll to support performance-
oriented regression testing of the ACE and TAO middleware.
Yoon et al. [28-30] created the Rachet system that supports
the large-scale, grid-based, testing of component-based sys-
tems with complex configuration and version dependencies.
Robinson et al. [31] consider analysis techniques for regres-
sion testing of user-configurable software systems.

Open problems Certification processes based on extensive
testing and evaluation are generally infeasible for HCDSs
systems because the size of the state space of a composed
system can be exponential in the number of components.
HCDSs typically have a richer set of extensible inputs (in-
cluding environment conditions and nondeterministic deci-
sions) that affect dynamic system behavior that can be hard
to quantify formally, and hence affect certifiability.

Much focus in today’s large-scale systems-of-systems is
on certification of individual parts operating in isolation.
Little attention is focused on certifying the aggregate, inte-
grated packages that share a common base. Likewise, little
work addresses minimizing the cost of recertifying a com-
plete package when only a single element (or a few) actually
change.

Future research directions Due to the rapid explosion of
the size of emerging HCDSs, scalable techniques and tools
that can assure such systems will operate as planned and
continue to operate properly are a high priority if we are to
deploy many of these systems in production environments.
There is a need for techniques that isolate key control as-
pects to keep them amenable to analysis despite scaled size
of the overall system, and approximation techniques to se-
lectively prune the enlarging state space.

New deployment and configuration processes, such as
those that utilize evolutionary algorithms and swarm tech-
niques [8, 32], show promise for quickly and accurately de-
termining component modifications that will leave system
certifications intact. Analysis techniques with real-time con-
straints for rapid convergence are also needed for to certify
dynamic runtime behavior at scale. Likewise, MDE tech-
niques can be used to provide HCDS developers with iso-
lated views of multiple subsystems, allowing easier system

@ Springer

modification and control. Current MDE environments sup-
port the implementation of custom model interpreters for an-
alyzing and even correcting models to satisfy predetermined
design constraints [33]. Future MDE environments should
be leveraged to expedite the HCDS design process and give
system designers finer granularity of control.

3 The road ahead

Section 2 identified six discrete aspects contributing HCDS
complexity, discussed key challenges facing developers and
operators of HCDSs that define progress in those areas, and
summarize promising research directions needed to address
the challenges. More is needed to move forward, however,
than simply addressing these challenges individually. In par-
ticular, the key remaining challenge for HCDS middleware
is to have solutions address all these challenges by simulta-
neously managing the inherent tradeoffs any such undertak-
ing must encompass. For example, if a HCDS meets all con-
figuration requirements and satisfies most QoS constraints,
but cannot ensure real-time deadlines are met, the system
cannot be considered valid, even though only a small por-
tion of a single challenge was not overcome.

To address this challenge, new design paradigms are
needed that not only solve individual challenges, but also
deliver them in an integrated, consistent, and compact form.
Addressing the complexity inherent in any one challenge is
hard; providing a design paradigm that coherently instanti-
ates them all together is even harder. It is even more daunting
to do so under the various dimensions of heterogeneity and
continuously changing requirements characteristic of many
large-scale HCDS domains, such as air traffic control and
management, power grid SCADA systems, aerospace, de-
fense, and financial services.

One promising area of research for understanding how
to simultaneously deliver a solution that meets multiple in-
dividual challenges is algorithmic mechanism design [34],
which is a theoretical framework for designing algorithms
and rewards for a group of interacting distributed partic-
ipants, such that the overall outcome of their interactions
meets a desired goal [35]. For example, algorithmic mecha-
nism design can be used to craft rules for load balancing to
ensure that participants providing the computing resources
accurately report current loads and service requests fairly.
HCDSs will benefit significantly as algorithmic mechanism
design theory matures and aids in creating frameworks for
integrating competing QoS policies into systems to meet
overarching requirement sets. Research advances on algo-
rithmic mechanism design will also help designers build
HCDS middleware that can integrate multiple competing
objectives.

Nature-inspired computing [36] is another research area
relevant to next-generation HCDSs. This approach is well

J Internet Serv Appl

accepted in optimization problems and is gaining acceptance
in HCDSs due to the decentralized, loosely coupled, and
self-healing properties of many nature-inspired algorithms,
such as nonlinear coupled oscillators and ant colony opti-
mization. A successful application of nature-inspired com-
puting to HCDSs appears in [37], where a mathematical
model describing fire-fly synchronization is used in to de-
sign an internal clock synchronization algorithm that is fully
decentralized, robust with respect to relatively high level or
churn, and has an error bound that is lower than the Network
Time Protocol.

Since individual challenges are intertwined, future design
paradigms for HCDSs must manage the various tradeoffs
that arise in any usable instantiation. For instance, HCDS
developers may determine that the increase in performance
provided by adding a state-of-the-art component to a con-
figuration is not offset by the increased cost of the com-
ponent or the impact of the configuration change on other
QoS requirements, such as reliability or security. More-
over, new paradigms must support the trend toward perva-
sive dynamic behavior and instantaneous reaction to cope
with the realities of cyber-physical and ultra-large-scale sys-
tems. These paradigms must also account for emerging com-
puting paradigms, such as quantum computing, neuromor-
phic computing, and nature-inspired computing, with their
inevitable new and different measures of complexity. Un-
doubtedly, next-generation HCDS solutions in these spaces
will involve new middleware architectures, tools, and algo-
rithms appropriate to the emerging platforms.

The middleware R&D community has heretofore ach-
ieved significant success through “divide and conquer” ap-
proaches, which reflect the common sole-PI model of basic
research funding. The challenge going forward, however, in-
cludes marshaling the various forms of in-depth expertise
gained in these individual areas of focus to create common
design paradigms and integrated delivery vehicles, with em-
bedded and automated means for varying trade-offs, owing
to the differences in particular domains of use. Failure to
do so will result in potential solutions collapsing under the
weight of their own complexity, becoming outrageously ex-
pensive or vastly underperforming, or more likely all of the
above.

Advances in the use of metaheuristic algorithms, such as
genetic algorithms and particle swarm optimization [38, 39],
for HCDS design will help developers understand trade-offs
that cannot be managed manually. These algorithms have
already been used successfully [8, 40] for design and de-
bugging problems, such as reducing the computational com-
plexity of using model analysis to detect design flaws, gen-
erating optimized mappings of software to processors, and
balancing competing network and computing QoS values.
They have also been used to explore alternative software
architectures to optimize multiple performance objectives,

such as finding and evaluating alternative architectures for
business information systems [41]. As the science of apply-
ing these algorithms to system design advances, these al-
gorithms will scale up to handle more key QoS properties
of complex HCDCSs and automatically derive designs that
meet competing requirement sets.

As the configuration solution space size continues to ex-
pand exponentially, constraint solvers, metaheuristic algo-
rithms, and approximation techniques become prohibitively
resource intensive. Fortunately, commodity cloud com-
puting environments now provide large amounts of com-
putational resources on-demand [42, 43] and are being
used to support powerful federated quality assurance al-
gorithms. For instance, Yoon et al. [28, 30] test and eval-
uate component-based systems by incrementally building
these systems inside virtual machines; sharing copies of
the virtual machines across cloud nodes; and then test-
ing, evaluating, and analyzing different system instances
in parallel. The computational resources of future environ-
ments will aid large-scale design analyses that support more
computationally-intense configuration techniques than can
run today on in-house hardware infrastructures.

Decades of investment on middleware R&D has firmly
established its essential role at the intersection of distributed
applications and the underlying host and communication
platforms for HCDSs. Next-generation middleware requires
significant improvements in our software engineering meth-
ods, languages, tools, techniques, and training embodying
the middleware-centric solutions to put into practice against
problem spaces that by themselves embody considerable
complexity. Certain research directions will involve rethink-
ing, reformulating, recombining some core ideas that have
carried us this far, while scaling them up, shrinking them
down, and making them work correctly over a wider range
of conditions. Examples of underlying ideas that likely need
refocusing include the following:

— Raising the level of abstraction away from individual host,
objects, and connections toward conglomerate behaviors
with varying properties sustained over varying mappings
and bindings underneath,

— Various forms of multilayer design paradigms appropriate
to the higher levels of abstraction, and

— Seeking completeness and consistency in place of today’s
incomplete abstractions that cause good ideas in theory to
turn into bad ideas in practice when confronted with the
complexity and scale of next-generation HCDSs.

References

1. Rover D, Waheed A, Mutka M, Bakic A (1998) Software tools for
complex distributed systems: toward integrated tool environments.
IEEE Concurr 6(2):40-54

@ Springer

J Internet Serv Appl

10.

11.

12.

14.

15.

16.

Schnorr L, Legrand A, Vincent J (2012, to appear) Detection and
analysis of resource usage anomalies in large distributed systems
through multi-scale visualization. In: Concurrency and computa-
tion: practice and experience. Wiley

Albrecht J, Braud R, Dao D, Topilski N, Tuttle C, Snoeren A, Vah-
dat A (2007) Remote control: distributed application configura-
tion, management, and visualization with plush. In: Proceedings
of the 21st conference on large installation system administration
conference. USENIX Association, Berkeley, p 15

Institute SE (2006) Ultra-large-scale systems: software challenge
of the future. Tech rep, Carnegie Mellon University, Pittsburgh,
PA, USA, June 2006

White J, Hill J, Eade S, Schmidt DC (2008) Towards a solution
for synchronizing disparate models of ultra-large-scale systems.
In: Proceedings of the ULSSIS workshop, Leipzig, Germany, May
2008

Corsaro A (2010) The data distribution service for real-time sys-
tems. Dr Dobbs J

Hatcliff J (2009) An integrated specification and verification en-
vironment for component-based architectures of large-scale dis-
tributed systems. Tech rep, DTIC Document

White J, Dougherty B, Thompson C, Schmidt D (2011)
ScatterD: spatial deployment optimization with hybrid heuris-
tic/evolutionary algorithms. ACM Trans Auton Adapt Syst 6(3).
Special Issue on Spat Comput

Yilmaz C, Porter A, Krishna A, Memon A, Schmidt D, Gokhale
A, Natarajan B (2007) Reliable effects screening: a distributed
continuous quality assurance process for monitoring performance
degradation in evolving software systems. IEEE Trans Softw Eng
124-141

Fouché S, Cohen MB, Porter A (2009) Incremental covering array
failure characterization in large configuration spaces. In: Proceed-
ings of the eighteenth international symposium on software testing
and analysis, ISSTA 09, pp 177-188

Westermann D, Happe J (2010) Towards performance predic-
tion of large enterprise applications based on systematic mea-
surements. In: Proceedings of the 15th international workshop on
component-oriented programming (WCOP) 2010, pp 71-78
Kappler T, Koziolek H, Krogmann K, Reussner RH (2008) To-
wards automatic construction of reusable prediction models for
component-based performance engineering. Softw Eng 121:140—
154

. Schantz R, Schmidt D (2008) Middleware for distributed systems.

In: Wah B (ed) Encyclopedia of computer science and engineer-
ing. Wiley, New York

Otte W, Gokhale A, Schmidt DC (2011) Predictable deployment in
component-based enterprise distributed real-time and embedded
systems. In: Proceedings of the 14th international ACM SIGSOFT
symposium on component-based software engineering (CBSE),
Boulder, CO, USA. ACM, New York

Rohloff K, Gabay Y, Ye J, Schantz R (2007) Scalable, distributed,
dynamic resource management for the ARMS distributed real-
time embedded system. In: Parallel and distributed processing
symposium, 2007, IPDPS 2007, IEEE International. IEEE Press,
New York, pp 1-7

Loyall J, Gillen M, Sinclair A, Carvalho M, Bunch L, Marcon M,
Martignoni A (2009) Quality of service in US air force informa-
tion management systems. In: Military communications confer-
ence, 2009. MILCOM 2009. IEEE Press, New York, pp 1-8

. Loyall J, Gillen M, Paulos A, Bunch L, Carvalho M, Edmondson J,

Schmidt D, Martignoni A III, Sinclair A (2011) Dynamic policy-
driven quality of service in service-oriented information manage-
ment systems. In: Software: practice and experience

. Surajbali B, Grace P, Coulson G (2009) A semantic composition

model to preserve (Re)configuration consistency in aspect ori-
ented middleware. In: Proceedings of the 8th international work-

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

shop on adaptive and reflective middleware. ACM, New York,
pp 1-6

Otte W, Schmidt D, Gokhale A (2010) Towards an adaptive de-
ployment and configuration framework for component-based dis-
tributed systems. In: Proceedings of the 9th workshop on adaptive
and reflective middleware (ARM’10)

Atighetchi M, Pal P (2009) From auto-adaptive to survivable and
self-regenerative systems successes, challenges, and future. In: 8th
IEEE international symposium on network computing and appli-
cations, 2009. NCA 2009. IEEE Press, New York, pp 98-101
White J, Doughtery B, Schmidt D (2010) Ascent: an algorithmic
technique for designing hardware and software in tandem. IEEE
Trans Softw Eng 838-851

Aguilera M, Merchant A, Shah M, Veitch A, Karamanolis C
(2007) Sinfonia: a new paradigm for building scalable distributed
systems. In: Proceedings of 21st ACM SIGOPS symposium on
operating systems principles. ACM, New York, pp 159-174
Kramer J, Magee J (2007) Self-managed systems: an architectural
challenge. In: ICSE 2007

Grant R, Combs V, Hanna J, Lipa B, Reilly J (2009) Phoenix: SOA
based information management services. In: Proceedings of SPIE,
vol 7350, p 73500P

Cleveland J, Loyall J, Webb J, Hanna J, Clark S (2011) VFILM:
a value function driven approach to information lifecycle man-
agement. In: Society of photo-optical instrumentation engineers
(SPIE) conference series, vol 8062, p 1

Group OM (2010) Extensible and dynamic topic types for DDS.
Specification version 1.0, Object Management Group, December
2010

Porter A, Yilmaz C, Memon A, Schmidt D, Natarajan B (2007)
Skoll: a process and infrastructure for distributed continuous qual-
ity assurance. IEEE Trans Softw Eng 510-525

Yoon I, Sussman A, Memon A, Porter A (2007) Direct-
dependency-based software compatibility testing. In: Proceedings
of the 22nd IEEE/ACM international conference on automated
software engineering. ACM, New York, pp 409-412

Yoon I, Sussman A, Memon A, Porter A (2008) Effective and scal-
able software compatibility testing. In: Proceedings of the 2008
international symposium on software testing and analysis. ACM,
New York, pp 63-74

Yoon I, Sussman A, Memon A, Porter A (2011) Towards incre-
mental component compatibility testing. In: Proceedings of the
14th international ACM Sigsoft symposium on component based
software engineering, CBSE ’11, pp 119-128

White L, Jaber K, Robinson B, Rajlich V (2008) Extended firewall
for regression testing: an experience report. J Softw Maint Evol,
Res Practice 20(6):419-433

Martens A, Koziolek H, Becker S, Reussner R (2010) Automat-
ically improve software architecture models for performance, re-
liability, and cost using evolutionary algorithms. In: Proceedings
of the 1st joint WOSP/SIPEW international conference on perfor-
mance engineering. ACM, New York, pp 105-116

Amyot D, Farah H, Roy J (2006) Evaluation of development tools
for domain-specific modeling languages. Syst Anal Model Lang
Profiles 183-197

Briest P, Krysta P, Vocking B (2005) Approximation techniques
for utilitarian mechanism design. In: Proceedings of the 37th an-
nual ACM symposium on theory of computing. ACM, New York,
pp 3948

Mu’Alem A, Nisan N (2008) Truthful approximation mecha-
nisms for restricted combinatorial auctions. Games Econ Behav
64(2):612-631

Liu J, Tsui K (2006) Toward nature-inspired computing. Commun
ACM 49:59-64

Baldoni R, Corsaro A, Querzoni L, Scipioni S, Piergiovanni ST
(2009) Coupling-based internal clock synchronization for large-

J Internet Serv Appl

38.

39.

40.

41.

scale dynamic distributed systems. IEEE Trans Parallel Distrib
Syst 99(RapidPosts):607-619

Sivanandam S, Deepa S (2007) Introduction to genetic algorithms.
Springer, Berlin

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimiza-
tion. Swarm Intell 1(1):33-57

Dougherty B, White J, Balasubramanian J, Thompson C,
Schmidt D (2009) Deployment automation with BLITZ. In: 31st
international conference on software engineering, companion vol-
ume. [EEE Press, New York, pp 271-274

Koziolek A, Noorshams Q, Reussner R (2011) Focussing multi-
objective software architecture optimization using quality of ser-
vice bounds. In: Models in software engineering, workshops and

42.

43.

symposia at MODELS 2010, Oslo, Norway, October 3-8, 2010.
Lecture notes in computer science, vol 6627. Springer, Berlin,
pp 384-399. Reports and revised selected papers

BuyyaR, Yeo C, Venugopal S (2008) Market-oriented cloud com-
puting: vision, hype, and reality for delivering IT services as com-
puting utilities. In: The 10th IEEE international conference on
high performance computing and communications. IEEE Press,
New York, pp 5-13

Ostermann S, losup A, Yigitbasi N, Prodan R, Fahringer T,
Epema D (2010) A performance analysis of EC2 cloud comput-
ing services for scientific computing. Cloud Comput 115-131

@ Springer

	R&D challenges and solutions for highly complex distributed systems: a middleware perspective
	Abstract
	Introduction
	R&D challenges and promising middleware solutions for highly complex distributed systems
	Challenge 1: encapsulating heterogeneity at scale
	Context
	State of the art
	Open problems
	Future research directions

	Challenge 2: deriving valid, high-performance configurations of highly configurable infrastructure platforms
	Context
	State of the art
	Open problems
	Future research directions

	Challenge 3: supporting diverse QoS requirements
	Context
	State of the art
	Open problems
	Future research directions

	Challenge 4: static configuration and dynamic reconfiguration
	Context
	State of the art
	Open problems
	Future research directions

	Challenge 5: developing robust, extensible and adaptive programming and communication models
	Context
	State of the art
	Open problems
	Future research directions

	Challenge 6: certifying dynamic runtime behavior
	Context
	State of the art
	Open problems
	Future research directions

	The road ahead
	References

